CDS 140b: Homework Set 1
Due by Tuesday, January 20, 2009.

1. Determine whether the following system can have any periodic orbits:
\[\dot{x} = y^2 + y \cos x \quad \text{and} \quad \dot{y} = 2xy + \sin x. \]

2. Use index theory to show that the system \(\dot{x} = x(4 - y - x^2) \), \(\dot{y} = y(x - 1) \) cannot have any periodic orbits.

3. Show that the system \(\dot{x} = y - x^3 \), \(\dot{y} = -x - y^3 \) cannot have any periodic orbits by considering a Liapunov function \(V = ax^2 + by^2 \) with suitable \(a, b \). Can you think of another way (i.e. without Liapunov functions) of proving this statement?

4. Consider a gradient system. Show that, away from fixed points, the trajectories of the system cross the level sets of \(V \) at right angles, and that \(V \) is decreasing along the trajectories.

5. Consider the given by \(\ddot{x} + x = \mu(1 - x^2)\dot{x} \) with \(\mu > 0 \). Use Bendixson’s criterion to show that periodic solutions necessarily have to cross \(x = \pm 1 \).