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Lecture 2 
 
4. LaSalle’s Invariance Principle 

We begin with a motivating example. 
 
Example 4.1 (nonlinear pendulum dynamics with friction) 

 
Figure 4.1: Pendulum 

 
Dynamics of a pendulum with friction can be written as: 
  2 sin 0M R k M g R       (4.1) 

or, equivalently in state space form: 

 1 2

2 1 2sin

x x

x a x b x


  




 (4.2) 

where 1x  , 2x   , g
a

R
 , and 

2

k
b

M R
 .  We study stability of the origin 0ex  .  

Note that the latter is equivalent to studying stability of all the equilibrium points in the 

form:  2 0 , 0, 1, 2,
T

ex l l      Consider the total energy of the pendulum as a 

Lyapunov function candidate. 

  


 
1 2 2

2 2
1

0
Kinetic

Potential

sin 1 cos
2 2

x
x x

V x a y dy a x    


 (4.3) 

It is clear that  V x  is a positive definite function, (locally, around the origin).  Its time 

derivative along the system trajectories is: 
   2

1 1 2 2 2sin 0V x a x x x x b x        (4.4) 

So, the time derivative is negative semidefinite.  It is not strictly negative definite because 
  0V x   for 2 0x  , irrespective of the value of 1x .  Therefore, we can only conclude 

that the origin is a stable equilibrium, but not necessarily asymptotically stable. 
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However, using the phase portrait of the pendulum equation (or just common sense), 
we expect the origin to be asymptotically stable.  The Lyapunov energy function 
argument fails to show it. 
 

On the other hand, we notice that for the system to maintain   0V x   condition, the 

trajectory must be confined to the line 2 0x  .  Using the system dynamics (4.2) yields: 

 2 2 1 10 0 sin 0 0x x x x        

Hence on the segment 1x     of the line 2 0x   the system can maintain the 

  0V x   condition only at the origin 0x  .  Therefore,   V x t  must decrease to 

toward 0 and, consequently,   0x t   as t  , which is consistent with the fact that, 

due to friction, energy cannot remain constant while the system is in motion. 
 

The forgoing argument shows that if in a domain about the origin we can find a 
Lyapunov function whose derivative along the system trajectories is negative 
semidefinite, and we can establish that no trajectory can stay identically at points where 
  0V x  , except at the origin, then the origin is asymptotically stable.  This argument 

follows from the LaSalle’s Invariance Principle which is applicable to autonomous 
systems of the form 
    , 0 0x f x f   (4.5) 

 
Definition 4.1 

A set nM R  is said to be 
 an invariant set with respect to (4.5)  if:    0 ,x M x t M t R      

 a positively invariant set with respect to if:    0 , 0x M x t M t      

 
Theorem 4.1 (LaSalle’s Theorem) 

Let nD R   be a compact positively invariant set with respect to the system 
dynamics (4.5).  Let :V D R  be a continuously differentiable function such that 

   0V x t   in  .  Let E   be the set of all points in   where   0V x  .  Let 

M E  be the largest invariant set in E .  Then every solution starting in   approaches 
M  as t  , that is 

  
  dist ,

lim inf 0
t z M

x t M

x t z
 

 
 

  
 
 


 

 
Notice that the inclusion of the sets in the LaSalle’s theorem is: 

 nM E D R    
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In fact, a formal proof of the theorem reveals that all trajectories  x t  are bounded and 

approach a positive limit set L M   as t  .  The latter may contain asymptotically 
stable equilibriums and stable limit cycles. 
 
Remark 4.1 

Unlike Lyapunov theorems, LaSalle’s theorem does not require the function  V x  to 

be positive definite. 
 

Most often, our interest will be to show that   0x t   as t  .  For that we will 

need to establish that the largest invariant set in E  is the origin, that is:  0M  .  This is 

done by showing that no solution can stay identically in E  other than the trivial solution 
  0x t  . 

 
Theorem 4.1 (Barbashin-Krasovskii theorem) 

Let 0x   be an equilibrium point for (4.5).  Let :V D R  be a continuously 

differentiable positive definite function on a domain nD R  containing the origin, such 

that    0V x t   in D .  Let   : 0S x D V x    and suppose that no other solution 

can stay in S , other than the trivial solution   0x t  .  Then the origin is locally 

asymptotically stable.  If, in addition,  V x  is radially unbounded then the origin is 

globally asymptotically stable. 
 

Note that if  V x  is negative definite then  0S   and the above theorem coincides 

with the Lyapunov 2nd theorem.  Also note that the LaSalle’s invariant set theorems are 
applicable to autonomous system only. 
 
Example 4.2 

Consider the 1st order system 
 x a x u   
together with its adaptive control law 

  ˆu k t x   

The dynamics of the adaptive gain  k̂ t  is 

 2k̂ x  
where 0   is called the adaptation rate.  Then the closed-loop system becomes: 

 
  

2

ˆ

ˆ

x k t a x

k x

   

 




 

The line 0x   represents the system equilibrium set.  We want to show that the 
trajectories approach this equilibrium set, as t  , which means that the adaptive 
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controller regulates  x t  to zero in the presence of constant uncertainty in a .  Consider 

the Lyapunov function candidate 

    21 1ˆ ˆ,
2 2

V x k x k b


    

where b a .  The time derivative of V  along the trajectories of the system is given by 

          2 2 21ˆ ˆ ˆ ˆ ˆ, 0V x k x x k b k x k a k b x x b a


              

Since  ˆ,V x k  is positive definite and radially unbounded function, whose derivative 

 ˆ, 0V x k   is semi-negative, then     2ˆ ˆ, : ,c x k R V x k c     is compact, positively 

invariant set.  Thus, taking c  , all the conditions of LaSalle’s Theorem are satisfied.  

The set E  is given by   ˆ, : 0cE x k x   .  Since any point on the line 0x   is an 

equilibrium point, E  is an invariant set.  Therefore, in this example M E .  From 
LaSalle’s Theorem we conclude that every trajectory starting in c  approaches E , as 

t  , that is   0x t   as t  .  Moreover, since  ˆ,V x k  is radially unbounded, the 

conclusion is global, that is it holds for all initial conditions     ˆ0 , 0x k  because the 

constant c  in the definition of c  can be chosen large enough that     ˆ0 , 0 cx k  . 

 
Homework: 
 Simulate the closed-loop system from Example 4.2. 

 Test different initial conditions     ˆ0 , 0x k . 

 Run simulations of the system while increasing the rate of adaptation 0   until high 
frequency oscillations and / or system departure occurs.  Try to quantify maximum 
allowable max  as a function of the initial conditions. 

 Run simulations of the system while increasing the control time delay 0  , that is 

using control in the form      ˆu t k t x t     .  Try to quantify maximum 

allowable time delay max , (as a function of the initial conditions and rate of 

adaptation), before the system starts to oscillate or departs. 
 
5. Boundedness and Ultimate Boundedness 

Consider the nonautonomous system 
  ,x f t x  (5.1) 

where  : 0, nf D R    is piecewise continuous in t , locally Lipschitz in x  on 

 0, D  , and nD R  is a domain that contains the origin 0x  .  If the origin is the 

equilibrium point for (5.1) then by definition:  ,0 0, 0f t t   .  On the other hand, 

even if there is no equilibrium at the origin, Lyapunov analysis can still be used to show 
boundedness of the system trajectories.  We begin with a motivating example. 
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Example 5.1 

Consider the IVP with nonautonomous scalar dynamics 

  0

sin

0

x x t

x t a




  

  


 (5.2) 

The system has no equilibrium points.  The IVP explicit solution can be easily found and 
shown to be bounded for all 0t t , uniformly in 0t , that is with a bound b  independent of 

0t .  In this case, the solution is said to be uniformly ultimately bounded (UUB), and b is 

called the ultimate bound, (Homework:  Prove this statement). 
 

The UUB property of (5.2) can be established via Lyapunov analysis and without 

using explicit solutions of the state equation.  Starting with  
2

2

x
V x  , we calculate the 

time derivative of V  along the system trajectories. 

      2 2sin sinV x x x x x t x x t x x x x                  

It immediately follows that 
   0,V x x     

In other words, the time derivative of V  is negative outside the set  B x   , or 

equivalently, all solutions that start outside of B  will reenter the set within a finite time, 

and will remain their afterward.   Formally, it can be stated as follows.  Choose 
2

2
c


 .  

Since V  is negative on the set boundary then all solutions starting in the set 
   

2

c

x c

B V x c B



  


 

will remain therein for all future time.  Hence the solutions are uniformly bounded.  
Moreover, an ultimate bound of these solutions can also be found.  Choose   such that 

 
2

2
c

    

Then V  is negative in the annulus set   V x c   , which implies that in this set 

  V x t  will decrease monotonically in time until the solution enters the set   V x  .  

From that time on, the solution cannot leave the set because V  is negative on its 

boundary  V x  .  Since  
2

2

x
V x  , we can conclude that these solutions are UUB 

with the ultimate bound  2x  . 

 
Definition 5.1 

The solutions of (5.1) are 



 15

 Uniformly Bounded if there exists a positive constant c , independent of 0 0t  , 

and for every  0,a c , there is   0a   , independent of 0t , such that 

    0 0,x t a x t t t      (5.3) 

 Globally Uniformly Bounded if (5.3) holds for arbitrarily large a . 
 Uniformly Ultimately Bounded with ultimate bound b  if there exist positive 

constants b  and c , independent of 0 0t  , and for every  0,a c , there is 

 ,T T a b , independent of 0t , such that 

    0 0,x t a x t b t t T       (5.4) 

 Globally Uniformly Ultimately Bounded if (5.4) holds for arbitrarily large a . 
 

 
Figure 5.1: UUB Concept 

 
In the definition above, the term uniform indicates that the bound b  does not depend 

on 0t .  The term ultimate means that boundedness holds after the lapse of a certain time 

T .  The constant c  defines a neighborhood of the origin, independent of 0t , such that all 

trajectories starting in the neighborhood will remain bounded in time.  If c  can be chosen 
arbitrarily large then the UUB notion becomes global. 
 

Basically, UUB can be considered as a “milder” form of stability in the sense of 
Lyapunov (SISL).  A comparison summary between SISL and UUB concepts is given 
below. 
 

 SISL is defined with respect to an equilibrium, while UUB is not. 
 Asymptotic SISL is a strong property that is very difficult to achieve in practical 

dynamical systems. 
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 SISL requires the ability to keep the state arbitrarily close to the system 
equilibrium by starting sufficiently close to it.  This is still too strong a 
requirement for practical systems operating in the presence of unknown 
disturbances. 

 The main difference between UUB and SISL is that the UUB bound b  cannot be 
made arbitrarily small by starting closer to the equilibrium or the origin.  In 
practical systems, the bound b  depends on disturbances and system uncertainties. 

 
To demonstrate how Lyapunov analysis can be used to study UUB, consider a 

continuously differentiable positive definite function  V x , choose 0 c  , and 

suppose that the sets   V x     and   c V x c    are compact.  Let 

    cV x c         

and suppose that it is known that the time derivative of   V x t  along the trajectories of 

the nonautonomous dynamical system (5.1) is negative definite inside  , that is 
       00, ,V x t W x t x t t        

where   W x t  is a continuous positive definite function.  Since V  is negative in  , a 

trajectory starting in   must move in the direction of decreasing   V x t .  It can be 

shown that in the set   the trajectory behaves as if the origin was uniformly 
asymptotically stable, (which it does not have to be in this case).  Consequently, the 
function   V x t  will continue decreasing until the trajectory enters the set   in finite 

time and stays there for all future time.  Hence, the solutions of (5.1) are UUB with the 
ultimate bound max

x
b x


 .  A sketch of the sets  , c ,   is shown in Figure 5.2. 

 

 
 

Figure 5.2: UUB by Lyapunov Analysis 
 

In many problems, the relation    ,V t x W x   is derived and shown to be valid on 

a domain, which is specified in terms of a Euclidian norm x .  In such cases, UUB 

analysis involves finding the corresponding domains of attraction and an ultimate bound.  
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This analysis will be  performed next.  Let nR  denote a bounded domain and 
suppose that the system dynamics are: 

 
 ,

2

t x
x A x B


   (5.5) 

where A  is Hurwitz.  Also suppose that  , mt x R   is a bounded function on  .  Let 

0TQ Q   and consider 

   TV x x P x  (5.6) 

where 0TP P   is the unique positive definite symmetric solution of the algebraic 
Lyapunov equation. 
 TP A A P Q    (5.7) 
Then the time derivative of V  evaluated along the system (5.1) trajectories satisfies the 
following relation: 
     0, , ,T TV x x Q x x P B t x x t t        (5.8) 

Suppose that 0R   is chosen such that the sphere RS  is inside the domain  , that is: 

  RS x R     (5.9) 

Also suppose that   max,t x     for all Rx S , uniformly in t .  Then one can 

formally prove that all the solutions  x t  of (5.1) that start in a subset of RS  are UUB.   

 

In order to prove the UUB property, we assume that Tx x x .  Then for any 

symmetric positive definite matrix P  and for all vectors x , 

    2 2

min max
TP x x P x P x    (5.10) 

where    min max,P P   denote the smallest and the largest eigenvalues of P , 

respectively. 
 

An upper bound for V  in (5.8) can be calculated, for x . 

       2

min max min maxV x Q x x P B x Q x P B          (5.11) 

Define a sphere. 

 
 

max

min
r

P B
S x r

Q




     
  

 (5.12) 

It follows from (5.11) that 

    0, R rV x x r x R S S         (5.13) 

 
Let   2

maxrb P r  and let   
rb rV x b   .  Then 

rr bS   .  In fact, if rx S  then 

using the right hand side of (5.10) yields: 

    2 2
max max

T
rx P x P x P r b     (5.14) 

Hence, 
rbx  and the inclusion 

rr bS   is proven. 
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Let   2

minRb P R  and define   
Rb RV x b   .  Then 

Rb RS  .  In fact, if 

Rbx  then using the left hand side of (5.10), yields: 

      2 2
min min

T
RP x x P x V x b P R      (5.15) 

Hence, x R , that is Rx S , and the inclusion 
Rb RS   is proven. 

 
Next, we need to ensure that r Rb b , that is: 

    2 2
max minr Rb P r P R B     (5.16) 

or, equivalently: 

 
 
 

min

max

Pr

R P




  (5.17) 

The above inequality can be viewed as a restriction placed on the eigenvalues of P  and 
the constants r  and R .  This relation ensures the desired set inclusions: 
 

r Rr b b RS S    (5.18) 

Graphical representation of the four sets is given in Figure 5.2. 
 

 
 

Figure 5.2: Representation of the sets 
r Rr b b RS S     and the Ultimate Bound M  

 
Next, we show that all solutions starting in 

Rb  will enter 
rb  and remain there 

afterwards.  If  0 rbx t   then since 0V   in 
R rb b    ,   V x t  is a decreasing 

function of time outside of 
rb .  Therefore, solutions that start in 

rb  will remain there.  

Suppose that  0x t  .  Inequality (5.11) implies: 
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   
 
   

   
 
 

 
   

 
 

2

min max

2 maxmin
max min

max min

maxmin

max min

V x V x

V x Q x x P B

P BQ
P x P x

P P

P BQ
V x V x

P P

 


 

 


 

 

  

  

  



 
 (5.19) 

Thus,    0V x t   satisfies the following differential inequality, (as a function of time): 

      V x aV x g V x    (5.20) 

where 
 
 

min

max

Q
a

P




  and 
 

max

min

P B
g

P




  are positive constants.  Let    W x V x .  

Then (5.20) is equivalent to 

    
2 2

a g
W x W x    (5.21) 

Define 

      
2

a
Z x W x W x   (5.22) 

Then because of (5.21), 

    0,
2

g
Z x t t t    (5.23) 

Solving (5.22) for W  yields, 

             0

0

2 2
0

ta a
t t t

t

W x t W x t e e Z x d


 
   

    (5.24) 

and, therefore: 

 

            

             

    
 

 

0

0

0 0 0

0

0

2 2
0

2 2 2 2
0 0

2
0

o 1

1
2
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t t t
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t t

W x t W x t e e Z x d
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W x t e e d W x t e e

a

g g g
e W x t

a a a





 



   

       

 

 

 
     

 

       







 (5.25) 

Consequently, as t  : 

        
       

 
 maxmax max

minmin min

o 1 o 1 o 1T

r

P BP Pg
x t P x t r

a QP P

 
 

 
       

 
 (5.26) 

Choose 0  .  Then it is easy to see that there exists T  independent of 0t  such that 

 o 1   and , consequently 
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      
 

max
0

min

, ,
R

T
b

P
x t P x t r t T t x

P





        (5.27) 

Since the above relation is valid for all solutions that start in  , it is also valid for the 
solution which starts in   and maximizes the left hand side of the inequality.  In other 
words 

      
 

max

min

max
B

T

x

P
x t P x t r

P





   (5.28) 

On the other hand 

        maxmax max
B B

T

x x
x t P x t P x t

 
  (5.29) 

Hence 

    
   

max
0

min max

, ,
Rb

P
x t M r t T t x

P P

 
 

         (5.30) 

Consequently, all solutions of (5.1) are UUB with the ultimate bound M .  The bound is 
shown in Figure 5.2.  Summarizing all formally proven results, we state the following 
theorem. 
 
Theorem 5.1 

Let 0TP P   and 0TQ Q   be symmetric positive definite matrices that satisfy 

the Lyapunov algebraic equation (5.7), and let   TV x x P x .  Consider the dynamics in 

(5.5) and suppose that   max,t x    , uniformly in t , and for all  Rx S x R   , 

where 0R   is chosen such that  RS x R    .  Let 
 

max

min
r

P B
S x r

Q




     
  

 and 

suppose that 
 
 

min

max

Pr

R P




 .  Then those solutions of (5.5) that start in the bounded set 

    2
minRb RV x b P R     are UUB, with the ultimate bound M , as it is defined in 

(5.30). 
 
 
6. Invariance – like Theorems 

For autonomous systems, the LaSalle’s invariance set theorems allow asymptotic 
stability conclusions to be drawn even when V  is only negative semi-definite in a 
domain  .  In that case, the system trajectory approaches the largest invariant set E , 
which is a subset of all points x  where   0V x  .  However the invariant set 

theorems are not applicable to nonautonomous systems.  In the case of the latter, it may 
not even be clear how to define a set E , since V  may explicitly depend on both t  and x .  
Even when  V V x  does not explicitly depend on t  the nonautonomous nature of the 

system dynamics precludes the use of the LaSalle’s invariant set theorems. 
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Example 6.1 
The closed-loop error dynamics of an adaptive control system for 1st order plant with 

one unknown parameter is 

 
 

 
e e w t

e w t





  

 


   

where e  represents the tracking error and  w t  is a bounded function of time t .  Due to 

the presence of  w t , the system dynamics is nonautonomous.  Consider the Lyapunov 

function candidate 
   2 2,V e e    

Its time derivative along the system trajectories is 
         2, 2 2 2 2 2 0V e ee e e w t e w t e                

This implies that V  is a decreasing function of time, and therefore, both  e t  and  t  

are bounded signals of time.  But due to the nonautonomous nature of the system 
dynamics, the LaSalle’s invariance set theorems cannot be used to conclude the 
convergence of  e t  to the origin. 

 
In general, if    , 0V t x W x    then we may expect that the trajectory of the 

system approaches the set   0W x  , as t  .  Before we formulate main results, we 

state a lemma that is interesting in its own sake.  The lemma is an important result about 
asymptotic properties of functions and their derivatives and it is known as the Barbalat’s 
lemma.  We begin with the definition of a uniform continuity. 
 
Definition 6.1 (uniform continuity) 

A function   :f t R R  is said to be uniformly continuous if 

      2 1 2 10 0 t t f t f t                 

Note that 1t  and 2t  play a symmetric role in the definition of the uniform continuity. 

 
Lemma 6.1 (Barbalat) 

Let   :f t R R  be differentiable and has a finite limit, as t  .  If  f t  is 

uniformly continuous then   0f t  , as t  . 

 
Lemma 6.2 

If  f t  is bounded then  f t  is uniformly continuous. 

 
An immediate and a very practical corollary of Barbalat’s lemma can now be stated. 
 
Corollary 6.1 
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If   :f t R R  is twice differentiable, has a finite limit, and its 2nd derivative is 

bounded then   0f t   as t  . 

 
In general, the fact that derivative tends to zero does not imply that the function has a 

limit.  Also, the converse is not true.  In other words: 

     0f t C f t    

 
Example 6.2 

 As t  ,    sin lnf t t  does not have a limit, while    cos ln
0

t
f t

t
  . 

 As t  ,    2sin 0t tf t e e  , while      2 2sin cost t t tf t e e e e    . 

 


