The Method of Averaging

CDS140B Lecturer: Wang Sang Koon
Winter, 2003

1 Introduction

Remarks: The method leads generally to asymtotic series as opposed to convergent series. It is not restriced to periodic solutions.

Averaging Method. Put the equation

$$
\ddot{x}+x=\epsilon f(x, \dot{x})
$$

into Lagrange stardard form and do the averaging.

Example 11.1

$$
\ddot{x}+x=\epsilon\left(-\dot{x}+x^{2}\right) .
$$

2 The Lagrange standard form

Unperturbed Equation is Linear.

$$
\dot{x}=A(t) x+\epsilon g(t, x), \quad x(0)=x_{0} .
$$

3 Avaraging in the Periodic Case

Asymptotic Validity of Averaging Method. Consider equation (11.17)

$$
\dot{x}=\epsilon f(t, x)+\epsilon^{2} g(t, x, \epsilon), \quad x(0)=x_{0} .
$$

We assume that $f(t, x)$ is T-periodic in t and we introduce the average

$$
f^{0}(y)=\frac{1}{T} \int_{0}^{T} f(t, y) d t
$$

Consider now equation (11.18)

$$
\dot{y}=\epsilon f^{0}(y), \quad y(0)=x_{0} .
$$

Theorem 11.1 Consider the initial value problem 11.7 and 11.8 with $x, y, x_{0} \in D \subset R^{n}, t \geq 0$. Suppose that

1. f, g and $\partial f / \partial x$ are defined, continuous and bounded by a constant M in $[0, \infty) \times D$;
2. g is Lipschitz-continuous in x for $x \in D$;
3. $f(t, x)$ is T-periodic in t with average $f^{0}(x)$ where T is a constant independent of ϵ;
4. $y(t)$ is contained in the interior of D.

Then we have $x(t)-y(t)=O(\epsilon)$ on the time-scale $1 / \epsilon$.

Remark on Example 11.1: The estimates are not valid if we start near the saddle point $x=$ $1 / \epsilon, \dot{x}=0$.

Example 11.3 Consider

$$
\ddot{x}+x=\epsilon f(x, \dot{x})
$$

and the van der Pol equation

$$
\ddot{x}+x=\epsilon\left(1-x^{2}\right) \dot{x} .
$$

4 Averaging in the General Case

Theorem 11.2 Consider the initial value problem

$$
\dot{x}=\epsilon f(t, x)+\epsilon^{2} g(t, x, \epsilon), \quad x(0)=x_{0} .
$$

with $x, x_{0} \in D \subset R^{n}, t \geq 0$. Assume that

1. f, g and $\partial f / \partial x$ are defined, continuous and bounded by a constant in $[0, \infty) \times D$;
2. g is Lipschitz-continuous in x for $x \in D$;
3. $f(t, x)=\sum_{i=1}^{N} f_{i}(t, x)$ with $f_{i}(t, x)$ being T_{i}-periodic in t where T_{i} constants independent of ϵ;
4. $y(t)$ is ths solution of the initial value problem

$$
\dot{y}=\epsilon \sum_{i=1}^{N} \frac{1}{T_{i}} \int_{0}^{T_{i}} f_{i}(t, y) d t, \quad y(0)=x_{0} .
$$

and $y(t)$ is contained in the interior of D.
Then we have $x(t)-y(t)=O(\epsilon)$ on the time-scale $1 / \epsilon$.

Theorem 11.3 Consider the initial value problem

$$
\dot{x}=\epsilon f(t, x)+\epsilon^{2} g(t, x, \epsilon), \quad x(0)=x_{0} .
$$

with $x, x_{0} \in D \subset R^{n}, t \geq 0$. Assume that

1. f, g and $\partial f / \partial x$ are defined, continuous and bounded by a constant in $[0, \infty) \times D$;
2. g is Lipschitz-continuous in x for $x \in D$;
3. the average $f^{0}(x)$ of $f(t, x)$ exists where

$$
f^{0}(x)=\lim _{t \rightarrow \infty} \frac{1}{T} \int_{0}^{T} f(t, x) d t
$$

4. $y(t)$ is ths solution of the initial value problem

$$
\dot{y}=\epsilon f^{0}(y), \quad y(0)=x_{0} .
$$

and $y(t)$ is contained in the interior of D.
Then we have $x(t)-y(t)=O(\delta(\epsilon))$ on the time-scale $1 / \epsilon$ with

$$
\delta(\epsilon)=\sup _{x \in D} \sup _{0 \leq \epsilon \leq C}\left\|\int_{0}^{t}\left[f(s, x)-f^{0}(x)\right] d s\right\| .
$$

5 Adiabatic Invariants

Consider

$$
\dot{x}=\epsilon f(t, \epsilon t, x), \quad x(0)=x_{0}
$$

Introduce $\tau=\epsilon t$, we have

$$
\begin{array}{ll}
\dot{x}=\epsilon f(t, \tau, x), & x(0)=x_{0} \\
\dot{\tau}=\epsilon, & \tau(0)=0
\end{array}
$$

Suppose we can average the system above over t with averaged equations

$$
\begin{array}{ll}
\left.\dot{y}=\epsilon f^{0}(\tau, y)\right), & y(0)=x_{0} \\
\dot{\tau}=\epsilon, & \tau(0)=0
\end{array}
$$

If we can solve this system, then by replacing $\tau=\epsilon t$, we obtain an approximation of $x(t)$.

Example 11.6: Linear oscillator with slowing varying frequency.

$$
\ddot{x}+\omega^{2}(\epsilon t) x=0 .
$$

Remark: Such a quantity which has been conserved asymptotically while the coefficients are varying slowly with time is called an adiabatic invariant.

6 Periodic Solutions

Theorem 11.5 Consider equation (11.48)

$$
\dot{x}=\epsilon f(t, x)+\epsilon^{2} g(t, x, \epsilon)
$$

with $x \in D \subset R^{n}, t \geq 0$. Suppose that

1. $f, g, \partial f / \partial x, \partial^{2} f / \partial x^{2}$ and $\partial g / \partial x$ are defined, continuous and bounded by a constant M in $[0, \infty) \times D, 0 \leq \epsilon \leq \epsilon_{0} ;$
2. f and g are T-periodic in t.

If p is critical point of the averaged equation

$$
\dot{y}=\epsilon^{0}(y),
$$

with $\left|\partial f^{0} f(y) / \partial y\right|_{y=p} \neq 0$, then there exists a T-periodic solution $\phi(t, \epsilon)$ of equation (11.48) which is close to p such that

$$
\lim _{\epsilon \leftarrow 0} \phi(t, \epsilon)=p .
$$

Theorem 11.6 Consider equation (11.48) and suppose that the conditions of theorem 11.5 have been satisfied. If the eigenvalues of the critical point $y=p$ of the averaged equation have all negative real parts, the corresponding periodic solution $\phi(t, \epsilon)$ of equation (11.48) is aymptotically stable for ϵ sufficiently small. If one of the eigenvalues has positive real part, $\phi(t, \epsilon)$ is unstable.

Example 11.9 (autonomous equations) Van der Pol Equation.

Example 11.10: Forced Duffing Equation.

