Existence-Uniqueness and Dependence on Initial Conditions

CDS140A Lecturer: W.S. Koon

Fall, 2006

1 Introduction

Linear System. Any linear system has a unique solution $x(t) = e^{At}x_0$ through each point $x_0 \in \mathbb{R}^n$ and the solution is defined for all $t \in \mathbb{R}$.

Nonlinear Systems. For nonlinear systems

 $\dot{x} = f(x)$

where $f: E \to \mathbb{R}^n$ and E is an open subset of \mathbb{R}^n , the situation is much more subtle.

• For example, the IVP $\dot{x} = \sqrt{x}, x(0) = 0$ has 2 different solutions.

• Even f behaves nicely, $\dot{x} = x^2, x(0) = 1$, the solution become unbounded at some finite time.

We will show that

- under certain conditions of f, the nonlinear system has a unique solution through each point $x_0 \in E$ defined on a maximal interval of existence $(\alpha, \beta) \subset \mathbb{R}$;
- while it is generally impossible to solve the nonlinear system, a great deal of qualitative information about the local behavior of the solution can be determined via its associated linearized system $\dot{x} = Df(\bar{x})x$ where \bar{x} is an equilibrium solution.

2 Existence and Uniqueness

Definition: Consider the function f(t, x) with $f : \mathbb{R}^{n+1} \to \mathbb{R}^n$, $|t - t_0| \le a, x \in E \subset \mathbb{R}^n$. f(t, x) satisfies the Lipschitz condition (*Lipschitz continuous*) w.r.t. x if in $[t_0 - a, t_0 + a] \times E$ we have

$$||f(t, x_1) - f(t, x_2)|| \le L||x_1 - x_2||$$

with $x_1, x_2 \in E$ and L a constant (Lipschitz constant).

Remarks:

- Lipschitz continuous in x implies continuous in x.
- Continuous differentiability implies Lipschitz continuity.

Recall:

• $f \in C^1(E)$ if (i) f is differentiable for all $x_0 \in E$, i.e., there exists a linear transformation $Df(x_0) \in L(\mathbb{R}^n)$ such that

$$\lim_{|h| \to 0} \frac{|f(x_0 + h) - f(x_0) - Df(x_0)h|}{|h|} = 0$$

and (ii) $Df: E \to L(\mathbb{R}^n)$ is continuous.

• $\mathbf{f} \in C^1(E)$ iff $\frac{\partial f_i}{\partial x_j}$ exist and are continuous on E. $Df = \left[\frac{\partial f_i}{\partial x_j}\right]$.

Theorem 2.1 Consider the IVP

$$\dot{x} = f(t, x), \qquad x(t_0) = x_0$$

with $x \in E \subset \mathbb{R}^n, |t - t_0| \le a; E = \{x || |x - x_0|| \le d\}$. If

- f(t,x) is continuous in $G = [t_0 a, t_0 + a] \times E$ and
- f(t, x) is Lipschitz continuous in x,

then the IVP has one and only one solution for $|t - t_0| \leq \min(a, d/M)$ with $M = \sup_G ||f||$.

Theorem 2.2 Let $x_0 \in E \subset \mathbb{R}^n$. If $f \in C^1(E)$, then there exists b > 0 such that the IVP has a unique solution x(t) on [-b, b].

Proof: Based on Picard's method of successive approximations.

1. Notice that x(t) is a solution of the IVP iff it is a continuous and satisfies the integral equation

$$x(t) = x_0 + \int_0^t f(x(s))ds.$$

2. The successive approximations to the solution are defined by

$$u_0(t) = x_0$$

 $u_{k+1}(t) = x_0 + \int_0^t f(u_k(s))ds$

3. For example, consider $\dot{x} = x, x(0) = 1$.

4. To show that u_k converge to a solution. Need to recall:

- C([-a, a]) (set of continuous function on [-a.a]) is a complete normed linear space: every Cauchy sequence converges.
- If $f \in C^1(E)$, then f is locally Lipschitz on E.
- 5. The key step is to show that $\{u_k\}$ is a Cauchy sequence of continuous functions.
- 6. Argument for existence:

7. Argument for uniqueness:

Remarks: The solution of the IVP will be written as x(t), $x(t; x_0)$ or $x(t; t_0, x_0)$.

- The theorem guarantees the existence of the solution in a neighborhood of $t = t_0$, the size of which depends on the supnorm M of f(t, x).
- One often can continue the solution outside this neighborhood.

Theorem 2.3 If $x \in C^1(M)$ with M compact, there the system has solution curves defined for all $t \in \mathbb{R}^n$.

3 Dependence on Initial Conditions

Theorem 3.1 Under the same hypothesis as theorem (2.1), If $||\eta|| \leq \epsilon$ then we have

$$||x_0(t) - x_{\epsilon}(t)|| \le \epsilon e^{Lt}$$
 on I

where $x_0(t), x_{\epsilon}(t)$ are the solutions to the IVPs $\dot{x} = f(t, x), x_0(0) = a$ and $\dot{x} = f(t, x), x_{\epsilon}(0) = a + \eta$ on interval I respectively.

Theorem 3.2 (Gronwall) Assume that for $t_0 \le t \le t_0 + a$,

$$\phi(t) \le \delta_1 \int_{t_0}^t \psi(s)\phi(s)ds + \delta_3$$

where $\phi(t) \geq 0, \psi(t) \geq 0, \delta_1 > 0, \delta_3 > 0$. Then

$$\phi(t) \le \delta_3 e^{\delta_1 \int_{t_o}^t \psi(s) ds}.$$

Theorem 3.3 Under the same hypothesis as above, if

$$\phi(t) \le \delta_2(t - t_0) + \delta_1 \int_{t_0}^t \phi(s) ds + \delta_3$$

then

$$\phi(t) \le \left(\frac{\delta_2}{\delta_1} + \delta_3\right) e^{\delta_1(t-t_0)} - \frac{\delta_2}{\delta_1}.$$