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Final Project

� Issues to address in project

� Equilibrium points

� Periodic orbits

– low order analytical approximations

� More accurate p.o.’s

– Higher order numerical approximations of p.o.’s
using differential correction and continuation

� To be covered later

– Invariant manifolds of p.o.’s

– Poincaré section
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Example Problem
� Planar, circular, restricted 3-body problem (3BP)

– From Chapter 2 of KLMR book (on class website)

– P in field of two bodies, m1 and m2

– x-y frame rotates w.r.t. X-Y inertial frame
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Example Problem
� Equations of motion describe P moving in an effective

potential Ū(x.y) in a rotating frame
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Example Problem

� Point in phase space: q = (x y vx vy)
T ∈ R4

� Equations of motion, q̇ = f (q), are

ẋ = vx,

ẏ = vy,

v̇x = 2vy −
∂Ū

∂x
,

v̇y = −2vx −
∂Ū

∂y
,

where

Ū(x, y) = −1

2
(x2 + y2)− µ1

r1
− µ2

r2

where r1 and r2 are the distances of P from m1 and m2
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Example Problem
and the only parameter of the system is

µ =
m2

m1 +m2

where µ ∈ (0, 0.5)
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Equilibrium points

� Find q̄ = (x̄ ȳ v̄x v̄y)
T s.t. ˙̄q = f (q̄) = 0

� Have form (x̄, ȳ, 0, 0) where (x̄, ȳ) are critical points of
Ū(x, y), i.e., Ūx = Ūy = 0, where Ua = ∂Ū

∂a

U(x,y)
_

L4

L5
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L1

L2

Critical Points of Ū(x, y)
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Equilibrium points
� Consider x-axis solutions

� Ūx = Ūy = 0 ⇒ polynomial in x

� depends on parameter µ
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Equilibrium points

�Phase space near equilibrium points

� Transform coordinates, placing q̄ at origin,

q = q̄ + u

� Linearize vector field about q̄

q̇ = ˙̄q + u̇ = f (q̄) +Df (q̄)u +O(|u|2).

� Since ˙̄q = f (q̄) = 0, we have

u̇ = Df (q̄)u +O(|u|2),
where Df (q̄) = a constant matrix.
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Equilibrium points
� In 3BP, we have

A = Df (q̄) =


0 0 1 0
0 0 0 1

−Uxx −Uxy 0 2
−Uyx −Uyy −2 0


q̄

.

� Eigenvalues of A tell us stability
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Equilibrium points
� The x-axis solutions have

A =


0 0 1 0
0 0 0 1
a 0 0 2
0 −b −2 0


where a and b are positive constants.

� Eigenvalues are ±λ and ±iν.
� saddle × center geometry

dim(Es) = 1

dim(Eu) = 1

dim(Ec) = 2
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Periodic orbits

�Low order approximation methods

� Eigenvector method (Ch. 2 of KLMR)

� Naive method (Verhulst, Ch. 9)

� Poincaré-Lindstedt (Verhulst, Ch. 9 & Lecture 2B)
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Periodic orbits

�Eigenvector method for 3BP

� Eigenvalues of the linear system are ±λ and ±iν with
corresponding eigenvectors u1, u2, w1, w2.

� Thus, the general (real) solution has the form

u(t) = (x(t) y(t) vx(t) vy(t))
T,

= α1e
λtu1 + α2e

−λtu2 + 2Re(βeiνtw1),

where α1, α2 are real and β = β1 + iβ2 is complex.

�α1 = α2 = 0 ⇒ a periodic orbit of period T = 2π
ν .

� A theorem of Moser [1958] guarantees the existence of
the p.o. in the full nonlinear equations.
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More accurate p.o.’s
� Approximation methods above may not give a p.o., xpo(t),

of a desired accuracy

� The p.o. may be unstable

� We want x̄po(0) s.t.

|x̄po(T )− x̄po(0)| < ε

for specified ε
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More accurate p.o.’s

�How to get accurate, high amplitude
p.o.’s?

� high order analytic expansion (e.g., Poincaré-Lindstedt)

� normal form theory (to high order)

� numerical differential correction and continuation

� Lecture 2B discussed diff. corr.; we review here

� See also Chs. 6 & 7 of KLMR
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More accurate p.o.’s

�Differential correction

� Given x̄(t) going from x̄0 to x̄1 under

ẋ = f (x),

wiggle x̄0 by δx̄0 so trajectory will end at xd, near x̄1.

� Need sensitivity of δx̄1 w.r.t. δx̄0.

� Linear approx., state transition matrix.
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More accurate p.o.’s
� Let trajectories with x̄(t0) = x̄0 be denoted by φ(t, t0; x̄0).

� perturbed initial vector x̄0 + δx̄0 evolves as

δx̄(t) = φ(t, t0; x̄0 + δx̄0)− φ(t, x̄0)

w.r.t. reference trajectory x̄(t).

17



More accurate p.o.’s
� Measuring the distance at time t1 gives

δx̄(t1) = φ(t1, t0; x̄0 + δx̄0)− φ(t1, t0; x̄0).

� Taylor expansion yields

δx̄(t1) =
∂φ(t1, t0; x̄0)

∂x0
δx̄0 +O(|δx̄0|2)

� The matrix ∂φ(t1,t0;x̄0)
∂x0

which satisfies tha above relation
to first order is called the state transition matrix.

� Abbreviated as Φ(t1, t0), this matrix, given by

δx̄(t1) = Φ(t1, t0)δx̄0,

plays a key role in differential correction.
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More accurate p.o.’s
� Suppose,

x̄(t1) = φ(t1, t0; x̄0) = x̄1 = xd − δx̄1,

is slightly off (|δx̄1| > ε) and we need to correct it.

� Since

φ(t1, t0; x̄0 + δx̄0) ≈ φ(t1, t0; x̄0) +
∂φ(t1, t0; x̄0)

∂x0
δx̄0

≈ φ(t1, t0; x̄0) + Φ(t1, t0)δx̄0

≈ x̄1 + δx̄1

≈ xd,

⇒ changing x̄0 by δx̄0 = Φ(t1, t0)
−1δx̄1 works to first

order.
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More accurate p.o.’s
� By iteration, the process produces convergence:

|φ(t1, t0; x̄0 + ∆x̄0)− xd| < ε

where ∆x̄0 is the accumulation of corrections δx̄0 which
yields xd within the desired tolerance ε.
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More accurate p.o.’s

�Computation of Φ(t1, t0)

� Since φ satisfies

dφ(t; x̄0)

dt
= f (φ(t, x̄0)),

with φ(t0; x̄0) = x̄0, diff. w.r.t. x0 yields

d

dt

∂φ(t; x̄0)

∂x0
= Df (φ)

∂φ(t; x̄0)

∂x0
,

where ∂φ(t0;x̄0)
∂x0

= I .

� Hence, Φ(t, t0) solves the following initial value problem

Φ̇(t, t0) = Df (x̄(t))Φ(t, t0), Φ(t0, t0) = I
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More accurate p.o.’s
�Df (x̄(t)) obtained numerically in general.

� Thus, Φ(t, 0) along a reference orbit x̄(t) is computed
by numerically integrating n + n2 ODEs:

˙̄x(t) = f (x̄(t)),

Φ̇(t, 0) = Df (x̄(t))Φ(t, 0),

with initial conditions:

x̄(0) = x̄0,

Φ(0, 0) = I,

where we’ve set t0 = 0.
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More accurate p.o.’s
� In 3BP, we have

Df (x̄(t)) =


0 0 1 0
0 0 0 1

−Uxx −Uxy 0 2
−Uyx −Uyy −2 0


x̄(t)

.
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More accurate p.o.’s
� We seek periodic orbits which are symmetric w.r.t. the
x-axis (y = 0), noting that y 7→ −y, t 7→ −t leaves
equations of motion unchanged.

– Gives mirror image solution x̄(−t) for each x̄(t)

� Intersect x-axis perpendicularly,

x̄(0) = (x0 0 0 vy0)
T

� We get this first guess from approx. methods.
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More accurate p.o.’s
� ODEs integrated until next x-axis crossing

– integrate until y(t) changes sign

– then change time step until, e.g., |y(t)| < 10−11,

– at crossing, t ≡ t1, y1 ≡ y(t1)

� We have x̄(t1), so compute Φ(t1, 0) as well

� For p.o., desired final state has form

x̄(t1) = (x1 0 0 vy1)
T

where t1 = T/2

� actual value for vx1 may not be 0

� we want |vx1| < ε, e.g., ε = 10−8.
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More accurate p.o.’s
� Φ(t1, 0) can be used to adjust the initial values to obtain

a p.o. as
δx̄1 ≈ Φ(t1, 0)δx̄0 + ˙̄x1δt1

� Assume |vx1| > ε and we hold x0 fixed

� Correction to vy0 can be calculated from

δvx1 ≈ Φ34δvy0 + v̇x1δt1
0 = δy1 ≈ Φ24δvy0 + vy1δt1

where Φij is an element of matrix Φ(t1, 0).

� Here, δvx1 = vx1 since we want vx1 = 0
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More accurate p.o.’s
� Hence,

δvy0 ≈
(

Φ34 −
1

vy1
Φ24

)−1

vx1

can be used to cancel out vx1 if we let

vy0 7→ vy0 − δvy0

� This process converges to |vx1| < 10−8 within a few
iterations
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More accurate p.o.’s

�Numerical Continuation

� Suppose we find two small nearby p.o. initial conditions
using diff. cor.

x̄
(1)
0 , x̄

(2)
0

� We can generate a family of p.o.’s with increasing ampli-
tude around an equil. point in the following way (using
3BP’s L1 as an example).

� Let

∆ = x̄
(2)
0 − x̄

(1)
0 ,

= (∆x0 0 0 ∆vy0)
T
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More accurate p.o.’s

� Then extrapolate to an initial guess for x̄
(3)
0 via

x̄
(3)
0 = x̄

(2)
0 + ∆,

=
(
(x

(2)
0 + ∆x0) 0 0 (v

(2)
y0 + ∆vy0)

)T

=
(
x

(3)
0 0 0 v

(3)
y0

)T

� Keeping x
(3)
0 fixed, we can use differential correction to

compute an accurate solution x̄
(3)
0 and repeat the process

until we have a family of solutions.
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Invariant manifolds of p.o.’s
� The monodromy matrix Φ(T, 0) has an unstable and

stable eigenvector. We can numerically integrate this
linear approximation to the unstable (or stable) direction
to obtain the unstable (or stable) manifold.

� The Flow Near Nominal Halo Orbit.

I Both qualitative and quantitative information about CR3BP near
the nominal can be obtained from monodromy matrix M
• which is state transition matrix after 1 revolution along nominal

δx̄(T ) = Φ(T, t0)δx̄(t0),
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Poincaré Sections
� This set of solutions approximating the unstable mani-

fold can be numerically integrated until some stopping
condition is reached (e.g., xj = constant).
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