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This handout is meant to introduce you to the final projects, which are due at the end of the term in
place of a final exam. I will go over the steps in more detail as part of Thursday’s lecture, February 5th.

Introduction

The goal of the final project is to give you some familiarity with applying the methods you are learning in
this class to some physical problems of practical interest, which have a phase space dimension of four. The
main goal is to find periodic orbits around equilibrium points in these systems, along with the local and
global dynamics associated with these orbits. The two example problems you can choose between come from
the fields of atomic physics and planetary science, respectively:

• (Atomic physics) Dynamics of the Rydberg atom

• (Planetary science) Dynamics of a binary asteroid pair

The dynamical equations describing each problem are a function of only one parameter. The problems are
described in more detail later.

Questions to Address

Your assignment is to write a report in TEX(preferred) or by hand addressing some questions about these
systems, showing your procedure and calculations. As part of the project, you will need to do some numerical
computations using, for example, Matlab.

The questions you will need to address are summarized in the following steps. We hope that everyone
can perform steps 1, 2, 3, and hopefully 4. Attempt step 5 if you can. A Matlab software package is available
for steps 3, 4, and 5. The Matlab software was originally designed for another dynamical system and will be
given as an example (which you will need to modify).

1. Equilibrium points. Find the equilibrium points for the system: their location and stability type.
How do the equilibrium points change their location and stability as a function of the system param-
eter?

2. Existence of periodic orbits and low order approximations. The two systems have at least
one equilibrium point of the type saddle × center. Linearize the vector field about one of these points.
Do periodic orbits exist around this point in the linearized vector field? Can you determine their
stability? Find analytical approximations to the periodic orbits.

3. Higher order approximations using differential correction and continuation. Analytical
approximations of low order can give qualitative insight, but suppose one wants to compute a periodic
orbit to any desired accuracy, or a periodic orbit with a large amplitude about the equilibrium point?
One then needs to use differential correction, which Koon introduced in Lecture 2B. Differential
correction involves using the analytical approximation as a first guess in an iterative numerical process
to generate a higher order accurate periodic orbit. One computes the state transition matrix for a
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solution of the vector field, which comes from solving the variational equations of the vector field. For
an n-dimensional vector field ẋ = f(x), the variational equations are an n2-dimensional vector field.
Thus, for n = 4, the variational equations are a 16-dimensional vector field. One can use Matlab
software to numerically solve the equations, an example of which will be provided. To find periodic
orbits of large amplitude, one uses a process of continuation. This means that one begins with small,
differentially corrected (i.e., accurate) period orbits, and uses this as a seed for finding larger periodic
orbits.

4. Invariant manifolds of periodic orbits. The eigenvalues of the state transition matrix of a differ-
entially corrected periodic orbit give the stability of the orbit. We expect that for the systems you will
be studying, two eigenvalues will be 1, while the other two are a self-reciprocal pair (λ, 1/λ), where
λ > 1. Corresponding to the eigenvalue λ is the eigenvector in the unstable direction. Taking a small
displacement from the periodic orbit in the unstable direction, one can use this as an initial condition
to grow the unstable invariant manifold of the periodic orbit. This process is called globalization of the
unstable invariant manifold and is performed by numerically integrating the initial condition under
the original vector field, using a numerical integration software, e.g., a Matlab package. A similar
process can be done to obtain the stable invariant manifold.

5. Poincaré section. To visualize the motion of the unstable manifold in the phase space, one can
take a Poincaré section, i.e., a slice of the phase space which produces cross-sections of the unstable
manifold of the periodic orbit.

Introduction to the Example Problems

We now describe the two example problems. Both examples are time-independent Hamiltonian systems
with two degree of freedom (phase space dimension of four). They both describe the motion of a particle
in an external field, viewed in a rotating frame. The phase space coordinates are (x, y, vx, vy), two position
coordinates and two velocity coordinates. Furthermore, the equations of motion of both systems admit a
first integral to the motion, known as the energy, which has the form:

E(x, y, vx, vy) =
1
2
(v2

x + v2
y) + U(x, y),

where U(x, y) is the effective potential in each system.

Example Problem 1: Dynamics of the Rydberg Atom

The Rydberg atom that we study is concerned with the motion of an electron around the rest of the atom
in crossed electric and magnetic fields. The electron is assumed to be in an excited energy level which is
high enough such that its motion can be treated classically. The equations of motion for the electron can be
written as

ẋ = vx,

ẏ = vy,

v̇x = −vy −
∂U

∂x
,

v̇y = vx −
∂U

∂y
, (1)

where the effective potential is

U(x, y) = − 1√
x2 + y2

− εx.

This system has one free parameter, the scaled electric field parameter, ε, which typically has a value
between 0.4 and 0.6.

2



Example Problem 2: Dynamics of a Binary Asteroid Pair

Approximately 10% of observed near Earth asteroids are binary asteroid pairs. A simple model for a binary
asteroid pair is used in this study; the planar, restricted, full two-body problem. The model describes the
motion of a particle in the gravitational field of a massive elliptical asteroid of uniform density. The particle
has no effect on the massive body. The equations of motion for the particle in a frame co-rotating with the
asteroid are

ẋ = vx,

ẏ = vy,

v̇x = 2vy −
∂U

∂x
,

v̇y = −2vx −
∂U

∂y
, (2)

where the effective potential is

U(x, y) = − 1√
x2 + y2

− 1
2
(x2 + y2)−

3C22

(
x2 − y2

)
(x2 + y2)5/2

.

This system has one free parameter, the gravitational field coefficient, C22, which typically has a value
between 0.1 and 0.4.
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