Normal Forms Theory

CDS140A Lecturer: Wang Sang Koon

Fall, 2006

1 Normal Form Theory

Introduction. To find a coordinate system where the dynamical system take the "simplest" form.

- The method is local in the sense that the coordinate transforms are generated near a know solution, such as a fixed point.
- The coordinate transformation will be nonlinear, but these transformation are found by solving a sequence of linear problem.
- The structure of the normal form is determined entirely by the nature of the linear part of the problem.

Preliminary Preparation. Consider

$$
\dot{w}=G(w)
$$

where $w \in R^{n}, G$ is C^{r}, and the system has a fixed point at $w=w_{0}$. Then it can be written as $\left(^{*}\right)$

$$
\dot{x}=J x+F(x)=J x+F_{2}(x)+F_{3}(x)+\cdots+F_{r-1}(x)+O\left(|x|^{r}\right)
$$

where $F_{i}(x)$ represent the order i terms in the Taylor expansion of $F(x)$.
Simplification of the Second Order Terms. Introduce the coordinate transformation

$$
x=y+h_{2}(y)
$$

where $h_{2}(y)$ is second order in y. If $h_{2}(y)$ can be found to satisfy the following homological equation

$$
\frac{\partial h_{2}}{\partial y} J y-J h_{2}(y)=F_{2}(y)
$$

then the $F_{2}(y)$ can be eliminated.

Simplification of the Third Order Terms. Similar computation can be done to simplify the third order terms.

Theorem 13.1 (Poincaré) If the eigenvalues of the matrix J are non-resonant, then the equation

$$
\dot{x}=J x+F(x)+\ldots
$$

can be transformed into the linear equation

$$
\dot{y}=J y
$$

by the formal transformation $x=y+h_{2}(y)+\ldots$
Definition: The eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ of A are resonant if one has

$$
\lambda_{i}=\sum_{j=1}^{n} m_{j} \lambda_{j}
$$

with $m_{j} \in\{0\} \cup \mathbb{N}$ and $m=m_{1}+m_{2}+\ldots+m_{n} \geq 2$.

Finding Solution of Homological Equation for h_{2}. Notice that

$$
H_{2}=L_{J}^{(2)}\left(H_{2}\right) \oplus G_{2}
$$

where G_{2} represent a space complementary to $L_{J}^{(2)}\left(H_{2}\right)$. We can choose $h_{2}(y)$ such that only second order terms that are in G_{2} remain. We denote these terms by

$$
F_{2}^{r}(y) \in G_{2} .
$$

Normal Form Theorem: By a sequence of analytic coordinate changes equation $\left({ }^{*}\right)$ can be transformed into equation (**)

$$
\dot{y}=J x+F_{2}^{r}(x)+F_{3}^{r}(x)+\cdots+F_{r-1}^{r}(x)+O\left(|x|^{r}\right)
$$

where $F_{k}^{r}(y) \in G_{k}, 2 \leq k \leq(r-1)$, and G_{k} is a space complementary to $L_{J}^{(k)}\left(H_{k}\right)$. Equation $\left({ }^{* *}\right)$ is said to be in normal form through order $(r-1)$.

Remarks:

1. The terms $F_{k}^{r}(y), 2 \leq k \leq(r-1)$ are referred to as resonance terms.
2. The structure of the nonlinear terms in $\left({ }^{* *}\right)$ is determined entirely by the linear part (i.e., $J)$.
3. Notice that in simplifying the terms of order k, any lower order terms do not get modified. However, terms of order higher than k are modified.

Example 13.4: Find the normal form of

$$
\begin{aligned}
\dot{x}_{1} & =2 x_{1}+a_{1} x_{1}^{2}+a_{2} x_{1} x_{2}+a_{3} x_{2}^{2}+\ldots \\
\dot{x}_{2} & =x_{2}+b_{1} x_{1}^{2}+b_{2} x_{1} x_{2}+b_{3} x_{2}^{2}+\ldots
\end{aligned}
$$

Example 13.5: Find the normal form of a perturbed harmonic oscillator

$$
\begin{aligned}
& \dot{x}_{1}=x_{2}+\ldots \\
& \dot{x}_{2}=-x_{1}+\ldots
\end{aligned}
$$

Remarks: (1) If J has multiple eigenvalues, the treatment given here carries through. But multiple eigenvalues do produce more resonances. (2) If one of the eigenvalues is zero, we have resonance.

Example 2.1.2. Taken-Bogdanov Normal Form.

Theorem 13.2: Consider equation $\dot{x}=A x+f(x)$. If all the eigenvalues of A are lying either to the right or to the left of the imaginary axis in \mathbb{C}, the equation can be reduced to a polynomial normal form by a formal transformation.

Remark: The conclusion of Theorem 13.2 will still hold if zero is not contained in the convex hull of the collection of eigenvalues.

Normal Form for Hopf Bifurcation.

