Stable and Unstable Invariant Manifolds

CDS140A Lecturer: W.S. Koon

Fall, 2006

1 Introduction

Definition: A manifold is a surface embedded in \mathbb{R}^n which can be locally represented as a graph.

Definition: A set S is *invariant* w.r.t. a nonlinear system if for any $x_0 \in S$ we have $x(t; 0, x_0) \in S$ for all t.

Example: Consider

$$\begin{aligned} \dot{x} &= -x \\ \dot{y} &= -y + x^2 \\ \dot{z} &= z + x^2 \end{aligned}$$

2 Local Stable, Unstable, and Center Manifolds of Fixed Points

Let \bar{x} be an equilibrium (or fixed) point,

• Transform the fixed point to the origin via $y = x - \bar{x}$ and Taylor expand, we obtain

$$\dot{y} = Df(\bar{x})y + R(y)$$

• Block diagonalize $A = Df(\bar{x})$ via $T^{-1}y = (u, v, w)$, we obtain

$$\dot{u} = A_s u + R_s(u, v, w)$$

$$\dot{v} = A_u v + R_u(u, v, w)$$

$$\dot{w} = A_c w + R_c(u, v, w)$$

Theorem 2.1 Suppose the system is $C^r, r \ge 2$.

- Then the fixed point (u, v, w) = 0 possess a C^r s-dimensional local, invariant stable manifold, W^s_{loc}(0), a C^r u-dimensional local, invariant stable manifold, W^u_{loc}(0). and a C^r c-dimensional local, invariant stable manifold, W^c_{loc}(0), all intersecting at (u, v, w) = 0.
- These manifolds are all tangent to the respective invariant subspace of the associated linearized system at the origin, and, hence, are locally represented as graphs.
- In particular, we have

$$\begin{split} W^s_{loc}(0) &= \{(u, v, w) | v = h^s_v(u), w = h^s_w(u); Dh^s_v(0) = 0 = Dh^s_w(0) \} \\ W^u_{loc}(0) &= \{(u, v, w) | u = h^u_u(v), w = h^u_w(v); Dh^u_u(0) = 0 = Dh^u_w(0) \} \\ W^c_{loc}(0) &= \{(u, v, w) | u = h^c_u(w), v = h^c_v(w); Dh^c_u(0) = 0 = Dh^c_v(0) \} \end{split}$$

where the h's are C^r functions.

Moreover, trajectories in W^s_{loc}(0) and W^u_{loc}(0) have the same asymptotic properties as trajectories in E^s and E^u, respectively. Namely, trajectories with initial conditions in W^s_{loc}(0) (resp., W^u_{loc}(0)) approach the origin at an exponential rate asymptotically as t → +∞ (resp., t → -∞).

Remarks:

- If the fixed point is hyperbolic, i.e., $E^c = \emptyset$, trajectories of the nonlinear system locally behave the same as trajectories of the associated linear system.
- In general, the behavior of trajectories in $W_{loc}^c(0)$ cannot be inferred from the behavior of trajectories in E^c . While stable and unstable manifolds are unique, the center manifold is a bit more delicate.
- In numerical calculations of stable and unstable manifolds, it is convenient to start in a neighborhood of the saddle in points of E_s and E_u , which have been obtained from the linear analysis.

3 Computing Invariant Manifolds Using Taylor Expansion

Given the vector field

$$\dot{x} = f(x, y)$$
$$\dot{y} = g(x, y)$$

and a surface in the phase space represented by the graph of a function

y = h(x).

The surface is invariant if the vector field is tangent to the surface, i.e.,

$$g(x, h(x)) = Dh(x)f(x, h(x)).$$

Example: Consider

$$\dot{x} = x$$

$$\dot{y} = -y + x^2.$$

4 Evolution of a Volume Element and Liouville's Theorem

Lemma: Consider $\dot{x} = f(x), x \in \mathbb{R}^n$, and suppose that it generates a flow $\phi_t(\cdot)$. Let D_0 denote a domain in \mathbb{R}^n and let $D_t = \phi_t(D_0)$ denote the evolution of D_0 under the flow. Let V(t) denote the volume of D_t . Then

$$\frac{dV}{dt}|_{t=0} = \int_{D_0} \nabla \cdot f dx$$

where $\nabla \cdot f$ denotes the divergence of a vector field.

Examples: The pendulum equation and the Volterra-Lotka equation.

Liouville's Theorem. The flow generated by a time-independent Hamiltonian system is volume preserving,

Remark: Attraction by an equilibrium solution is impossible as the flow in phase space is volume preserving (Liouville).