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1 Introduction

Linear System. Any linear system has a unique solution x(t) = eAtx0 through each point
x0 ∈ Rn and the solution is defined for all t ∈ R.

Nonlinear Systems. For nonlinear systems

ẋ = f(x)

where f : E → Rn and E is an open subset of Rn, the situation is much more subtle.

• For example, the IVP ẋ =
√
x, x(0) = 0 has 2 different solutions.

• Even f behaves nicely, ẋ = x2, x(0) = 1, the solution become unbounded at some finite time.

We will show that

• under certain conditions of f , the nonlinear system has a unique solution through each point
x0 ∈ E defined on a maximal interval of existence (α, β) ⊂ R;

• while it is generally impossible to solve the nonlinear system, a great deal of qualitative
information about the local behavior of the solution can be determined via its associated
linearized system ẋ = Df(x̄)x where x̄ is an equilibrium solution.
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2 Existence and Uniqueness

Definition: Consider the function f(t, x) with f : Rn+1 → Rn, |t − t0| ≤ a, x ∈ E ⊂ Rn. f(t, x)
satisfies the Lipschitz condition (Lipschitz continuous) w.r.t. x if in [t0 − a, t0 + a]× E we have

||f(t, x1)− f(t, x2)|| ≤ L||x1 − x2||

with x1, x2 ∈ E and L a constant (Lipschitz constant).

Remarks:

• Lipschitz continuous in x implies continuous in x.

• Continuous differentiability implies Lipschitz continuity.

Recall:

• f ∈ C1(E) if (i) f is differentiable for all x0 ∈ E, i.e., there exists a linear transformation
Df(x0) ∈ L(Rn) such that

lim|h|→0
|f(x0 + h)− f(x0)−Df(x0)h|

|h|
= 0

and (ii) Df : E → L(Rn) is continuous.

• f ∈ C1(E) iff ∂fi

∂xj
exist and are continuous on E. Df =

[
∂fi

∂xj

]
.

Theorem 2.1 Consider the IVP

ẋ = f(t, x), x(t0) = x0

with x ∈ E ⊂ Rn, |t− t0| ≤ a;E = {x|||x− x0|| ≤ d}. If

• f(t, x) is continuous in G = [t0 − a, t0 + a]× E and

• f(t, x) is Lipschitz continuous in x,

then the IVP has one and only one solution for |t− t0| ≤ min(a, d/M) with M = supG||f ||.

Theorem 2.2 Let x0 ∈ E ⊂ Rn. If f ∈ C1(E), then there exists b > 0 such that the IVP has a
unique solution x(t) on [−b, b].
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Proof: Based on Picard’s method of successive approximations.

1. Notice that x(t) is a solution of the IVP iff it is a continuous and satisfies the integral equation

x(t) = x0 +
∫ t

0
f(x(s))ds.

2. The successive approximations to the solution are defined by

u0(t) = x0

uk+1(t) = x0 +
∫ t

0
f(uk(s))ds

3. For example, consider ẋ = x, x(0) = 1.

4. To show that uk converge to a solution. Need to recall:

• C([−a, a]) (set of continuous function on [−a.a]) is a complete normed linear space:
every Cauchy sequence converges.

• If f ∈ C1(E), then f is locally Lipschitz on E.

5. The key step is to show that {uk} is a Cauchy sequence of continuous functions.

6. Argument for existence:

7. Argument for uniqueness:
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Remarks: The solution of the IVP will be written as x(t), x(t;x0) or x(t; t0, x0).

• The theorem guarantees the existence of the solution in a neighborhood of t = t0, the size of
which depends on the supnorm M of f(t, x).

• One often can continue the solution outside this neighborhood.

Theorem 2.3 If x ∈ C1(M) with M compact, there the system has solution curves defined for all
t ∈ Rn.

3 Dependence on Initial Conditions

Theorem 3.1 Under the same hypothesis as theorem (2.1), If ||η|| ≤ ε then we have

||x0(t)− xε(t)|| ≤ εeLt on I

where x0(t), xε(t) are the solutions to the IVPs ẋ = f(t, x), x0(0) = a and ẋ = f(t, x), xε(0) = a+ η
on interval I respectively.

Theorem 3.2 (Gronwall) Assume that for t0 ≤ t ≤ t0 + a,

φ(t) ≤ δ1

∫ t

t0

ψ(s)φ(s)ds+ δ3

where φ(t) ≥ 0, ψ(t) ≥ 0, δ1 > 0, δ3 > 0. Then

φ(t) ≤ δ3e
δ1

R t
to
ψ(s)ds.

Theorem 3.3 Under the same hypothesis as above, if

φ(t) ≤ δ2(t− t0) + δ1

∫ t

t0

φ(s)ds+ δ3

then

φ(t) ≤
(
δ2
δ1

+ δ3

)
eδ1(t−t0) − δ2

δ1
.
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