Final Project

Shane D. Ross

Control and Dynamical Systems, Caltech www.cds.caltech.edu/~shane/cds140b

CDS 140b, February 5, 2004

Final Project

Issues to address in project

\square Equilibrium points
\square Periodic orbits

- low order analytical approximations
\square More accurate p.o.'s
- Higher order numerical approximations of p.o.'s using differential correction and continuation
\square To be covered later
- Invariant manifolds of p.o.'s
- Poincaré section

Example Problem

\square Planar, circular, restricted 3-body problem (3BP)

- From Chapter 2 of KLMR book (on class website)
- P in field of two bodies, m_{1} and m_{2}
$-x-y$ frame rotates w.r.t. $X-Y$ inertial frame

Example Problem

\square Equations of motion describe P moving in an effective potential $\bar{U}(x . y)$ in a rotating frame

Position Space

Effective Potential

Example Problem

Point in phase space: $q=\left(\begin{array}{lll}x & y & v_{x} \\ v_{y}\end{array}\right)^{\mathrm{T}} \in \mathbb{R}^{4}$
Equations of motion, $\dot{q}=f(q)$, are

$$
\begin{aligned}
\dot{x} & =v_{x} \\
\dot{y} & =v_{y} \\
\dot{v}_{x} & =2 v_{y}-\frac{\partial \bar{U}}{\partial x} \\
\dot{v}_{y} & =-2 v_{x}-\frac{\partial \bar{U}}{\partial y}
\end{aligned}
$$

where

$$
\bar{U}(x, y)=-\frac{1}{2}\left(x^{2}+y^{2}\right)-\frac{\mu_{1}}{r_{1}}-\frac{\mu_{2}}{r_{2}}
$$

where r_{1} and r_{2} are the distances of P from m_{1} and m_{2}

Example Problem

and the only parameter of the system is

$$
\mu=\frac{m_{2}}{m_{1}+m_{2}}
$$

where $\mu \in(0,0.5)$

Equilibrium points

Find $\bar{q}=\left(\bar{x} \bar{y} \bar{v}_{x} \bar{v}_{y}\right)^{\mathrm{T}}$ s.t. $\dot{\bar{q}}=f(\bar{q})=0$
\square Have form $(\bar{x}, \bar{y}, 0,0)$ where (\bar{x}, \bar{y}) are critical points of $\bar{U}(x, y)$, i.e., $\bar{U}_{x}=\bar{U}_{y}=0$, where $U_{a}=\frac{\partial \bar{U}}{\partial a}$

Critical Points of $\bar{U}(x, y)$

Equilibrium points

\square Consider x-axis solutions
$\square \bar{U}_{x}=\bar{U}_{y}=0 \Rightarrow$ polynomial in x
\square depends on parameter μ

The graph of $\bar{U}(x, 0)$ for $\mu=0.1$

Equilibrium points

Phase space near equilibrium points
\square Transform coordinates, placing \bar{q} at origin,

$$
q=\bar{q}+u
$$

\square Linearize vector field about \bar{q}

$$
\dot{q}=\dot{\bar{q}}+\dot{u}=f(\bar{q})+D f(\bar{q}) u+\mathcal{O}\left(|u|^{2}\right)
$$

\square Since $\dot{\bar{q}}=f(\bar{q})=0$, we have

$$
\dot{u}=D f(\bar{q}) u+\mathcal{O}\left(|u|^{2}\right)
$$

where $D f(\bar{q})=$ a constant matrix.

Equilibrium points

$\square \ln$ 3BP, we have

$$
A=D f(\bar{q})=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-U_{x x} & -U_{x y} & 0 & 2 \\
-U_{y x} & -U_{y y} & -2 & 0
\end{array}\right)_{\bar{q}}
$$

\square Eigenvalues of A tell us stability

Equilibrium points

\square The x-axis solutions have

$$
A=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
a & 0 & 0 & 2 \\
0 & -b & -2 & 0
\end{array}\right)
$$

where a and b are positive constants.
\square Eigenvalues are $\pm \lambda$ and $\pm i \nu$.
\square saddle \times center geometry

$$
\begin{aligned}
\operatorname{dim}\left(E_{s}\right) & =1 \\
\operatorname{dim}\left(E_{u}\right) & =1 \\
\operatorname{dim}\left(E_{c}\right) & =2
\end{aligned}
$$

Periodic orbits

Low order approximation methods
\square Eigenvector method (Ch. 2 of KLMR)
\square Naive method (Verhulst, Ch. 9)
\square Poincaré-Lindstedt (Verhulst, Ch. 9 \& Lecture 2B)

Periodic orbits

Eigenvector method for 3BP

\square Eigenvalues of the linear system are $\pm \lambda$ and $\pm i \nu$ with corresponding eigenvectors $u_{1}, u_{2}, w_{1}, w_{2}$.
\square Thus, the general (real) solution has the form

$$
\begin{aligned}
u(t) & =\left(x(t) y(t) v_{x}(t) v_{y}(t)\right)^{\mathrm{T}} \\
& =\alpha_{1} e^{\lambda t} u_{1}+\alpha_{2} e^{-\lambda t} u_{2}+2 \operatorname{Re}\left(\beta e^{i \nu t} w_{1}\right)
\end{aligned}
$$

where α_{1}, α_{2} are real and $\beta=\beta_{1}+i \beta_{2}$ is complex.
$\square \alpha_{1}=\alpha_{2}=0 \Rightarrow$ a periodic orbit of period $T=\frac{2 \pi}{\nu}$.
\square A theorem of Moser [1958] guarantees the existence of the p.o. in the full nonlinear equations.

More accurate p.o.'s

\square Approximation methods above may not give a p.o., $x_{\mathrm{po}}(t)$, of a desired accuracy
\square The p.o. may be unstable
\square We want $\bar{x}_{\mathrm{po}}(0)$ s.t.

$$
\left|\bar{x}_{\mathrm{po}}(T)-\bar{x}_{\mathrm{po}}(0)\right|<\epsilon
$$

for specified ϵ

More accurate p.o.'s

How to get accurate, high amplitude p.o.'s?
\square high order analytic expansion (e.g., Poincaré-Lindstedt)
\square normal form theory (to high order)
\square numerical differential correction and continuation
\square Lecture 2B discussed diff. corr.; we review here
\square See also Chs. 6 \& 7 of KLMR

Differential correction
\square Given $\bar{x}(t)$ going from \bar{x}_{0} to \bar{x}_{1} under

$$
\dot{x}=f(x),
$$

wiggle \bar{x}_{0} by $\delta \bar{x}_{0}$ so trajectory will end at x_{d}, near \bar{x}_{1}.
\square Need sensitivity of $\delta \bar{x}_{1}$ w.r.t. $\delta \bar{x}_{0}$.
\square Linear approx., state transition matrix.

More accurate p.o.'s

\square Let trajectories with $\bar{x}\left(t_{0}\right)=\bar{x}_{0}$ be denoted by $\phi\left(t, t_{0} ; \bar{x}_{0}\right)$.
\square perturbed initial vector $\bar{x}_{0}+\delta \bar{x}_{0}$ evolves as

$$
\delta \bar{x}(t)=\phi\left(t, t_{0} ; \bar{x}_{0}+\delta \bar{x}_{0}\right)-\phi\left(t, \bar{x}_{0}\right)
$$

w.r.t. reference trajectory $\bar{x}(t)$.

More accurate p.o.'s

\square Measuring the distance at time t_{1} gives

$$
\delta \bar{x}\left(t_{1}\right)=\phi\left(t_{1}, t_{0} ; \bar{x}_{0}+\delta \bar{x}_{0}\right)-\phi\left(t_{1}, t_{0} ; \bar{x}_{0}\right) .
$$

\square Taylor expansion yields

$$
\delta \bar{x}\left(t_{1}\right)=\frac{\partial \phi\left(t_{1}, t_{0} ; \bar{x}_{0}\right)}{\partial x_{0}} \delta \bar{x}_{0}+\mathcal{O}\left(\left|\delta \bar{x}_{0}\right|^{2}\right)
$$

\square The matrix $\frac{\partial \phi\left(t_{1}, t_{0} ; \bar{x}_{0}\right)}{\partial x_{0}}$ which satisfies tha above relation to first order is called the state transition matrix.
\square Abbreviated as $\Phi\left(t_{1}, t_{0}\right)$, this matrix, given by

$$
\delta \bar{x}\left(t_{1}\right)=\Phi\left(t_{1}, t_{0}\right) \delta \bar{x}_{0}
$$

plays a key role in differential correction.

More accurate p.o.'s

\square Suppose,

$$
\bar{x}\left(t_{1}\right)=\phi\left(t_{1}, t_{0} ; \bar{x}_{0}\right)=\bar{x}_{1}=x_{d}-\delta \bar{x}_{1},
$$

is slightly off $\left(\left|\delta \bar{x}_{1}\right|>\epsilon\right)$ and we need to correct it.
\square Since

$$
\begin{aligned}
\phi\left(t_{1}, t_{0} ; \bar{x}_{0}+\delta \bar{x}_{0}\right) & \approx \phi\left(t_{1}, t_{0} ; \bar{x}_{0}\right)+\frac{\partial \phi\left(t_{1}, t_{0} ; \bar{x}_{0}\right)}{\partial x_{0}} \delta \bar{x}_{0} \\
& \approx \phi\left(t_{1}, t_{0} ; \bar{x}_{0}\right)+\Phi\left(t_{1}, t_{0}\right) \delta \bar{x}_{0} \\
& \approx \bar{x}_{1}+\delta \bar{x}_{1} \\
& \approx x_{d}
\end{aligned}
$$

\Rightarrow changing \bar{x}_{0} by $\delta \bar{x}_{0}=\Phi\left(t_{1}, t_{0}\right)^{-1} \delta \bar{x}_{1}$ works to first order.

More accurate p.o.'s

\square By iteration, the process produces convergence:

$$
\left|\phi\left(t_{1}, t_{0} ; \bar{x}_{0}+\Delta \bar{x}_{0}\right)-x_{d}\right|<\varepsilon
$$

where $\Delta \bar{x}_{0}$ is the accumulation of corrections $\delta \bar{x}_{0}$ which yields x_{d} within the desired tolerance ε.

Computation of $\Phi\left(t_{1}, t_{0}\right)$
\square Since ϕ satisfies

$$
\frac{d \phi\left(t ; \bar{x}_{0}\right)}{d t}=f\left(\phi\left(t, \bar{x}_{0}\right)\right)
$$

with $\phi\left(t_{0} ; \bar{x}_{0}\right)=\bar{x}_{0}$, diff. w.r.t. x_{0} yields

$$
\frac{d}{d t} \frac{\partial \phi\left(t ; \bar{x}_{0}\right)}{\partial x_{0}}=D f(\phi) \frac{\partial \phi\left(t ; \bar{x}_{0}\right)}{\partial x_{0}}
$$

where $\frac{\partial \phi\left(t_{0} ; \bar{x}_{0}\right)}{\partial x_{0}}=I$.
\square Hence, $\Phi\left(t, t_{0}\right)$ solves the following initial value problem

$$
\dot{\Phi}\left(t, t_{0}\right)=D f(\bar{x}(t)) \Phi\left(t, t_{0}\right), \quad \Phi\left(t_{0}, t_{0}\right)=I
$$

More accurate p.o.'s

$\square D f(\bar{x}(t))$ obtained numerically in general.
\square Thus, $\Phi(t, 0)$ along a reference orbit $\bar{x}(t)$ is computed by numerically integrating $n+n^{2}$ ODEs:

$$
\begin{aligned}
\dot{\bar{x}}(t) & =f(\bar{x}(t)) \\
\dot{\Phi}(t, 0) & =D f(\bar{x}(t)) \Phi(t, 0),
\end{aligned}
$$

with initial conditions:

$$
\begin{aligned}
\bar{x}(0) & =\bar{x}_{0}, \\
\Phi(0,0) & =I
\end{aligned}
$$

where we've set $t_{0}=0$.

More accurate p.o.'s

In 3BP, we have

$$
D f(\bar{x}(t))=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-U_{x x} & -U_{x y} & 0 & 2 \\
-U_{y x} & -U_{y y} & -2 & 0
\end{array}\right)_{\bar{x}(t)}
$$

More accurate p.o.'s

\square We seek periodic orbits which are symmetric w.r.t. the x-axis $(y=0)$, noting that $y \mapsto-y, t \mapsto-t$ leaves equations of motion unchanged.

- Gives mirror image solution $\bar{x}(-t)$ for each $\bar{x}(t)$
\square Intersect x-axis perpendicularly,

$$
\bar{x}(0)=\left(\begin{array}{llll}
x_{0} & 0 & 0 & v_{y 0}
\end{array}\right)^{\mathrm{T}}
$$

\square We get this first guess from approx. methods.

More accurate p.o.'s

\square ODEs integrated until next x-axis crossing

- integrate until $y(t)$ changes sign
- then change time step until, e.g., $|y(t)|<10^{-11}$,
- at crossing, $t \equiv t_{1}, y_{1} \equiv y\left(t_{1}\right)$
\square We have $\bar{x}\left(t_{1}\right)$, so compute $\Phi\left(t_{1}, 0\right)$ as well
\square For p.o., desired final state has form

$$
\bar{x}\left(t_{1}\right)=\left(\begin{array}{llll}
x_{1} & 0 & 0 & v_{y 1}
\end{array}\right)^{\mathrm{T}}
$$

where $t_{1}=T / 2$
\square actual value for $v_{x 1}$ may not be 0
\square we want $\left|v_{x 1}\right|<\varepsilon$, e.g., $\varepsilon=10^{-8}$.

More accurate p.o.'s

$\square \Phi\left(t_{1}, 0\right)$ can be used to adjust the initial values to obtain a p.o. as

$$
\delta \bar{x}_{1} \approx \Phi\left(t_{1}, 0\right) \delta \bar{x}_{0}+\dot{\bar{x}}_{1} \delta t_{1}
$$

\square Assume $\left|v_{x 1}\right|>\varepsilon$ and we hold x_{0} fixed
\square Correction to $v_{y 0}$ can be calculated from

$$
\begin{aligned}
\delta v_{x 1} & \approx \Phi_{34} \delta v_{y 0}+\dot{v}_{x 1} \delta t_{1} \\
0=\delta y_{1} & \approx \Phi_{24} \delta v_{y 0}+v_{y 1} \delta t_{1}
\end{aligned}
$$

where $\Phi_{i j}$ is an element of matrix $\Phi\left(t_{1}, 0\right)$.
\square Here, $\delta v_{x 1}=v_{x 1}$ since we want $v_{x 1}=0$

More accurate p.o.'s

\square Hence,

$$
\delta v_{y 0} \approx\left(\Phi_{34}-\frac{1}{v_{y 1}} \Phi_{24}\right)^{-1} v_{x 1}
$$

can be used to cancel out $v_{x 1}$ if we let

$$
v_{y 0} \mapsto v_{y 0}-\delta v_{y 0}
$$

\square This process converges to $\left|v_{x 1}\right|<10^{-8}$ within a few iterations

More accurate p.o.'s

Numerical Continuation

\square Suppose we find two small nearby p.o. initial conditions using diff. cor.

$$
\bar{x}_{0}^{(1)}, \bar{x}_{0}^{(2)}
$$

\square We can generate a family of p.o.'s with increasing amplitude around an equil. point in the following way (using 3BP's L_{1} as an example).
\square Let

$$
\begin{aligned}
\Delta & =\bar{x}_{0}^{(2)}-\bar{x}_{0}^{(1)}, \\
& =\left(\begin{array}{llll}
\Delta x_{0} & 0 & 0 & \Delta v_{y 0}
\end{array}\right)^{\mathrm{T}}
\end{aligned}
$$

More accurate p.o.'s

\square Then extrapolate to an initial guess for $\bar{x}_{0}^{(3)}$ via

$$
\begin{aligned}
\bar{x}_{0}^{(3)} & =\bar{x}_{0}^{(2)}+\Delta \\
& =\left(\left(x_{0}^{(2)}+\Delta x_{0}\right) 00\left(v_{y 0}^{(2)}+\Delta v_{y 0}\right)\right)^{\mathrm{T}} \\
& =\left(x_{0}^{(3)} 00 v_{y 0}^{(3)}\right)^{\mathrm{T}}
\end{aligned}
$$

\square Keeping $x_{0}^{(3)}$ fixed, we can use differential correction to compute an accurate solution $\bar{x}_{0}^{(3)}$ and repeat the process until we have a family of solutions.

Invariant manifolds of p.o.'s

\square The monodromy matrix $\Phi(T, 0)$ has an unstable and stable eigenvector. We can numerically integrate this linear approximation to the unstable (or stable) direction to obtain the unstable (or stable) manifold.

Poincaré Sections

\square This set of solutions approximating the unstable manifold can be numerically integrated until some stopping condition is reached (e.g., $x_{j}=$ constant).

References

- Koon, W.S., M.W. Lo, J.E. Marsden and S.D. Ross [2004] Dynamical systems, the three-body problem, and space mission design, preprint.
- Koon, W.S., M.W. Lo, J.E. Marsden and S.D. Ross [2000] Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics, Chaos 10(2), 427-469.

