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Abstract

The purpose of this paper is to describe the general setting for the application
of techniques from geometric mechanics and dynamical systems to the problem of
asteroid pairs. It also gives some preliminary results on transport calculations and
the associated problem of calculating binary asteroid escape rates. The dynamics of
an asteroid pair, consisting of two irregularly shaped asteroids interacting through
their gravitational potential is an example of a full body problem or FBP in which two
or more extended bodies interact.

One of the interesting features of the binary asteroid problem is that there is cou-
pling between their translational and rotational degrees of freedom. General FBPs
have a wide range of other interesting aspects as well, including the 6-DOF guidance,
control, and dynamics of vehicles, the dynamics of interacting or ionizing molecules,
the evolution of small body, planetary, or stellar systems, and almost any other prob-
lem where distributed bodies interact with each other or with an external field. This
paper focuses on the specific case of asteroid pairs using techniques that are generally
applicable to many other FBPs. This particular full 2-body problem (F2BP) concerns
the dynamical evolution of two rigid bodies mutually interacting via a gravitational
field. Motivation comes from planetary science, where these interactions play a key
role in the evolution of asteroid rotation states and binary asteroid systems.

The techniques that are applied to this problem fall into two main categories.

The first is the use of geometric mechanics to obtain a description of the reduced

phase space, which opens the door to a number of powerful techniques such as the

energy-momentum method for determining the stability of equilibria and the use

of variational integrators for greater accuracy in simulation. Secondly, techniques

from computational dynamical systems are used to determine phase space structures

important for transport phenomena and dynamical evolution.
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1 Introduction

Full body problems (FBPs) are concerned with the dynamical interaction between
two or more distributed bodies. This fascinating class of problems has many in-
teresting open questions and touches on numerous important issues in science and
engineering. Examples include binary asteroids, the evolution and dynamics of
the Earth-Moon system, the dynamics and control of a high-performance aircraft,
reaction and ionization of molecules, interactions and collisions between galaxies,
stability and control of underwater vehicles, rendezvous and docking of space ve-
hicles, fine pointing control of a space-based telescope, etc. Geometric mechanics
and dynamical systems theory along with appropriate computational and geomet-
ric control techniques, provide a unified approach to the analysis and simulation of
these problems.

There are many examples in which geometric mechanics methods have been used
for this general class of problems. Two examples are the work concerning the use
of reduction and stability methods for rigid bodies with flexible attachments1 and
also work on the use of the energy-momentum method for tethered satellites.2

The Binary Asteroid Problem. In this paper we focus on the dynamics of
binary asteroids in the context of F2BPs. This problem concerns the dynamics of
two spatially extended bodies that interact via their mutual gravitational fields. An
example of a motivating goal is the accurate estimation of ejection, collision, and
transport rates, accounting fully for coupling between the rotational and transla-
tional states of the bodies. We put this problem into the context of systematic
approaches to determine the stability of relative equilibria as well as the compu-
tation of phase space structures, such as periodic orbits, quasi-periodic orbits, and
the division of phase space into regions of regular and chaotic motion. This context
allows one to bring to bear powerful computational transport techniques, such as
set oriented methods and lobe dynamics. As we shall review below, there is al-
ready quite a bit known about relative equilibria in the binary asteroid problem.3

However, rather little has been done on the energy-momentum method (and its con-
verse) for relative equilibria as well as the problem of merging geometric mechanics
and dynamical systems calculations, including phase space structure. Our goal is
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to take some first steps in this direction, but much work remains to be done on this
problem.

The binary asteroid problem is of considerable astrodynamical interest. For
instance, the methods are directly relevant to asteroid rotational evolution, variation
of planetary obliquities, and the long-term dynamics of Kuiper and asteroid belt
binaries, including an analysis of the Pluto-Charon system.

A Little Biased History. Special cases of the F2BP have been analyzed exten-
sively in the literature, with most applications focusing on the interaction of a small,
distended body with a much larger body, for example the evolution of irregularly
shaped planetary moons or the dynamics and control of gravity gradient spacecraft.
Even for this simplified version of the F2BP it is well-known that chaotic motion
exists and can play an essential role in the life of a tidally evolving body.4,5 Studies
from the astrodynamics community have discovered many fundamental symmetries
that exist in these ideal problems,6,7,8,9 which have in turn been used to develop
novel methods for the control of these systems.10,11,12 The other extreme case of the
F2BP has also been investigated, namely the motion of a massless particle in the
field of a strongly non-spherical gravity field, with main application to the motion
of spacecraft and ejecta relative to an asteroid, comet or moon.13,14,15,16,17,18,19

An early paper on the FBP was by Duboshin,20 although his subsequent studies
focused on the necessary force laws needed for certain solutions and symmetries to
exist. Maciejewski21 gives a modern statement of the F2BP is given, along with
a preliminary discussion of relative equilibria possible for these systems, but with
no investigation of the dynamical evolution and stability of such problems. More
recently, sharp conditions for the Hill and Lagrange stability of the F2BP have been
found22 and numerical and analytical investigations of rotational and translational
coupling in these problems have been studied.23,24,25 These most recent works serve
as one starting point for the current paper.

Tools for the FBP. The F2BP is a magnificently symmetric problem with the
overall symmetry group being SE(3), the group of Euclidean motions of three space,
together with any symmetries of the bodies themselves. Thus, it is ideal for using
the tools of geometric mechanics for systems with symmetry, variational integrators,
and transport and dynamical systems theory. In this paper we shall take some small
initial steps in this direction for simplified, but still non-trivial, versions of the F2BP.
It is our hope that this effort will help merge work from a number of groups into a
single coherent theory. Some of the salient features of these methods are as follows.

1. Geometric Mechanics and Reductions of the F2BP. As hinted at and
explained already,26,27,28 geometric mechanics has had enormous successes in
many areas of mechanics. Previous investigations in the FBP, however, have
been accomplished in a fragmentary way and have missed using, for example,
the powerful energy-momentum method and its converse for relative equilib-
ria, as well as the use of geometric phases. For example, the converse of the
energy-momentum method29,30 allows one to study the destabilizing effect of
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dissipation and body deformations for relative equilibria that are gyroscop-
ically stabilized on the linear level (that is, one has a saddle point in the
augmented energy, but the system eigenvalues are on the imaginary axis, so
one cannot easily infer stability or instability in the nonlinear system).

2. Variational Integrators for the F2BP. A novel computational technique
that is ripe for use on the FBP is that of AVIs, or Asynchronous Variational
Integrators. These are numerical simulation methods that allow different time
steps at different spatial points and yet have all the advantages of the usual
symplectic integrators used in dynamical astronomy.31,32 For example, in many
FBPs there are large differences in time scales for the dynamics of rotational
and translational motions. AVIs, which allow for such adaptation, greatly
improve computational efficiency as has been demonstrated in related prob-
lems,33,34 and hence permit new problems to be directly simulated for longer
times and to higher accuracy than previously achieved.

3. Phase Space Structure and Transport Calculations. A third key tool
that can be brought to bear on this problem concern advances in the computa-
tion of transport rates using transition state theory borrowed from chemistry
and lobe dynamics from fluid dynamics, where recent computational advances
have enabled significant capabilities using these approaches.35 This may be
combined with set oriented methods involving concepts from graph theory
such as the notion of graph partitions, congestion, almost invariant sets and
the Peron-Frobenius operator.36 Drawing on recent advances in computing
phase space objects such as periodic orbits and invariant tori for astrodynam-
ical problems, it would be interesting to investigate the link between periodic
orbits, resonances, and restrictions (pinch points) in the phase space of the
F2BP, structures important for the computation of transport, such as ejection
and collision rates.

There are a number of fundamental questions in planetary science that can be
addressed by the techniques that we outline, including: Comet nucleus rotational
and translational evolution due to outgassing; Long-term simulation and evaluations
of the Yarkovsky effect on the rotational and translational motion of asteroids; Tidal
evolution of asteroid and Kuiper belt binaries including dissipation and external
forces; Dynamical evolution of galaxies that undergo a close approach.

2 The F2BP and Asteroid Binaries

While problems involving rotational and translational coupling populate many areas
of science and engineering, for tractability in this paper we will draw on examples
that arise in the field of planetary science and dynamical astronomy, as there are
many FBPs in this field whose complete understanding is still lacking, and whose
simulation depends on gross physical approximations to certain aspects of their mo-
tion. Examples include the evolution of the obliquities of the terrestrial planets,37,5
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the rotational dynamics of Europa,38 the effect of the Yarkovsky force on trans-
lational and rotational evolution of asteroids,39,40,41,42 and the evolution of comet
nucleus rotation and translation due to outgassing,43,44 to name a few. In each of
these cases interactions between rotation and translation are important, but detailed
simulation and evaluation of these couplings over long time spans is beyond current
capability. More importantly, the specialized force environments and physical ef-
fects unique to each of these systems has made it difficult to formulate a general,
unifying approach to the analysis and simulation of these problems.

Recent studies of the dynamics and evolution of binary asteroids, provides a
class of problems that can serve as fundamental, or “canonical,” models that are
key stepping stones to a unified approach to FBPs. This class of problems are of
interest in their own right, as recent analysis indicates that up to 20% of Near-Earth
Asteroids are binaries,45 along with the current boom of binary discoveries in the
Main Asteroid Belt and the Kuiper Belt46,47 (see Figure 2.1). The analysis and
modeling of binary asteroids (or similarly binary Kuiper Belt objects) does not al-
low the usual assumptions of small gravity coefficients, near equilibrium conditions,
or long-term stability of motion made in classical approaches to FBPs. Rather, to
properly understand the dynamics and evolution of these systems requires a gener-
alized approach to the problem that incorporates these difficulties into its nominal
problem statement.

Figure 2.1: Dactyl in orbit about Ida, discovered in 1994 during the Galileo mission,48 and 1999
KW4 radar images of its companion, discovered 2001.49

Recent Advances. The general F2BP has been studied under many different
approximations, but its general statement has only been well-posed relatively re-
cently,21 followed by advances in understanding its Hill and Lagrange stability22

and observations on the role of these interactions on the evolution of small body
rotation states.50,23,25 The coupled motion in this problem can lead to profound dy-
namics,25 illustrated in Figure 2.2 showing the evolving orbit radius (a) and rotation
period (b) of a sphere and tri-axial ellipsoid of equal mass interacting through grav-
ity alone. The total energy of this system is slightly negative, meaning that the two
bodies can never mutually escape (that is, they are Hill stable). The system is also
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stable against impact (Lagrange stable), and so will evolve ad infinitum unless some
small external perturbation (such as from the sun) boosts its energy sufficiently to
allow for escape, which would also leave the ellipsoid with an extremely slow rotation
rate. The phase space of this apparently chaotic system can be tightly constrained
using integrals of motion, and separated regions of phase space can be identified
as a function of resonances between the system’s rigid body rotation and orbital
rotation rates. Figure 2.2(c)25 shows an example of the allowable phase space of
this system, with additional restrictions on motion in the phase space, identified as
“pinch points” in the figure, that arise from these resonances. We conjecture that
such pinch points can be understood via the reduction process from geometric me-
chanics, and that these will be important in understanding transport and ejection
rates.
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Figure 2.2: Time history of the orbit radius (a) and rotation period (b) for a gravitationally
interacting sphere and tri-axial ellipsoid of equal mass. Poincaré map (c) showing constraints on
the eccentricity of the evolving orbit, including pinch points that isolate regions of phase space.

Models In Use. The equations of motion for the F2BP model may be explicitly
found and are discussed in a number of references.21,22 A widely used model can be
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derived when one of the bodies is a massive sphere. The rotational dynamics of the
sphere decouples from the system, which still has coupling of rotational and transla-
tional dynamics between the non-spherical body and the relative orbit between the
two. The normalized and symmetry reduced equations are

r′′ + 2ω × r′ + ω
′ × r + ω × (ω × r) =

∂U

∂r

I · ω′ + ω × I · ω = −µr×
∂U

∂r
, (2.1)

where

K =
1

µ
A · I · ω + A · r ×

(
r′ + ω × r

)

E =
1

2

(
r′ + ω × r

)
·
(
r′ + ω × r

)
+

1

2µ
ω · I · ω − U (2.2)

and where ω is the rotational velocity vector in the body-fixed frame, r is the relative
position vector in the body-fixed frame, A is the attitude tensor of the non-spherical
body, I is the specific inertia tensor of the non-spherical body, U is the gravitational
force potential of the non-spherical body, and K and E are the angular momentum
and energy integrals, respectively, of these equations.

The free parameters of the system are the mass distribution of the non-spherical
body (normalized by its largest dimension) and the mass fraction between the two
bodies, µ = M1/(M1 + M2) (the same parameter found in the restricted 3-body
problem), where M1 is the mass of the “sphere” and M2 is the mass of the distributed
body. The case when µ → 1 corresponds to the motion of a massless distributed
body about a point-mass, with an application to a satellite in orbit about a planet.
It is important to note that the angular momentum and energy integrals still apply
to this problem. The case when µ → 0 corresponds to the motion of a material point
in the gravity field of the distributed body, with the main application to particle
dynamics about an asteroid. In this case, we see that the energy and angular
momentum integrals are dominated by the rotational dynamics of the distributed
body, and that the contribution of the spherical body’s motion decouples from these
integrals.

In this paper we shall use equation (2.1), often with some further simplifications.
These simplifications are made to allow for an abbreviated discussion of results, and
will be relaxed in future papers. The main simplification made is the restricted,
uniformly rotating approximation which occurs when µ → 0 and the distributed
body (which now has all the mass of the system) is in principal axis rotation about
its maximum moment of inertia (assumed to lie along the z-axis). When needed,
we will refer to this system as the Restricted Full 2-Body Problem (RF2BP), and
we note its similarity to the celebrated restricted 3-body problem, including the
existence of a Jacobi integral. The RF2BP, while highly idealistic, is important
for understanding the general and qualitative properties of motion about distended
bodies in uniform rotation51 and approximately models the motions of some binary
asteroids.
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Carrying out such detailed calculations over the time scales of interest for the
F2BP is challenging and requires methods designed to conserve the symmetries in-
herent in the problem and to handle the multiple time scales in FBPs. Additionally,
the existence and prediction of the restricted regions of phase space far from an
equilibrium point is an example of a complex, poorly understood dynamical phe-
nomenon. The techniques discussed below take some first steps to address this
deficiency. The F2BP is ideally suited for the application of geometric mechanics
with symmetry, variational integrators, and transport and dynamical systems the-
ory. Due to the generality of its statement, the F2BP can be extended to cover other
systems of interest in planetary science, dynamical astronomy, astrodynamics, and
chemical dynamics, briefly discussed later in the paper.

Geometric Mechanics and the F2BP. We ultimately want to carry out an
analysis of the F2BP by first looking at the problem’s symmetry. The dynamics
of the F2BP are invariant under application of orientation preserving rotations and
translations of 3-dimensional Euclidean space, i.e., under the application of the
symmetry group SE(3). Thus, in the terminology of geometric mechanics, we say
that the F2BP carries the symmetry of invariance with respect to SE(3). A well-
known property of mechanical systems like the F2BP is that whenever there is a
symmetry, there are corresponding conserved quantities.

As the symmetry group becomes larger, we expect that one recovers all the
special cases studied in the literature. For example, if one body is an irregular body
and the other is cigar-like, the symmetry group is SE(3)×S1. Relative equilibria and
their stability can be studied using the powerful energy-momentum method.52,28,30

Relative equilibria are key ingredients in identifying and characterizing the possible
final states that an evolving binary asteroid can reach and they play a similar role
as the libration points in the 3-body problem. Moreover, a systematic geometric
mechanical approach will enable the use of modern numerical algorithms, such as
variational integrators, in the accurate computations of relevant long term statistics
and transport.53,33,34

Symmetry Reduction. The use of geometric and dynamical techniques to study
Lagrangian or Hamiltonian mechanics has been enormously successful in a wide va-
riety of engineering and astrodynamical problems, such as the use of the energy-
momentum method for stability of satellites with internal rotor controls30 and in
heteroclinic and resonance structures in the 3-body problem.54 Geometric mechan-
ics starts with the usual formulation of Lagrangian mechanics using variational
principles, and Hamiltonian mechanics using Poisson and symplectic geometry. La-
grangian reduction by a symmetry group corresponds to finding reduced variational
principles, whereas reduction on the Hamiltonian side corresponds to constructing
appropriate reduced Poisson and symplectic structures.

The reduction of a system with configuration manifold Q and Lie symmetry
group G occurs at two levels, the first of which corresponds to identifying solutions
that are related by a symmetry group motion, and this corresponds to deriving
equations of motion on the quotient space TQ/G (for Lagrangian reduction), and
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on T ∗Q/G, (for Hamiltonian Reduction). Symmetry gives an associated Noether
theorem, namely conservation of a momentum map, so that the dynamics are con-
strained to a momentum surface in the absence of external forcing and dissipation.
When appropriate, imposing this constraint explicitly in the equations of motion,
yields a further reduction in the dimensionality of the reduced equations, which
corresponds to (nonabelian) Routh and symplectic reduction.

Lagrangian Reduction
TQ/G ∼= T (Q/G) ⊕ g̃

Fl
//

Hamiltonian Reduction
T ∗Q/G ∼= T ∗(Q/G) ⊕ g̃

∗

Routh Reduction
J−1

L (µ)/Gµ
∼= T (Q/G) ×Q/G Q/Gµ

Variational Principles

FR̂µ

//

 
?

OO

Symplectic Reduction

J−1(µ)/Gµ
∼= T ∗(Q/G) ×Q/G Õµ

Symplectic/Poisson Geometry

 
?

OO

On the Lagrangian side, general theorems give the structure of the quotient
space to be

TQ/G ∼= T (Q/G) ⊕ g̃,

where g is the Lie algebra of G and where g̃ is an associated bundle over shape

space Q/G, as shown in55. There is a similar structure theorem on the Hamiltonian
side. When the momentum constraints are imposed, on the Hamiltonian side one
gets well known cotangent bundle reduction theorems28 while on the Lagrangian
side one gets a far reaching, and surprisingly recent, generalization of the classical
Routh procedure.56 The general scheme of the reduction procedure is shown in the
above figure. For the F2BP, the choice of Q and G are easily done and are given in
the next section.

Reduction for the F2BP. For the F2BP, the configuration space is Q = SE(3)×
SE(3). Denote material points in a reference configuration by Xi, and the points in
the current configuration by xi. Given ((A1, r1), (A2, r2)) ∈ SE(3) × SE(3), points
in the reference and current configurations are related by xi = AiXi + ri, i = 1, 2.
Using the body angular velocity notation defined earlier, the Lagrangian has the
standard form of kinetic minus potential energy:

L(A1, r1, A2, r2) =
1

2

∫

B1

‖ẋ1‖
2dµ1(X1) +

1

2

∫

B2

‖ẋ2‖
2dµ2(X2)

+

∫

B1

∫

B2

Gdµ1(X1)dµ2(X2)

‖x1 − x2‖

=
m1

2
‖ṙ1‖

2 +
1

2
〈Ω1, I1Ω1〉 +

m2

2
‖ṙ2‖

2 +
1

2
〈Ω2, I2Ω2〉

+

∫

B1

∫

B2

Gdµ1(X1)dµ2(X2)

‖A1X1 − A2X2 + r1 − r2‖
.
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Reducing by Overall Translations and Rotations. The preceding Lagrangian
has symmetry group SE(3) using the diagonal left action on Q:

(A, r) · (A1, r1, A2, r2) = (AA1, Ar1 + r,AA2, Ar2 + r).

The momentum map corresponding to this symmetry is the total linear momentum
and the total angular momentum. The projection from the configuration space to
the shape space π : Q → Q/G, is obtained by transforming to the body frame of the
second rigid body.21,57,58 The reduction is carried out in stages, by first reducing
by translations, R

3, followed by reducing by rotations, SO(3). Results from general
reduction by stages55,59,60 shows that this is equivalent to directly reducing by SE(3)
in a single step. This is achieved by applying the inverse of (A2, r2), which is given
by (AT

2 ,−AT
2 r2) ∈ SE(3),

(AT
2 ,−AT

2 r2) · (A1, r1, A2, r2) = (AT
2 A1, A

T
2 r1 − AT

2 r2, A
T
2 A2, A

T
2 r2 − AT

2 r2)

= (AT
2 A1, A

T
2 (r1 − r2), e, 0).

Shape space Q/G is isomorphic to one copy of SE(3), being coordinatized by the
relative attitude AT

2 A1 = AT and relative position AT
2 (r1 − r2) = R. The equations

of motion in T (Q/G) (resp. T ∗(Q/G)) involve A,R, and their velocities (resp.
conjugate momenta Γ, P ), which correspond to total angular and linear momenta
in the body fixed frame of the second rigid body. These are coupled to equations
in se(3)∗, which may be identified with equations for the body angular and linear
momenta of the second rigid body, Γ2, P2.

The equations for Γ and Γ2 are rewritten in terms of Γ1,Γ2, and the linear
momentum of the second rigid body is ignored.21,57,58 A reconstruction-like equation
(that is, recovering the full attitude of both bodies) is added at the very end. One
thing missing from the literature is the systematic use of shape space to study
geometric phases that are important for rotational and translational drifts.61,59 The
general context of geometric mechanics and the specific setting of the present paper
should enable one to fill in this interesting gap. The coordinatization of the reduced
space by transforming to the reference frame of the second rigid body corresponds
to a particular choice of connection on the principal bundle Q → Q/G. Different
choices of connection will affect how we identify TQ/G with T (Q/G) ⊕ g̃.

The reduced Lagrangian is obtained by rewriting the Lagrangian in terms of the
reduced variables:

A = AT
2 A1, R = AT

2 (r1 − r2), Ω̂ = AT
2 Ȧ1, V = AT

2 (ṙ1 − ṙ2),

which are coordinates on T (Q/G), as well as Ω̂2 = AT
2 Ȧ2, V2 = AT

2 ṙ2, which are
coordinates on se(3). As with the Euler-Poincaré theory,27 Hamilton’s variational
principle on T (SE(3) × SE(3)) is equivalent to the reduced variational principle,

δ

∫ b

a
l(A,R, Ω̂, V, Ω̂2, V2)dt = 0,
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on R
18 where the variations are of the form,

δA = −Σ̂2A + Σ̂, δR = −Σ̂2R + S, δ̂Ω =
˙̂
Σ − Σ̂2Ω̂ + Ω̂2Σ̂,

δV = Ṡ − Σ̂2V + Ω̂2S, δΩ2 = Σ̇2 + Ω2 × Σ2, δV2 = Ṡ − Σ̂2V2 + Ω̂2S2,

and S, S2,Σ,Σ2 are variations that vanish at the boundary. The symplectic form
can be obtained from the variational principle by considering variations that do not
vanish at the boundary. The boundary terms that arise from integration by parts
can be interpreted as a Lagrange one-form, and taking the exterior derivative of
these yield the symplectic two-form.

Already the above approach is more systematic and complete than that given in
the literature. While simple, the variational structure just given is, in fact, new. In
future studies, we will complete this task and deal with all of the systematic cases
for the F2BP and to tie in this theory with the stability theory of relative equilibria
using the powerful energy-momentum method.

The Energy-Momentum Method. This is a powerful generalization of the clas-
sical energy methods for stability.52 A study of the stability of rigid body pairs using
the energy-momentum method is directly relevant to the evolution of binary aster-
oids and the dynamical environments they encounter through their lifetime. The
current literature, however, uses only the Arnold or energy-Casimir methods57 which
generally give weaker results. It would be very interesting to make use of the full
block diagonalization power of the energy-momentum, which has proven useful in
related problems.7,2 In addition, there is a converse to the method which allows one
to deduce the development of instabilities due to forcing and dissipation,29,30 which
can have important long term effects on the dynamics.62

Symmetries of the Rigid Bodies. If, in addition, the individual rigid bodies
exhibit configurational symmetries of their own, there are additional symmetries
acting on the right. Since these commute with the symmetry of SO(3) acting on
the left, one can again make use of reduction by stages.

Example: Spherical Symmetry. If the first body is spherical, and the second
body has no symmetry, the additional symmetry group is SO(3)×{e} acting on the
right. On the Hamiltonian side, the reduced space is then T ∗

R
3 × se(3)∗ × so(3)∗.

The T ∗
R

3 terms correspond to position and linear momentum of the center of mass
of the first rigid body, in the body frame of the second rigid body. The se(3)∗

term involves the spatial linear and angular momentum of the second rigid body,
and so(3)∗ involves the body angular momentum of the first rigid body. There is a
similar picture on the Lagrangian side.

Example: Cylindrical Symmetry. If the first body is cylindrical, and the sec-
ond body has no symmetry, the additional symmetry group is S1 × e acting on the
right. The reduced space is then T ∗(S2 ×R

3)× se(3)∗ ×R. The T ∗(S2 ×R
3) terms
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will correspond to the orientation of the symmetry axis and the position of the first
rigid body, in the body frame of the second rigid body, as well as the conjugate
momenta. The se(3)∗ term involves the spatial linear and angular momentum of the
second rigid body, and the R term will involve the component of the body angular
momentum of the first rigid body in the direction of its symmetry axis.

The preceding reduction procedures give a global description of the reduced
spaces and dynamics. This is important, since ad hoc choices for coordinate systems
which are only locally valid can introduce significant computational overheads if it
is constantly necessary to switch between local charts in the course of a long time
simulation. The variational, Poisson, and symplectic structures on these reduced
spaces can be constructed systematically from the general theory of reduction, and,
as we have indicated, this is particularly useful in classifying a hierarchy of simplified
models.

Relative equilibria and relative periodic orbits correspond to equilibria and pe-
riodic orbits in the shape space Q/G. The bifurcation of a relative equilibria into a
relative periodic orbit through a Hamiltonian Hopf bifurcation in the shape space
is also particularly interesting for the study of real world objects, which may be
subject to parametric uncertainty, and the effects of such parameter dependence
need to be studied in our models. More generally, the study of these phase space
objects, their stability, and their bifurcation patterns can be used to characterize
motion in different regions of phase space.63

The phenomena of pinch points in the dynamics could possibly be related to
the presence of resonances corresponding to discrete symmetries, or possibly to
degenerate values of the momentum map corresponding to the non-free action of
a continuous symmetry group. It is well known that pinch points of this sort are
related to reduction in singular cases.64 An example of a problem with such a non-
free action is the double spherical pendulum, and the bifurcation from the degenerate
downward configuration into relative equilibria and relative periodic orbits has been
analyzed using the machinery of bifurcation theory and singular reduction theory.65

A better understanding of the pinch points observed in dynamical systems will be
directly applicable for identifying the regions of phase space which contribute to
statistical transport phenomenon.

Geometric Phases. The issue of geometric phases is not only of interest in the
dynamics of an asteroid pair, but is also relevant to the problem of landing a space-
craft on a spatially extended and irregular asteroid (as in the recent NEAR mission
to the asteroid EROS). An understanding of geometric phases allows one to relate
the motion of internal rotors, and their effect on the relative orientation of the space-
craft with respect to the asteroid. This provides a precise method of controlling the
relative orientation, which is in contrast to the use of micro-thrusters, which in-
troduce torque which have to be compensated for once the desired orientation is
achieved. This same approach can be applied to the study of the tidally locked
Pluto-Charon system and may help address some aspects of the current controversy
surrounding the value of Charon’s orbital eccentricity and how it arose.66

Geometric phases can also be applied to spacecraft control in close-proximity
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to an asteroid.67 In this context of control, the method of Controlled Lagrangian
and Hamiltonian systems may be a useful tool.68 This is generalization of potential
and kinetic shaping techniques which has been applied in the context of spacecraft
dynamics to modify the system’s Poisson structure using feedback control laws. A
corresponding theory for the reduction of systems with symmetry also exists, using
the method of Lagrangian and Hamiltonian reduction.

3 Phase Space Structures

Global Theory of Chaotic Transport. After systematically categorizing the
systems of interest using geometric mechanics, the next step is to use efficient compu-
tations guided by dynamical systems theory to explore statistical questions. These
questions, including the probability of binary pair formation and subsequent escape
or impact, and ejecta redistribution around a rotating small body can be cast as
phase space transport problems. The systems of interest, being Hamiltonian in na-
ture, likely have a global mixed phase space structure of stable and chaotic zones,
i.e., islands of KAM tori and a “chaotic sea” between them. A semi-analytical global

theory of chaotic transport is emerging which combines the theory and numerics of
lobe dynamics and tube dynamics.69,54,70 The lobe dynamics techniques come partly
from fluid dynamics—e.g., those developed in the last two years using the mangen

software—providing unprecedented long-term precision calculations.71,72

Efficient Computation of Statistical Quantities. This global theory allows
one to tackle transport problems by focusing on the objects important for transport.
Dynamical systems theory has been used previously to give a qualitative description
of the topological features of the phase space in certain reduced F2BP models, such
as periodic orbits, resonance regions, and chaotic zones. One can make this analysis
more quantitative by computing statistical measures such as residence times within
regions of phase space, transport rates between various regions, and the overall level
of mixing between regions.

Since the F2BP is such a fundamental model in studying small body orbital and
rotational dynamics, the present context should shed light on several interesting
and important problems. Specifically, it may help address the problem of slowly
rotating asteroids,50 it will be able to quantify the rate at which asteroid binaries
are disrupted due to their mutual interactions following their creation,25 and the
important issue of chaotic planetary obliquities and their probability of transition
to different states.37

4 A Simplified Model for Binary Asteroids

The Restricted Full 2-Body Problem (RF2BP). The simplest model that
exhibits the basic ejection and collision dynamics we are interested in studying is
given by the RF2BP, which is a simplification of Equation (2.1) in the limit µ → 0.
The equations of motion for the massless particle in a rotating Cartesian coordinate



4 A Simplified Model for Binary Asteroids 14

frame and appropriately normalized are

ẍ − 2ẏ = −
∂U

∂x

ÿ + 2ẋ = −
∂U

∂y
, (4.1)

where

U(x, y) = −
1√

x2 + y2
−

1

2
(x2 + y2) + U22

U22 = −
3C22

(
x2 − y2

)

(x2 + y2)5/2

The system (4.1) has one free parameter, the gravity field coefficient C22, commonly
termed the “ellipticity”, that varies between 0 and 0.05 for physical systems. The
system (4.1) may be readily derived from Lagrangian mechanics using the method of
“moving systems”27 and therefore has an energy integral (a Jacobi integral), namely

E =
1

2

(
ẋ2 + ẏ2

)
+ U (4.2)

This system has 4 equilibrium points symmetrically placed along the x and y
axes, each at a radius of R ∼ 1 + . . ., with the higher order terms arising from the
U22 potential. In general, we do not consider motion at radii much less than R ∼ 1,
since these trajectories will usually impact on the central body. Also, note that
these equations have very bad behavior as R → 0, which is another reason to avoid
radii much inside the equilibrium points.

The region of space where R > 1 is very interesting, however. First, there are
continuous families of near-circular periodic orbits that exist for any given radius.
Occasionally, these periodic orbits are resonant with the rotation rate of the system,
and at these points we can find additional families of “elliptical” periodic orbits that
branch off.

Realms and Regions in the RF2BP. In the RF2BP, the value of the energy
E indicates the type of global dynamics possible. For example, for energies above
a threshold value, (i.e., E > ES , where ES corresponds to the energy of symmetric
saddle points along the x-axis), movement between the realm near the asteroid
(interior realm) and away from the asteroid (exterior realm) is possible, as in Figure
4.1(a). This motion between realms is mediated by phase space tubes, to be described
shortly. For energies E ≤ ES , no such movement is possible. Within each realm,
the phase space on appropriately chosen Poincaré sections is organized further into
different regions, connected via lobes.

Tube Dynamics: Transport between Realms. In Figure 4.1(a) the interior
and exterior realms are linked by tubes in phase space, bounded by the stable and
unstable invariant manifolds associated to periodic orbits around the symmetric



4 A Simplified Model for Binary Asteroids 15

x

Exterior Realm

Interior
Realm
(Right)

U2

U1

y

Interior
Realm
(Left)

Ellipsoid
Asteroid

−1.5 −1.0 −0.5 0.5 1.0

0.5

1.50

−1.5

−1.0

−0.5

1.0

1.5

0

For Energy E > ES

f1

f2

f12

f2

f1
z0

z1
z2

z3z4

z5
U2

U1

Exit

Entrance

(a) (b)

Figure 4.1: Planar restricted F2BP with uniform rotation: realms and allowable

motion. (a) For energies, E, above a threshold, ES, movement is possible between the realm near

an asteroid and away from the asteroid. In this rotating frame, the x-axis coincides with the elliptical

asteroid’s long axis. The origin is shown as a large black dot at the center of the asteroid. The

value of the “ellipticity”, C22, is 0.05. Varying this parameter changes the shape of the asteroid and

the subsequent potential through the U22 term in Equation (4.1). (b) Poincaré sections in different

realms—in this case in the interior and exterior realms, U1 and U2, respectively—are linked by

phase space tubes which live in surfaces of constant energy (Equation (4.2)). Under the Poincaré

map f1 on U1, a trajectory reaches an exit, the last Poincaré cut of a tube before it enters another

realm. The map f12 takes points in the exit of U1 to the entrance of U2. The trajectory then evolves

under the action of the Poincaré map f2 on U2.

saddle points. The role these tubes play in global transport between realms is
referred to as tube dynamics.54 On each three-dimensional energy surface these two-
dimensional tubes partition the surface, acting as separatrices for the flow through
the bottleneck regions around the saddle points: particles inside the tubes will move
between realms, and those outside the tubes will not. For example, an ejecta particle
liberated from the surface of the asteroid into the exterior realm with an energy just
above the threshold can impact the asteroid only by passing through one or the other
of the pair of exterior branch stable manifold tubes associated to the two periodic
orbits around the saddle points (the right periodic orbit is shown in Figure 4.1(a)).

The projection of these tubes onto the configuration space appear as strips and
trajectories on the tubes wind around them. A few trajectories on a couple of tubes
are shown in Figure 4.1(a). On the Poincaré section, the last Poincaré cut of the
stable manifold tube is called the exit, because points in there will exit the interior
realm and go to the exterior realm. The time reverse situation holds for an entrance,
and when a particle goes through the exit in one realm, it must enter the entrance
of another.
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These transition dynamics are of direct interest to the evolution of a dissipating
binary system, as it may experience several junctures when it can transition between
a state close to its final equilibrium and a state where more dynamic evolution is
possible. Similarly, the long-term variation of planetary obliquities may be modeled
using this approach.

Lobe Dynamics: Transport between Regions. Tubes are only one part of
the global transport picture. The study of transport between regions within a par-
ticular realm can be reduced to the study of an associated Poincaré section in that
realm. Lobe dynamics theory states that the two-dimensional phase space M of the
Poincaré map f can be divided into disjoint regions of interest, Ri, i = 1, ..., NR,
such that M = ∪Ri (Figure 4.2(a)).73 The boundaries between regions are pieces of
stable and unstable manifolds of hyperbolic fixed points, pi, i = 1, ..., N. Moreover,
transport between regions of phase space can be completely described by the dy-
namical evolution of turnstile lobes enclosed by segments of the stable and unstable
manifolds (Figure 4.2(b)).
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B12 = U [p2 ,q2] U S [p1 ,q2]
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Figure 4.2: Transport between regions in phase space. (a) A point qk is called a primary

intersection point (pip) if S[pi, qk] intersects U [pj , qk] only at the point qk, where U [pj , qk] and

S[pi, qk] are segments of the unstable and stable manifolds, W u(pj) and W s(pi) respectively, of

unstable fixed points of the Poincaré map f . The union of segments of the unstable and stable

manifolds form partial barriers, or boundaries U [pj , qk]∪S[pi, qk] between regions of interest Ri, i =

1, ..., NR, in M = ∪Ri. The region on one side of the boundary B12 is labeled R1 and the other

side labeled R2. (b) Let q0, q1 ∈ W s(pi)∩W u(pj) be two adjacent pips, i.e., there are no other pips

on U [q0, q1] and S[q0, q1], the segments of W u(pj) and W s(pi) connecting q0 and q1. The region

interior to U [q0, q1]∪ S[q0, q1] is a lobe. Then S[f−1(q0), q0] ∪U [f−1(q0), q0] forms the boundary of

two lobes; one in R1, labeled L1,2(1), and the other in R2, labeled, L2,1(1). Under one iteration of

f , the only points that can move from R1 into R2 by crossing B12 are those in L1,2(1) and the only

points that can move from R2 into R1 by crossing B12 are those in L2,1(1). The union of the two

lobes, L1,2(1) ∪ L2,1(1), is called a turnstile.

To keep track of points as they move between regions, suppose that, at t = 0,
region Ri is uniformly covered with points of species Si. The transport problem
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becomes one of describing the distribution of species Si throughout the regions Rj

for any time t = n > 0. Two quantities of interest—the flux of species Si into region
Rj on the n-th iterate, αi,j(n), and the total amount of species Si in region Rj just
after the n-th iterate, Ti,j(n)—can be expressed compactly in terms of intersection
areas of images or pre-images of turnstile lobes. In our application, the Poincaré
map of a reduced F2BP model possesses resonance bands consisting of alternating
unstable and stable periodic points. For instance, we can study the transport from
stable configurations to escape configurations or the transport into and out of spin-
orbit resonances, and many other transport questions that have implications for the
current state of bodies in the solar system.

Computational Tools for Lobe Dynamics. While lobe dynamics has always
been recognized as an exact transport theory and can theoretically give short and
long term transport rates, computational issues have limited its applications (74,75).
The manifolds computed in such problems are typically rather convoluted, as implied
in Figure 4.2. Furthermore, the length of these complicated curves grows quickly
with the size of the time window of interest. The number of points needed to
describe long segments of manifolds can be prohibitively large if brute force approach
computational methods are used.

Recent efforts made to incorporate lobe dynamics into geophysical and chemi-
cal transport calculations have brought new techniques to compute invariant mani-
folds.76,70,71,77,72 We have been able to compute long segments of stable and unstable
manifolds with high accuracy by conditioning the manifolds adaptively, e.g., by in-
serting more points along the manifold where the curvature is high. As a result,
the length and shape of the manifold is not an obstacle, and many more iterates
of lobes than hitherto possible can be generated accurately. Initial tests show that
this method of computing lobes using mangen is very relevant to the problems we
investigate.

Phase Space Structure in the Exterior Region. A Poincaré surface-of-section
(s-o-s) of the RF2BP at an energy just above the threshold where the bottleneck
appears (i.e., E > ES , the case in Figure 4.1(a)) illustrates the relevance of tube and
lobe dynamics in this system. In Figs. 4.3(a,b), the s-o-s was taken in the exterior
region along the positive x-axis. At the energy chosen, there is a bottleneck around
the equilibrium points along the x-axis. Particles beginning in the exterior region
will reach the interior region and subsequently collide with the asteroid if they lie
within the phase space tubes associated with the unstable periodic orbits about
either the left or right saddle points. Thus we refer to the tube slices on this s-o-s
as tube slices of collision. Furthermore, particles will be ejected from the system if
they lie within lobes enclosed by the stable and unstable manifolds of a hyperbolic
fixed point at (+∞, 0), referred to as lobes of ejection.

Physical insight is gained into the conditions for ejection by transforming to
Delaunay variables. In Figure 4.3(b), the semimajor axis is shown versus the argu-
ment of periapse with respect to the rotating asteroid (the body-fixed frame). The
alternate fates of collision and ejection are seen to be intimately intermingled in the
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Figure 4.3: Mixed phase space structure for the restricted model: the dynamics of

particle ejection from, and collision with, a distended asteroid. A Poincaré surface-of-

section taken in the exterior region (R > 1). (a) Particles not ejected after 15 iterates are shown.

The coordinates are the radial velocity of the particle versus its radial distance from the asteroid’s

center. The finger-like structures visible here, the lobes of ejection, have been seen in some chemistry

problems.78,70 (b) Semi-major axis vs. Argument of Periapse with respect to the rotating asteroid

(the body-fixed frame). (c) An interesting trajectory corresponding to the labeled point on the

Poincaré section in (a) is shown. The trajectory escapes the asteroid only to fall back upon it after

one large elliptical orbit. The units are in terms of the semiaxis length of the asteroid, which is

shown schematically at one instant of time. The asteroid is rotating counterclockwise around its

center (shown as a large dot at the origin). The long axis of the asteroid sweeps out the circular

region bounded by the dashed line.

phase space. Note that the number of particles remaining in the fourth quadrant
(270◦ − 360◦) is smaller than that in the other three quadrants, in agreement with
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earlier observations.16 Figure 4.3(c) shows a particular trajectory which escapes
from the asteroid only to fall back upon it, a peculiar phenomenon encountered in
tube dynamics.54

In the RF2BP, we are considering the motion of a massless particle, i.e., the limit
µ → 0. The next step in our study is to assume that the particle has mass, i.e.,
µ > 0 in Eq. 2.1. Due to the gravitational attraction of the particle, the rotation
of the asteroid is now non-uniform and must be tracked. While this adds another
dimension to the phase space, it also adds a new integral, the angular momentum K
in Eq. (2). Thus we can still use the two-dimensional Poincaré map analysis, as in
Figure 4.3. We are currently in the process of characterizing the global phase space
structure which gives rise to the complex behavior seen in Figure 2.2 and similar
problems.

5 Conclusions and Future Directions

We have outlined the general setting for the application of techniques from geomet-
ric mechanics and dynamical systems transport calculations to full body problems

(FBPs). General FBPs have a wide range of other interesting aspects as well, in-
cluding the 6-DOF guidance, control, and dynamics of vehicles, the dynamics of
interacting or ionizing molecules, the evolution of small body, planetary, or stellar
systems, and almost any other problem where distributed bodies interact with each
other or with an external field.

This paper focused on a motivating example of a full 2-body problem from
dynamical astronomy—the problem of asteroid pairs and to the calculation of binary
asteroid escape rates. We have given some preliminary results for a simplified model
of binary asteroid escape rates, describing how lobe and tube dynamics lead to a
rich phase space even for this simplified system.

Some future directions for this area of research are as follows.

Variational Integrators for FBPs. As is noted in the literature, the Poisson
structures that are obtained in the reduced models are non-canonical, and as such
applying standard symplectic algorithms will not provide the long-time stability we
have come to associate with such numerical methods, since they preserve the canon-
ical symplectic form, which is not consistent with the reduced dynamics. Instead,
we shall to make use of reduction theory for discrete systems, the abelian Routh case
of which is worked out and applied to the J2 problem (satellites in orbit about an
oblate planet).79 We will study transport phenomena in the F2BP using numerical
schemes that preserve the geometric structures inherent in the system. Toward this
end, we will redo the above computations for other F2BP cases and carry out long
time accurate time integrations using variational integrators that capture transport
rates and the detailed structure of chaotic sets.

Variational integrators provide a systematic and powerful extension of symplec-
tic integrators that have a proven track record in celestial mechanics for long-term
integrations.31,32,80 The variational setting allows for extensions to partial differen-
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tial equations, for asynchronous methods as well as the use of symmetry methods
that are central to this approach.

The idea of the variational integration method is to discretize Hamilton’s prin-
ciple directly rather than discretize the associated Euler–Lagrange equations. The
discrete form of Hamilton’s principle then determines the numerical algorithm for
that system. The accuracy to which the approximation of Hamilton’s principle is
done is reflected in the accuracy of the algorithm itself; however, much more is
true. When integrators are designed this way, they have remarkable respect for the
geometric mechanics aspects of the problem, including excellent energy behavior,
conservation of the symplectic structure and exact conservation of a discrete ver-
sion of the Noether quantities associated with symmetries. It is perhaps surprising
that these methods work well even for dissipative and forced systems. The idea in
this case is to discretize the Lagrange–d’Alembert principle rather than Hamilton’s
principle.

Many recent references develop and document the success of this methodol-
ogy.81,33,53 Figure 5.1 shows a computation for a particle moving in the plane under
a radially symmetric polynomial potential, without and with a small amount of
friction. The exact preservation of the conserved quantities, in this case energy, is
a natural consequence of the discrete variational principle. In addition, Figure 5.1
illustrates that these methods can handle dissipative systems and get the energy de-
cay rate accurate as measured against a benchmark calculation.82 In addition, many
statistical quantities, such as temperature and the structure of chaotic invariant sets,
are accurately captured by variational integrators.33,83
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Figure 5.1: Conservative system (left) and dissipative system (right).

A key feature is the development of AVI’s or asynchronous variational integra-

tors33 which allow one to take different time steps at different spatial points and
yet retain all the beautiful structure preserving properties of variational integrators.
This is important in FBPs since the different bodies may have vastly different spa-
tial and temporal scales, and so one must adapt the time steps according to these
different scales. The AVI approach is a natural way to study multi-scale dynamics
without sacrificing structure preservation. Interestingly, this is closely related to
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methods used in molecular dynamics (work of Barash and Schlick84).

Reduction for Discrete Mechanics. There has been significant work done on
reduction theory for discrete variational mechanics. An example is that of the dy-
namics of a satellite in the presence of the bulge of the Earth, in which many inter-
esting links with geometric phases and computation in the reduced and unreduced
spaces are noted.79 However, for the F2BP, this basic theory needs to be generalized,
a key point being the extension to the case of nonabelian symmetry groups and the
generalization beyond the Euler-Poincaré context.85 We will undertake such a study
and to apply it to the case of the F2BP. There is a cautionary message in the work
that numerical experience shows—it is important to fully understand the reduction
of discrete variational mechanics, since applying standard numerical algorithms to
the reduced equations obtained from continuous reduction theory may not yield the
desired results and long term stability may not be respected. A related goal is to
combine variational integrators and adaptive manifold conditioning to give a state
of the art package to compute manifolds, lobes and turnstiles in a variety of systems,
including the F2BP. The use of variational integrators is expected to increase the
accuracy of computation of long term statistical quantities, such as transport rates.
We also may combine these techniques with those of the Dellnitz group using box
elimination methods.86,36

The Full N-Body Problem. A natural extension of the F2BP is the problem of
multiple distributed bodies interacting with each other, the Full N -Body Problem.
For example, it would be interesting to put some earlier work20 into a modern
context using the same reduction and simulation theory outlined above. Recent
success in applying classical N -Body Problem results to the F2BP22,25 indicates
that progress can indeed be made in developing this approach.

Incorporation of Deformation and Dissipation Effects. The incorporation
of deformation and dissipation effects into one or both of the bodies provides an
important path towards understanding full body dynamics in a deeper way. Even if
the simplest deformation and dissipation models are incorporated, based on small
deformation and linear dissipation assumptions, these effects can have major influ-
ence on full body attitude and orbital dynamics. This phenomenon is well known in
planetary dynamics87 and has also been characterized in the field of space structure
dynamics and control.

Models that incorporate attitude, translation, and finite deformation degrees
of freedom for a distributed body in a central body gravitational field, have been
developed.88 Even in this relatively simplified version of a FBP, the presence of
deformation and dissipation can provide mechanisms for energy transfer between
translation and attitude. They also play important roles in controlled FBPs, where
physical or control effects directly influence the deformation and dissipation, and
indirectly influence attitude and/or translation.

It is also of interest to extend recent work on the stability and control of satellites
with flexible appendages to describing the natural dynamics of deformable bodies
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in orbit about a rigid body. As examples, the stability and Hamiltonian structure
of a rigid body with attached flexible rod was analyzed.1 More recently,89 induced
instabilities in a satellite with momentum wheels with an attached string has been
considered. This “radiation induced instability” is related to the dissipation in-
duced instabilities studied earlier.29,30 Such instabilities can occur when there is a
saddle point in the energy-momentum function but all eigenvalues of the linearized
system lie on the imaginary axis, situations which occur in the relative equilibria
of many FBPs. These results, when coupled with a recent rediscovery of an elastic
solution for tri-axial ellipsoids,90 could yield significant enhancements in our current
understanding of tidal disruptions and dissipation in small body systems.91,92

Astronomy and Planetary Science. Generalized models of the F2BP have
many applications in the field of astronomy and planetary science. In the following
we mention a few specific targets for our research, chosen as good candidates for the
application of our systematic approach to full body problems.

An important outcome of this phase of analysis could involve the long-term
simulation of the effects of the Yarkovsky effect on the translational and rotational
motion of asteroids. This effect has recently been recognized to be an important
component in describing the evolution and current state of the solar system. While
much work has been done on the modeling and prediction of its effects,39,40,41,42

long-term simulations of its effects using realistic models is currently not possible.
The heart of the difficulty is the delicate relation between an asteroid’s rotation
state and the net result of the Yarkovsky force (due to thermal inertia in the body).
The suite of simulation tools we are developing will be able to directly address this
question, and would unquestionably advance our ability to model and understand
this important effect.

A related open question in planetary science is an explanation for the large
number of slowly rotating asteroids.93,50 Current distribution statistics cannot be
accounted for by using the traditional theory of asteroid rotation state evolution.
While Yarkovsky forces have been considered as a possible explanation,42 a strong
case has not been built as of yet. Mutual disruption of binaries under their own
gravitational interaction is another potential mechanism for the creation of slowly
rotating and tumbling asteroids. To properly address whether this can account for
the noted excess of slow rotators a deeper study of ejection probability in binary
asteroids must be made, starting from earlier work,23,25,50 coupled with an analysis
of the likely formation energies of these binaries, drawing on recent work in this
area.94,95,96,92,97,98

Related to this study is a complete analysis of the formation and evolution of a
binary asteroid or Kuiper belt object, including the effect of energy dissipation and
external force perturbations. The simulation tools being developed for the F2BP
will be ideal for the simulation of these systems over long time spans, allowing for
the development and testing of various hypotheses and constraints on the life of
these objects. Based on current theoretical models and results99,23,25 a binary will
be subject to mutual disruption or impact during its evolution, and only a frac-
tion of binary bodies should survive into a long-term stable state. The resolution
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and understanding of this question is completely open, but would be naturally ad-
dressed using a FBP approach. As part of this analysis, we will also examine the
Pluto-Charon system, currently subject to some controversy based on the apparent
eccentricity of their mutual orbit.66

Recent re-analysis of the long-term evolution of comet nucleus rotation states
accounting for realistic models of outgassing torques on the bodies has shown a
remarkably rich set of steady-state states for their rotation states.43 Direct simula-
tion of these effects over long-periods is currently not possible, but may be made
attainable from the outcomes of our work. Furthermore, the non-trivial dependence
on rotation state on a comet’s heliocentric orbit invites a more complete analysis of
the coupling of nucleus rotation and its orbital variation due to outgassing, which
is the classical problem of comet nucleus orbit mechanics.44

An additional, novel idea is to apply the F2BP, with dissipation and deformation
effects, to describing the interaction of two or more distributed galaxies. As a first
step, this work would link the classical theory of ellipsoidal figures of equilibrium100

with the effect of a non-collision interaction between two galaxies. Following such an
encounter, each of the distributed bodies would feel a near-impulsive change in their
energy and angular momentum, due to exchanges between the distributed bodies.24

Treating these stellar collections as FBPs could lead to fruitful new insights and
approaches to describe their evolution and dynamics.

Vehicle Dynamics and Control. Control problems arise in FBPs where one of
the bodies is an artificial body such as a controlled spacecraft or satellite. There is a
vast literature on attitude control and orbit control of spacecraft, and the success of
most space missions has depended on this capability. With only few exceptions, this
literature treats attitude control problems and orbit control problems as independent
problems. This is reflected in the organization chart of most space agencies and space
industries; attitude control groups and orbit control groups operate independently.

The thesis of this area of research, based on the fundamental definition of FBPs,
is that attitude and orbit dynamics and control problems should be treated in a
unified way. A consequence of this thesis is that control problems for FBPs should
be formulated, analyzed, and implemented using prior knowledge of the full body
dynamics. Geometric properties such as symmetries and reduction are important
not only for analysis of full body dynamics, but are crucial to full body control
as well. Most full body control problems are likely to be nonlinear and to require
special methods for control design and analysis that are tailored to the full body
dynamics.

Nonlinear control methods should provide excellent frameworks for studying full
body control problems. These methods include controlled Lagrangian,101 geomet-
ric phases,61,10 and differential geometric approaches.102,10 These approaches have
been developed and successfully applied to the control of rigid bodies and multi-body
systems, taking into account motion constraints, symmetries, control-actuation as-
sumptions, deformation degrees of freedom, and dissipation. They have been used to
construct controllers for specific rigid-body and multi-body spacecraft attitude con-
trol problems using thrusters, reaction wheels, proof mass actuators, appendages,
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and tethers. By analyzing and describing these systems from a more general van-
tage, it is often possible to gain additional insight into the known symmetries of
the simpler problem, and potentially to discover new symmetries not appreciated
before. A similar philosophy can be applied to a re-analysis of vehicle motion in
fluid fields, where the existence of the fluid can be idealized as the limiting model
of a second body interaction on the vehicle. As these vehicles have strong coupling
between rotational and translational motion, and are considered to be extremely
difficult analytical problems, any advance in understanding such vehicles would be
important.

Chemical Dynamics. The mathematical description of transport phenomena
applies to a wide range of physical systems across many scales.103,73,104 The re-
cent and surprisingly effective application of methods combining dynamical sys-
tems ideas with those from chemistry to the transport of Mars ejecta by several of
the co-authors in collaboration with chemists, underlines this point.35 Thus, tech-
niques developed to study transport in the solar system are truly fundamental and

broad-based. The methods may be applied to diverse areas of study, including fluid
mixing105,106,107,108,109,76,71 and N -body problems in physical chemistry.110 A ba-
sic framework for this theory has already allowed the several of the co-authors to
develop a new low-fuel mission concept to explore Jupiter’s moons.111 Any improve-
ment made in the software in the course of the work outlined above can thus be
applied to areas beyond dynamical astronomy.
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