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1 Introduction

Remarks: The method leads generally to asymtotic series as opposed to convergent series. It is

not restriced to periodic solutions.

Averaging Method. Put the equation
I+x=c¢f(x,1)

into Lagrange stardard form and do the averaging.

Example 11.1
i+x=e(—i+x?).



2 The Lagrange standard form
Unperturbed Equation is Linear.

T =A(t)r+eg(t,z), x(0)=xo.

3 Avaraging in the Periodic Case
Asymptotic Validity of Averaging Method. Consider equation (11.17)

i=ef(t,x) +g(t,z,e), z(0) = zo.

We assume that f(¢,z) is T-periodic in ¢ and we introduce the average

0 e
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Consider now equation (11.18)
g=ef"(y).  y(0) = o

Theorem 11.1 Consider the initial value problem 11.7 and 11.8 with z,y,290 € D C R",t > 0.
Suppose that

1. f,g and 0f/0x are defined, continuous and bounded by a constant M in [0,00) x D;
2. g is Lipschitz-continuous in x for = € D;

3. f(t, ) is T-periodic in t with average f°(z) where T is a constant independent of ¢;
4. y(t) is contained in the interior of D.

Then we have z(t) — y(t) = O(€) on the time-scale 1/e.



Remark on Example 11.1: The estimates are not valid if we start near the saddle point = =
1/e,& = 0.

Example 11.3 Consider
I+x=c¢f(x,T)

and the van der Pol equation

i+x=e(l—2?)i.

4 Averaging in the General Case

Theorem 11.2 Consider the initial value problem
i=ef(t,x) +g(t,z,e), x(0) = zo.
with z,z9 € D C R",t > 0. Assume that
1. f,g and 0f/0x are defined, continuous and bounded by a constant in [0, c0) x D;
2. g is Lipschitz-continuous in x for x € D;

3. ft,x) = Zf\;l fi(t,z) with f;(¢,z) being T;-periodic in ¢t where T; constants independent of
€

4. y(t) is ths solution of the initial value problem

N 1 T;
y=€Zn/0 fit,y)dt,  y(0) = xo.
=1

and y(t) is contained in the interior of D.

Then we have z(t) — y(t) = O(€) on the time-scale 1/e.



Theorem 11.3 Consider the initial value problem
i=ef(t,x) +g(t,z,e), x(0) =z
with x, 29 € D C R™,t > 0. Assume that
1. f,g and 9f/0x are defined, continuous and bounded by a constant in [0, 00) x D;
2. g is Lipschitz-continuous in x for x € D;

3. the average f°(x) of f(t,) exists where
1 T
Oz) = limt_,oo/ ft,x)dt;
T Jo

4. y(t) is ths solution of the initial value problem

g=ef'y), y(0)= o
and y(t) is contained in the interior of D.

Then we have x(t) — y(t) = O(d(€)) on the time-scale 1/e with
t
3(6) = supepsupncacol| | [Fs.a) = f@)ds].

5 Adiabatic Invariants

Consider
T =ef(t,et,x), x(0)=x.

Introduce 7 = €t, we have

T = €, 7(0) = 0.
Suppose we can average the system above over ¢ with averaged equations

g = ef(ry),  y(0) ==
T = €, 7(0) = 0.

If we can solve this system, then by replacing 7 = et, we obtain an approximation of z(t).



Example 11.6: Linear oscillator with slowing varying frequency.

i+ w(et)z = 0.

Remark: Such a quantity which has been conserved asymptotically while the coefficients are
varying slowly with time is called an adiabatic invariant.

6 Periodic Solutions

Theorem 11.5 Consider equation (11.48)
@ = ef(t.x) +g(t,z,e)
with x € D C R™,t > 0. Suppose that

1. f,9,0f/0x,0%f/0x? and Og/Ox are defined, continuous and bounded by a constant M in
[0,00) x D,0 <€ < e€p;
2. f and g are T-periodic in ¢.
If p is critical point of the averaged equation
y=€(y),
with [0f°f(y)/dy|y=p # 0, then there exists a T-periodic solution ¢(¢,€) of equation (11.48) which

is close to p such that
lima_g (b(t, 6) = DpP.

Theorem 11.6 Consider equation (11.48) and suppose that the conditions of theorem 11.5 have
been satisfied. If the eigenvalues of the critical point y = p of the averaged equation have all
negative real parts, the corresponding periodic solution ¢(t,€) of equation (11.48) is aymptotically
stable for e sufficiently small. If one of the eigenvalues has positive real part, ¢(t, €) is unstable.



Example 11.9 (autonomous equations) Van der Pol Equation.

Example 11.10: Forced Duffing Equation.



