DGC 120 Planning team meeting - Week 1

Planning team:

- Thyago Consort (thyago@cds)
- Adam Craig (craig@its)
- Jeremy Gillula (jeremy@its)
- Sue Ann Hong (sueh@its)
- Haomiao (H) Hong (haomiao@its)
- Alan Somers (somers@its)
- Mike Thielman (thielman@yahoo.com)
- Rocky Velez (rocky@its)

TA:

Lars Cremean (lars@cds)

Other support:

- Kristo Kriechbaum (grad. student of Joel Burdick), 10+ hrs./wk.
- Luis Goncalves (Evolution Robotics, fmr. Grad student), 10 hrs./wk.
- Les White (JPL), 10 hrs./wk. (shared w/ embedded systems)
- ?? NGC, Evolution, JPL, Caltech

Meeting Goals and Agenda

Goals:

- I Bring all up to date on current status of planning team
- ☑ Plan out the term in order to meet project objectives, using standardized tools for project engineering (GOTChA chart, timeline, stoplight chart, task lists)
- Subteam decomposition of planning objectives, goals
- ☑ Review available resources

Agenda:

- 8:00 Meeting goals, agenda
- 8:05 Team GOTChA chart
- 8:20 Team timeline
- 8:35 Team status, stoplight chart
- 8:50 Review of resources
- 9:00 Subteam composition and scope
- 9:20 Action items
- 9:30 Adjourn

<u>G</u>oals

- ☑Design, document and build a system to compete in the 2004 DARPA Grand Challenge (DGC)
- Be the first team to complete the DGC course in 10 hours or less.

<u>O</u>bjectives

☑ 10 mph on desert roads in good driving conditions (IGC)
☑ 5 mph on trails IGC
☑ 5 mph across open terrain IGC
☑ Ability to detect and avoid obstacles of height > 0.5 m, radius 0.25m at 10 mph
☑ Ability to suffer at least one computer failure and continue operating

DGC 120 Planning team GOTChA chart

<u>G</u>oals

- Effectively, quickly, safely and autonomously command the vehicle across ~210 mi. of DGC course
- ⊠Guaranteed confinement to course corridor, defined by waypoints and in the time required
- \boxtimes " " through the QID course

<u>O</u>bjectives

- ⊠Average 21 mph autonomously over ten hours over { A, B, C} type of terrain (A,B,C TBD)
- ⊠Similar objectives for different speeds, driving conditions (enumerated)
- ⊠Ability to accurately detect obstacles under various driving conditions
- ☑ 10 mph on desert roads in good driving conditions (IGC)
- ⊠5 mph on trails IGC
- ⊠5 mph across open terrain IGC
- ⊠Ability to detect and avoid obstacles of height > 0.5 m, radius 0.25m at 10 mph
- ⊠Ability to suffer at least one computer failure and continue operating

Technical Challenges

- ⊠Not crashing
- ⊠Avoiding other competitors
- ⊠Properly navigating water
- ⊠Terrain classification and proper response
- ⊠Managing "dead end" scenarios
- Effective response to fault information from emb. sys.
- ⊠Robust software capability of running indefinitely without segfaults, runtime errors, memory leaks

<u>Approach</u>

- ⊠Vision and LADAR based sensing
- ⊠Arbiter-based driving framework to handle multiple sensory inputs
- ⊠Integration of software with portable MTAbased embedded system design
- ⊠Use of a priori known information (static maps) about course for navigation

Project Structure (Status Chart)

DGC 120 Planning team status chart

DGC 120 Planning team

Planning Team Timeline

DGC 120 Planning team

Planning: Subteam Composition

LADAR Team (MT, KK)

- ☑ Integration of LADAR hardware
- ⊠ Robust terrain map generation
- ☑ Map path evaluation and vote generation

Stereovision Team (JG, HH)

- ☑ Integration and calibration of multiple sets of Firewire stereovision cameras
- ☑ Integration of purchased stereovision software from Videre systems
- \boxtimes Generation of terrain maps from range maps
- ☑ Map path evaluation and vote generation

Global Team (AS, RV, LW)

- ☑ Code for processing waypoint route data definition file (RDDF)
- ⊠ Generation and processing of static (a priori) maps for use during race
- Efficient navigation of route corridor, with guarantee of staying in-bounds
- ☑ Map path evaluation and vote generation

Planning Systems Team (SAH, AC, Θ C)

- ☑ Development and documentation of reusable map classes, with data logging capability
- ☑ Development of simulation environment for testing and debugging code, as needed
- Iterating and refining of arbiter algorithms for combining votes, guidelines for voters
- Testing and development of dynamic feasibility evaluator (DFE)
- ☑ Develop visualization tools for debugging, as needed

Comment and remarks

☑ Need to get people aligned with where the most work needs to be done

Project meetings M 8-9pm, 139 Moore

Team meetings W 8-9:30pm, 139 Moore

- \boxtimes Condensed subteam status updates
- I Brief timeline review
- Issues to resolve
- \boxtimes Action items
- **Optional** Sat. ~noon, pizza in shop (Guggenheim)

Planning Team Resources

Resources:

- ☑ CVS: concurrent versioning system, history of code development and effective way to manage code revisions
 - or core code in team/ module
- ⊠ Core test code:
 - team/tests/WaypointNav/ <-- new tests program, utilizes MTA, vstate, vdrive
 - team/tests/waypointnav/ <-- old but retains some functionality not yet ported
- ⊠ Web resources: Toolkits, code standards, libraries, etc.
- ☑ CDS Wiki page, for creating and adding project documentation (historical and functional)
- ⊠ Maybe: Bugzilla or Mantis bug (and general task) tracking software, configurable, sortable
- ☑ Doxygen: Automatic documentation generator from code comments

Action items:

 Get account on grandchallenge, if you don't already have one

- Learn basic CVS usage
- Become familiar with compiling code within CVS framework

Best practices - documentation:

- Develop within CVS. 'cvs update' when you begin working and 'cvs commit' when you finish. Write informative commit messages.
- TEST your code before committing (for compile errors, runtime errors, bugs)
- Create README files in directories that indicate author, file structure and instructions for compiling and usage
- Comment the top of each file with author, date, functionality information

Planning Subteam Resources

LADAR Team (MT, KK)

- ☑ One new large LADAR (untested), one large broken(?) LADAR unit, one small unit (from Burdick lab)
- ⊠ www.sick.de (*limited*) and associated documentation for our LADAR (in the shop)
- ⊠ Driver code in team/Ladar/driver_klk and test code in team/Ladar/
- Developed of LADAR bumper code in team/tests/waypointnav/ladar.cc

Stereovision Team (JG, HH)

- ☑ One pair of mounted and calibrated(!) Firefly firewire cameras (four more on order)
- ⊠Small Vision System (SVS, software) from Videre systems (www.videredesign.com)
- Code in team/stereovision/ (Steve Waydo, waydo@cds) to get pairs of rectified and synchronized images
- ☑ Code by Jeremy Gillula to generate goodness map from elevation data and perform (simple) path evaluation and vote generation

Global Team (AS, RV, LW)

- Preliminary waypoint specs and waypoint following code in team/WaypointNav/global.cc
- ☑ ArcView and Feature Analyst installed on computer (which?) in lab (07 Moore)
- ☑ Downloaded satellite images (where?)
- ☑ Potentially: altitude laser scan (ALS) data of course route
- ☑ Preliminary corridor following and D* code developed by Rich Petras (NOT in CVS, zip file of latest, minimally documented)

Planning Systems Team (SAH, AC, Θ C)

- Working arbiter framework in team/tests/WaypointNav/
- ☑ team/LocalMap/ class (fairly well documented)
- ☑ Planar simulation integrated into team/tests/waypointnav (not WaypointNav), written by Thyago Consort
- ☑ visualization-gui/ module in CVS, well documented and written by Dave Benson, built on GTK+ 2.0

Planning Subteam Action Items

ALL Subteams

• Create brief GOTChA chart and timeline consistent with team goals (email text OK) for subteam and send to Lars (lars@cds) - not necessary for HW1, but useful

LADAR Subteam (MT, KK)

- Test new LADAR unit, find effective minimum and maximum range, and approximate max. angle of incidence for scan returns
- ☑ Develop one page "whitepaper" outlining LADAR subsystem parameters (scan resolution, number of scanpoints, mount angle, range, …) and performance estimates (terrain map resolution)

Stereovision Subteam (JG, HH)

- ☑ Test out Steve Waydo's code with camera HW and iridium(?) to get images from camera pair
- ☑ Install and configure SVS on firewire computer, run test programs and get sample output
- ☑ Outline plan for integrating existing goodness map/ path evaluation code and generate preliminary schedule for integration

Global Subteam (AS, RV, LW)

- Review code for waypoint following (brief)
- ☑ Find ArcView and Feature Analyst, find out capabilities and evaluate whether they are useful
- I Hunt down downloaded satellite images
- Send email to Lars to get tgz file of RP code (not in CVS), and spend a short amount of time trying to understand its functionality. Send email to Rich Petras (petras@helios.jpl.nasa.gov) requesting documentation
- ☑ Request ALS whitepaper and emails from Dave or Lars

Planning Systems Subteam (SAH, AC, Θ C)

- \boxtimes Outline plan for creating reusable map class
- Test waypointnav/WaypointNav in simulation and track down scaling bugs
- Demonstrate effective use of Dave Benson's visualization-gui

Next Project Meeting: Thurs., 8 Jan, 8:30pm