CDS270: Optimization, Game and Layering in Communication Networks
(Overview)

Lijun Chen

09/27/2006
Basic information

- 6 units (2-0-4)
- No homework or exam, but some suggested reading
 - about 15 journal/conference papers
- Pass/fail; if prefer letter grade, may submit a write-up of no shorter than 6 pages
 - A project report
 - A survey on a particular topic
 - A detailed review of a particular reference
Prerequisites

- Basic convex optimization theory
 - Lagrange Duality and KKT optimality condition
 - Gradient, and primal-dual algorithms
 - Dr. Fazel will give a guest lecture...

- Basic knowledge in communication networks
 - Layered architecture and the main functionality of each layer
 - Will give necessary review, when come to specific topics
What this course is about

- Network equilibrium: stable operating point
- Dynamics: distributed convergent algorithms to the equilibria
- Network design and control: design a system in which individual agents interact in a way that achieves an equilibrium with some desired system-wide properties
 - e.g., in routing we would like to find a path for each S-D pair such that the aggregate delay is minimum
- Need a modeling framework that involves seeking an equilibrium
Optimization framework

- Associate an objective function to each agent
 - User utility function or link cost function
- Optimizes some global objective function
 - Aggregate user utility
 - Aggregate cost
- Permeates all engineering disciplines
- Its prevalence is due to two reasons
 - Many performance metrics are ‘natural’ objectives to be optimized
 - e.g., to minimize aggregate delay in routing
 - e.g., maximum flow problem
Many network equilibrium models can be reverse-engineered as optimality conditions for some appropriately defined optimization problems

- e.g., network equilibrium for congestion control as KKT optimality condition for NUM problem

The underlying mathematical structure is convexity and strong duality

These iterative (e.g. gradient-based) algorithms applied to the primal or/and the dual are implementable in the networks, which describe or specify the network dynamics achieving the equilibrium
Optimization framework has its limitations

- May be difficult nonlinear, nonconvex optimization with integer constraints
- Informational constraint may prevent the system from achieving a global optimal
 - e.g., extensive message passing might be impractical in wireless network
- Some design problems intrinsically do not fit in an optimization paradigm, because of the information structure or incentive issue
 - e.g., network equilibrium involving several classes of users with different cost/price functions
 - e.g., the stable path problem in interdomain routing
Game theoretic framework

- Game theoretic models are inherently distributed, as agents are independent decision makers
 - directly model/specify the behaviors of individual agents
 - System-wide properties are ‘emergent’ behaviors
- Provides a series of equilibrium solutions that differ in assumptions about agent rationality and information, and thus are suitable for different situations
 - e.g., interdomain routing can be seen as seeking a dominant strategy equilibrium
- Provides a basis for designing systems to achieve given desired goals (mechanism design)
 - e.g., to maximize aggregate utility
The objective of this course

- To introduce those analytical tools in optimization and game theory for analyzing current network systems/protocols and designing new ones
 - The underlying mathematical structures (e.g., the properties of objective functions, the information structure involved) that guarantee the existence and distributed convergence of the desired equilibria.
 - Open issues.
- By going through different network systems and design problems, to help you
 - Get a rough idea of the state of the art
 - Master the analytical tools without having to read existing, extensive references
 - Model the problems of your own
Draft course outline

- Week 2: Network equilibria and convergent algorithms
- Week 3: Lagrange duality and optimality conditions (guest lecture by Dr. Fazel)
- Week 4: Network architecture / Duality model of TCP congestion control
- Week 5: Layering as optimization decomposition
- Week 6: Potential game, selfish routing and the price of anarchy
- Week 7: Inerdomain routing and path algebra
- Week 8: Random access game and contention control
- Week 9: S-modular game and power control
- Week 10-11: Distributed mechanism design
Questions?