Existence-Uniqueness and Dependence on Initial Conditions

CDS140A Lecturer: W.S. Koon

Fall, 2006

1 Introduction

Linear System. Any linear system has a unique solution $x(t)=e^{A t} x_{0}$ through each point $x_{0} \in \mathbb{R}^{n}$ and the solution is defined for all $t \in \mathbb{R}$.

Nonlinear Systems. For nonlinear systems

$$
\dot{x}=f(x)
$$

where $f: E \rightarrow \mathbb{R}^{n}$ and E is an open subset of \mathbb{R}^{n}, the situation is much more subtle.

- For example, the IVP $\dot{x}=\sqrt{x}, x(0)=0$ has 2 different solutions.
- Even f behaves nicely, $\dot{x}=x^{2}, x(0)=1$, the solution become unbounded at some finite time.

We will show that

- under certain conditions of f, the nonlinear system has a unique solution through each point $x_{0} \in E$ defined on a maximal interval of existence $(\alpha, \beta) \subset \mathbb{R}$;
- while it is generally impossible to solve the nonlinear system, a great deal of qualitative information about the local behavior of the solution can be determined via its associated linearized system $\dot{x}=D f(\bar{x}) x$ where \bar{x} is an equilibrium solution.

2 Existence and Uniqueness

Definition: Consider the function $f(t, x)$ with $f: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n},\left|t-t_{0}\right| \leq a, x \in E \subset \mathbb{R}^{n} . f(t, x)$ satisfies the Lipschitz condition (Lipschitz continuous) w.r.t. x if in $\left[t_{0}-a, t_{0}+a\right] \times E$ we have

$$
\left\|f\left(t, x_{1}\right)-f\left(t, x_{2}\right)\right\| \leq L\left\|x_{1}-x_{2}\right\|
$$

with $x_{1}, x_{2} \in E$ and L a constant (Lipschitz constant).

Remarks:

- Lipschitz continuous in x implies continuous in x.
- Continuous differentiability implies Lipschitz continuity.

Recall:

- $f \in C^{1}(E)$ if (i) f is differentiable for all $x_{0} \in E$, i.e., there exists a linear transformation $D f\left(x_{0}\right) \in L\left(\mathbb{R}^{n}\right)$ such that

$$
\lim _{|h| \rightarrow 0} \frac{\left|f\left(x_{0}+h\right)-f\left(x_{0}\right)-D f\left(x_{0}\right) h\right|}{|h|}=0
$$

and (ii) $D f: E \rightarrow L\left(\mathbb{R}^{n}\right)$ is continuous.

- $\mathbf{f} \in C^{1}(E)$ iff $\frac{\partial f_{i}}{\partial x_{j}}$ exist and are continuous on $E . D f=\left[\frac{\partial f_{i}}{\partial x_{j}}\right]$.

Theorem 2.1 Consider the IVP

$$
\dot{x}=f(t, x), \quad x\left(t_{0}\right)=x_{0}
$$

with $x \in E \subset \mathbb{R}^{n},\left|t-t_{0}\right| \leq a ; E=\left\{x| |\left|x-x_{0}\right| \mid \leq d\right\}$. If

- $f(t, x)$ is continuous in $G=\left[t_{0}-a, t_{0}+a\right] \times E$ and
- $f(t, x)$ is Lipschitz continuous in x,
then the IVP has one and only one solution for $\left|t-t_{0}\right| \leq \min (a, d / M)$ with $M=\sup _{G}\|f\|$.
Theorem 2.2 Let $x_{0} \in E \subset \mathbb{R}^{n}$. If $f \in C^{1}(E)$, then there exists $b>0$ such that the IVP has a unique solution $x(t)$ on $[-b, b]$.

Proof: Based on Picard's method of successive approximations.

1. Notice that $x(t)$ is a solution of the IVP iff it is a continuous and satisfies the integral equation

$$
x(t)=x_{0}+\int_{0}^{t} f(x(s)) d s .
$$

2. The successive approximations to the solution are defined by

$$
\begin{aligned}
u_{0}(t) & =x_{0} \\
u_{k+1}(t) & =x_{0}+\int_{0}^{t} f\left(u_{k}(s)\right) d s
\end{aligned}
$$

3. For example, consider $\dot{x}=x, x(0)=1$.
4. To show that u_{k} converge to a solution. Need to recall:

- $C([-a, a])$ (set of continuous function on $[-a . a]$) is a complete normed linear space: every Cauchy sequence converges.
- If $f \in C^{1}(E)$, then f is locally Lipschitz on E.

5. The key step is to show that $\left\{u_{k}\right\}$ is a Cauchy sequence of continuous functions.
6. Argument for existence:
7. Argument for uniqueness:

Remarks: The solution of the IVP will be written as $x(t), x\left(t ; x_{0}\right)$ or $x\left(t ; t_{0}, x_{0}\right)$.

- The theorem guarantees the existence of the solution in a neighborhood of $t=t_{0}$, the size of which depends on the supnorm M of $f(t, x)$.
- One often can continue the solution outside this neighborhood.

Theorem 2.3 If $x \in C^{1}(M)$ with M compact, there the system has solution curves defined for all $t \in \mathbb{R}^{n}$.

3 Dependence on Initial Conditions

Theorem 3.1 Under the same hypothesis as theorem (2.1), If $\|\eta\| \leq \epsilon$ then we have

$$
\left\|x_{0}(t)-x_{\epsilon}(t)\right\| \leq \epsilon e^{L t} \quad \text { on } I
$$

where $x_{0}(t), x_{\epsilon}(t)$ are the solutions to the IVPs $\dot{x}=f(t, x), x_{0}(0)=a$ and $\dot{x}=f(t, x), x_{\epsilon}(0)=a+\eta$ on interval I respectively.

Theorem 3.2 (Gronwall) Assume that for $t_{0} \leq t \leq t_{0}+a$,

$$
\phi(t) \leq \delta_{1} \int_{t_{0}}^{t} \psi(s) \phi(s) d s+\delta_{3}
$$

where $\phi(t) \geq 0, \psi(t) \geq 0, \delta_{1}>0, \delta_{3}>0$. Then

$$
\phi(t) \leq \delta_{3} e^{\delta_{1} \int_{t_{o}}^{t} \psi(s) d s}
$$

Theorem 3.3 Under the same hypothesis as above, if

$$
\phi(t) \leq \delta_{2}\left(t-t_{0}\right)+\delta_{1} \int_{t_{0}}^{t} \phi(s) d s+\delta_{3}
$$

then

$$
\phi(t) \leq\left(\frac{\delta_{2}}{\delta_{1}}+\delta_{3}\right) e^{\delta_{1}\left(t-t_{0}\right)}-\frac{\delta_{2}}{\delta_{1}}
$$

