

Final Project

Shane D. Ross

Control and Dynamical Systems, Caltech www.cds.caltech.edu/~shane/cds140b

CDS 140b, February 5, 2004

Final Project

Issues to address in project

- Equilibrium points
- Periodic orbits
 - low order analytical approximations
- □ More accurate p.o.'s
 - Higher order numerical approximations of p.o.'s using differential correction and continuation
- To be covered later
 - Invariant manifolds of p.o.'s
 - Poincaré section

□ Planar, circular, restricted 3-body problem (3BP)

- From Chapter 2 of KLMR book (on class website)
- P in field of two bodies, m_1 and m_2
- x-y frame rotates w.r.t. X-Y inertial frame

 \Box Equations of motion describe P moving in an effective potential $\bar{U}(x.y)$ in a rotating frame

□ Point in phase space: $q = (x \ y \ v_x \ v_y)^T \in \mathbb{R}^4$ □ Equations of motion, $\dot{q} = f(q)$, are

$$\dot{x} = v_x,$$

$$\dot{y} = v_y,$$

$$\dot{v_x} = 2v_y - \frac{\partial \bar{U}}{\partial x},$$

$$\dot{v_y} = -2v_x - \frac{\partial \bar{U}}{\partial y}$$

where

$$\bar{U}(x,y) = -\frac{1}{2}(x^2 + y^2) - \frac{\mu_1}{r_1} - \frac{\mu_2}{r_2}$$

where r_1 and r_2 are the distances of P from m_1 and m_2

and the only parameter of the system is

$$\mu = \frac{m_2}{m_1 + m_2}$$

where $\mu \in (0, 0.5)$

□ Find
$$\bar{q} = (\bar{x} \ \bar{y} \ \bar{v}_x \ \bar{v}_y)^T$$
 s.t. $\dot{\bar{q}} = f(\bar{q}) = 0$
□ Have form $(\bar{x}, \bar{y}, 0, 0)$ where (\bar{x}, \bar{y}) are critical points of $\bar{U}(x, y)$, i.e., $\bar{U}_x = \bar{U}_y = 0$, where $U_a = \frac{\partial \bar{U}}{\partial a}$

Critical Points of $\overline{U}(x,y)$

□ Consider *x*-axis solutions □ $\overline{U}_x = \overline{U}_y = 0 \Rightarrow$ polynomial in *x* □ depends on parameter μ

The graph of $\bar{U}(x,0)$ for $\mu = 0.1$

Phase space near equilibrium points

 \Box Transform coordinates, placing \bar{q} at origin,

$$q = \bar{q} + u$$

 \Box Linearize vector field about \bar{q}

$$\dot{q} = \dot{\bar{q}} + \dot{u} = f(\bar{q}) + Df(\bar{q})u + \mathcal{O}(|u|^2).$$

 \Box Since $\dot{\bar{q}} = f(\bar{q}) = 0$, we have

$$\dot{u} = Df(\bar{q})u + \mathcal{O}(|u|^2),$$

where $Df(\bar{q}) = a$ constant matrix.

\Box In 3BP, we have

$$A = Df(\bar{q}) = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -U_{xx} & -U_{xy} & 0 & 2 \\ -U_{yx} & -U_{yy} & -2 & 0 \end{pmatrix}_{\bar{q}}$$

 \Box Eigenvalues of A tell us stability

٠

 \Box The *x*-axis solutions have

$$A = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ a & 0 & 0 & 2 \\ 0 & -b & -2 & 0 \end{pmatrix}$$

where a and b are positive constants.

 \Box Eigenvalues are $\pm \lambda$ and $\pm i\nu$.

 \Box saddle \times center geometry

 $\dim(E_s) = 1$ $\dim(E_u) = 1$ $\dim(E_c) = 2$

Periodic orbits

Low order approximation methods

- Eigenvector method (Ch. 2 of KLMR)
- □ Naive method (Verhulst, Ch. 9)
- □ Poincaré-Lindstedt (Verhulst, Ch. 9 & Lecture 2B)

Periodic orbits

Eigenvector method for **3BP**

- \Box Eigenvalues of the linear system are $\pm \lambda$ and $\pm i\nu$ with corresponding eigenvectors u_1, u_2, w_1, w_2 .
- □ Thus, the general (real) solution has the form

$$u(t) = (x(t) \ y(t) \ v_x(t) \ v_y(t))^{\mathrm{T}}, = \alpha_1 e^{\lambda t} u_1 + \alpha_2 e^{-\lambda t} u_2 + 2 \mathrm{Re}(\beta e^{i\nu t} w_1),$$

where α_1, α_2 are real and $\beta = \beta_1 + i\beta_2$ is complex.

 $\Box \alpha_1 = \alpha_2 = 0 \Rightarrow$ a periodic orbit of period $T = \frac{2\pi}{\nu}$.

□ A theorem of Moser [1958] guarantees the existence of the p.o. in the full nonlinear equations.

- \Box Approximation methods above may not give a p.o., $x_{\rm po}(t)$, of a desired accuracy
- □ The p.o. may be unstable
- \Box We want $\bar{x}_{\rm po}(0)$ s.t.

$$|\bar{x}_{\rm po}(T) - \bar{x}_{\rm po}(0)| < \epsilon$$

for specified $\boldsymbol{\epsilon}$

- How to get accurate, high amplitude p.o.'s?
- high order analytic expansion (e.g., Poincaré-Lindstedt)
 normal form theory (to high order)
- numerical differential correction and continuation

Lecture 2B discussed diff. corr.; we review here
 See also Chs. 6 & 7 of KLMR

Differential correction

 $\Box \text{ Given } \bar{x}(t) \text{ going from } \bar{x}_0 \text{ to } \bar{x}_1 \text{ under}$ $\dot{x} = f(x),$

wiggle \bar{x}_0 by $\delta \bar{x}_0$ so trajectory will end at x_d , near \bar{x}_1 . \Box Need sensitivity of $\delta \bar{x}_1$ w.r.t. $\delta \bar{x}_0$.

Linear approx., **state transition matrix**.

- \Box Let trajectories with $\bar{x}(t_0) = \bar{x}_0$ be denoted by $\phi(t, t_0; \bar{x}_0)$.
- \Box perturbed initial vector $\bar{x}_0 + \delta \bar{x}_0$ evolves as

$$\delta \bar{x}(t) = \phi(t, t_0; \bar{x}_0 + \delta \bar{x}_0) - \phi(t, \bar{x}_0)$$

w.r.t. reference trajectory $\bar{x}(t)$.

 \Box Measuring the distance at time t_1 gives

 $\delta \bar{x}(t_1) = \phi(t_1, t_0; \bar{x}_0 + \delta \bar{x}_0) - \phi(t_1, t_0; \bar{x}_0).$

Taylor expansion yields

$$\delta \bar{x}(t_1) = \frac{\partial \phi(t_1, t_0; \bar{x}_0)}{\partial x_0} \delta \bar{x}_0 + \mathcal{O}(|\delta \bar{x}_0|^2)$$

 □ The matrix <sup>∂φ(t₁,t₀;x
₀)</sup>/_{∂x₀} which satisfies tha above relation to first order is called the state transition matrix.
 □ Abbreviated as Φ(t₁, t₀), this matrix, given by δx
(t₁) = Φ(t₁, t₀)δx
₀,

plays a key role in differential correction.

□ Suppose,

$$\bar{x}(t_1) = \phi(t_1, t_0; \bar{x}_0) = \bar{x}_1 = x_d - \delta \bar{x}_1,$$

is slightly off $(|\delta \bar{x}_1| > \epsilon)$ and we need to correct it. Since

$$\begin{split} \phi(t_1, t_0; \bar{x}_0 + \delta \bar{x}_0) &\approx \phi(t_1, t_0; \bar{x}_0) + \frac{\partial \phi(t_1, t_0; \bar{x}_0)}{\partial x_0} \delta \bar{x}_0 \\ &\approx \phi(t_1, t_0; \bar{x}_0) + \Phi(t_1, t_0) \delta \bar{x}_0 \\ &\approx \bar{x}_1 + \delta \bar{x}_1 \\ &\approx x_d, \end{split}$$

 \Rightarrow changing \bar{x}_0 by $\delta \bar{x}_0 = \Phi(t_1, t_0)^{-1} \delta \bar{x}_1$ works to first order.

By iteration, the process produces convergence:

$$|\phi(t_1, t_0; \bar{x}_0 + \Delta \bar{x}_0) - x_d| < \varepsilon$$

where $\Delta \bar{x}_0$ is the accumulation of corrections $\delta \bar{x}_0$ which yields x_d within the desired tolerance ε .

- **Computation of** $\Phi(t_1, t_0)$
- \Box Since ϕ satisfies $\frac{d\phi(t;\bar{x}_0)}{dt} = f(\phi(t,\bar{x}_0)),$ with $\phi(t_0; \bar{x}_0) = \bar{x}_0$, diff. w.r.t. x_0 yields $\frac{d}{dt}\frac{\partial\phi(t;\bar{x}_0)}{\partial x_0} = Df(\phi)\frac{\partial\phi(t;\bar{x}_0)}{\partial x_0},$ where $\frac{\partial \phi(t_0; \bar{x}_0)}{\partial x_0} = I$. \Box Hence, $\Phi(t, t_0)$ solves the following initial value problem
 - $\dot{\Phi}(t,t_0) = Df(\bar{x}(t))\Phi(t,t_0), \quad \Phi(t_0,t_0) = I$

 $\Box Df(\bar{x}(t))$ obtained numerically in general.

 \Box Thus, $\Phi(t,0)$ along a reference orbit $\bar{x}(t)$ is computed by numerically integrating $n + n^2$ ODEs:

$$\dot{\bar{x}}(t) = f(\bar{x}(t)),$$

$$\dot{\Phi}(t,0) = Df(\bar{x}(t))\Phi(t,0),$$

with initial conditions:

$$\bar{x}(0) = \bar{x}_0,$$

$$\Phi(0,0) = I,$$

where we've set $t_0 = 0$.

\Box In 3BP, we have

$$Df(\bar{x}(t)) = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -U_{xx} & -U_{xy} & 0 & 2 \\ -U_{yx} & -U_{yy} & -2 & 0 \end{pmatrix}_{\bar{x}(t)}$$

We seek periodic orbits which are symmetric w.r.t. the x-axis (y = 0), noting that $y \mapsto -y, t \mapsto -t$ leaves equations of motion unchanged.

– Gives mirror image solution $\bar{x}(-t)$ for each $\bar{x}(t)$

□ Intersect *x*-axis perpendicularly,

 $\bar{x}(0) = (x_0 \ 0 \ 0 \ v_{y0})^{\mathrm{T}}$

□ We get this first guess from approx. methods.

 \Box ODEs integrated until next *x*-axis crossing

- integrate until y(t) changes sign
- then change time step until, e.g., $|y(t)| < 10^{-11}$,

– at crossing,
$$t\equiv t_1$$
, $y_1\equiv y(t_1)$

 \Box We have $\bar{x}(t_1)$, so compute $\Phi(t_1, 0)$ as well

□ For p.o., desired final state has form

$$\bar{x}(t_1) = (x_1 \ 0 \ 0 \ v_{y1})^{\mathrm{T}}$$

where $t_1 = T/2$

 \Box actual value for v_{x1} may not be 0

 \Box we want $|v_{x1}| < \varepsilon$, e.g., $\varepsilon = 10^{-8}$.

 $\Box \Phi(t_1, 0)$ can be used to adjust the initial values to obtain a p.o. as

$$\delta \bar{x}_1 \approx \Phi(t_1, 0) \delta \bar{x}_0 + \dot{\bar{x}}_1 \delta t_1$$

 \Box Assume $|v_{x1}| > \varepsilon$ and we hold x_0 fixed

 \Box Correction to v_{y0} can be calculated from

$$\delta v_{x1} \approx \Phi_{34} \delta v_{y0} + \dot{v}_{x1} \delta t_1$$

$$0 = \delta y_1 \approx \Phi_{24} \delta v_{y0} + v_{y1} \delta t_1$$

where Φ_{ij} is an element of matrix $\Phi(t_1, 0)$. \Box Here, $\delta v_{x1} = v_{x1}$ since we want $v_{x1} = 0$

□ Hence,

$$\delta v_{y0} \approx \left(\Phi_{34} - \frac{1}{v_{y1}}\Phi_{24}\right)^{-1} v_{x1}$$

can be used to cancel out v_{x1} if we let

$$v_{y0} \mapsto v_{y0} - \delta v_{y0}$$

 \Box This process converges to $|v_{x1}| < 10^{-8}$ within a few iterations

Numerical Continuation

□ Suppose we find two small nearby p.o. initial conditions using diff. cor.

$ar{x}_{0}^{(1)},ar{x}_{0}^{(2)}$

□ We can generate a family of p.o.'s with increasing amplitude around an equil. point in the following way (using 3BP's L_1 as an example).

Let

$$\Delta = \bar{x}_0^{(2)} - \bar{x}_0^{(1)}, = (\Delta x_0 \ 0 \ 0 \ \Delta v_{y0})^{\mathrm{T}}$$

 \Box Then extrapolate to an initial guess for $ar{x}_0^{(3)}$ via

$$\begin{aligned} \bar{x}_{0}^{(3)} &= \bar{x}_{0}^{(2)} + \Delta, \\ &= \left(\left(x_{0}^{(2)} + \Delta x_{0} \right) \ 0 \ 0 \ \left(v_{y0}^{(2)} + \Delta v_{y0} \right) \right)^{\mathrm{T}} \\ &= \left(x_{0}^{(3)} \ 0 \ 0 \ v_{y0}^{(3)} \right)^{\mathrm{T}} \end{aligned}$$

 \Box Keeping $x_0^{(3)}$ fixed, we can use differential correction to compute an accurate solution $\bar{x}_0^{(3)}$ and repeat the process until we have a family of solutions.

Invariant manifolds of p.o.'s

The monodromy matrix $\Phi(T, 0)$ has an unstable and stable eigenvector. We can numerically integrate this linear approximation to the unstable (or stable) direction to obtain the unstable (or stable) manifold.

Poincaré Sections

This set of solutions approximating the unstable manifold can be numerically integrated until some stopping condition is reached (e.g., $x_j = \text{constant}$).

References

- Koon, W.S., M.W. Lo, J.E. Marsden and S.D. Ross [2004] Dynamical systems, the three-body problem, and space mission design, preprint.
- Koon, W.S., M.W. Lo, J.E. Marsden and S.D. Ross [2000] Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics, *Chaos* 10(2), 427–469.