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1 Introduction

Linear System. Any linear system has a unique solution z(t) = e“zxy through each point

zo € R™ and the solution is defined for all ¢ € R.

Nonlinear Systems. For nonlinear systems
i = f(x)
where f: E — R" and E is an open subset of R", the situation is much more subtle.

e For example, the IVP & = \/z,2(0) = 0 has 2 different solutions.

e Even f behaves nicely, © = 22, 2(0) = 1, the solution become unbounded at some finite time.

We will show that

e under certain conditions of f, the nonlinear system has a unique solution through each point
xo € F defined on a maximal interval of existence (o, 3) C R;

e while it is generally impossible to solve the nonlinear system, a great deal of qualitative
information about the local behavior of the solution can be determined via its associated
linearized system & = D f(Z)x where T is an equilibrium solution.



2 Existence and Uniqueness

Definition: Consider the function f(¢,z) with f: R"*! — R" |t —ty| < a,z € E C R™. f(t,x)
satisfies the Lipschitz condition (Lipschitz continuous) w.r.t. z if in [tog — a,tp + a] X E we have

[|f(t, 1) — f(t,22)|| < L||z1 — 22|

with 1,29 € E and L a constant (Lipschitz constant).

Remarks:
e Lipschitz continuous in x implies continuous in x.

e Continuous differentiability implies Lipschitz continuity.

Recall:

° f € CYE) if (i) f is differentiable for all 2y € E, i.e., there exists a linear transformation
Df(xzo) € L(R™) such that

| f(zo + h) — f(z0) — Df(x0)h|

=0
Id

limyp, 0

and (ii) Df : E — L(R™) is continuous.

o fc Cl(E) iff ng; exist and are continuous on E. Df = [g:{ﬂ
Theorem 2.1 Consider the IVP
p=ft2),  alte) =0
with x € E CR", |t —to| < a; E = {z|||x — zo|| < d}. If
o f(t,x) is continuous in G = [to — a,typ + a] X E and
e f(t,z) is Lipschitz continuous in x,
then the IVP has one and only one solution for |t — to| < min(a,d/M) with M = supg||f|].

Theorem 2.2 Let xg € E C R™. If f € CY(E), then there exists b > 0 such that the IVP has a
unique solution x(t) on [—b,b).



Proof: Based on Picard’s method of successive approximations.

1. Notice that z(t) is a solution of the IVP iff it is a continuous and satisfies the integral equation
t
x(t) = xo —|—/ f(z(s))ds.
0

2. The successive approximations to the solution are defined by
uo(t) = xo

t
weia(t) = @0+ /0 F(uk(s))ds

3. For example, consider & = x,z(0) = 1.

4. To show that u converge to a solution. Need to recall:

e (C([—a,a]) (set of continuous function on [—a.a]) is a complete normed linear space:
every Cauchy sequence converges.

o If f € CY(E), then f is locally Lipschitz on E.
5. The key step is to show that {ux} is a Cauchy sequence of continuous functions.

6. Argument for existence:

7. Argument for uniqueness:



Remarks: The solution of the IVP will be written as x(t), z(¢; xo) or x(t; to, zo)-

e The theorem guarantees the existence of the solution in a neighborhood of ¢ = ¢, the size of
which depends on the supnorm M of f(t,z).

e One often can continue the solution outside this neighborhood.

Theorem 2.3 If x € CY(M) with M compact, there the system has solution curves defined for all
teR".

3 Dependence on Initial Conditions
Theorem 3.1 Under the same hypothesis as theorem (2.1), If ||n|| < € then we have
l|zo(t) — z(t)]| < et on T

where xo(t), x(t) are the solutions to the IVPs & = f(t,z),x0(0) = a and & = f(t,x),z(0) =a+n
on interval I respectively.

Theorem 3.2 (Gronwall) Assume that for to <t <ty + a,

o10) < 01 [ bs)(o)ds +
0
where ¢(t) > 0,7(t) > 0,01 > 0,63 > 0. Then
B(t) < dge’t io VD5,
Theorem 3.3 Under the same hypothesis as above, if
o(t) < 6ot —to) + 01 tt o(s)ds + d3
0

then
02

() < (51 + 53) ef1t=to) _
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