Lecture 5: Potential Games and the Inefficiency of Equilibria

Lijun Chen

11/09/2006
Outline

- Potential games
 - Review on strategic games
 - Potential games (atomic and nonatomic)

- Inefficiency of equilibria
 - The price of anarchy and selfish routing
 - Resource allocation
 - Network design games and the price of stability
Strategic game

- **Def:** A game in strategic form is a triple

\[G = \{ N, S_{i \in N}, u_{i \in N} \} \]

- \(N \) is the set of players (agents)
- \(S_i \) is the player \(i \) strategy space
- \(u_i : S \rightarrow R \) is the player \(i \) payoff function

- **Notations**
 - \(S = S_1 \times S_2 \times \cdots \times S_N \): the set of all profiles of player strategies
 - \(s = (s_1, s_2, \ldots, s_N) \): profile of strategies
 - \(s_{-i} = (s_1, s_2, \ldots, s_{i-1}, \ldots, s_{i+1}, \ldots, s_N) \): the profile of strategies other than player \(i \)
Implicitly assume that players have preferences over different outcomes, which can be captured by assigning payoffs to the outcomes.

The basic model of rationality is that of a payoff maximizer (or cost minimizer).
Example: finite game

<table>
<thead>
<tr>
<th>row</th>
<th>column</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L</td>
</tr>
<tr>
<td>U</td>
<td>4,3</td>
</tr>
<tr>
<td>M</td>
<td>2,1</td>
</tr>
<tr>
<td>D</td>
<td>3,0</td>
</tr>
</tbody>
</table>
Example: Continuous strategy game

- **Cournot competition**
 - Two players: firm 1 and firm 2
 - Strategy $s_i \in [0, \infty]$: the amount of widget that firm i produces
 - The payoff for each firm is the net revenue
 \[
 u_i(s_1, s_2) = s_i p(s_1 + s_2) - c_i s_i
 \]
 where p is the price, c_i is the unit cost for firm i
Nash equilibrium

- Def: A strategy profile \(s^* \) is a Nash equilibrium, if for all \(i \),
 \[
 u_i(s^*_i, s^*_{-i}) \geq u_i(s_i, s^*_{-i}) \quad \text{for all } s_i \in S_i
 \]

- For any \(s_{-i} \in S_{-i} \), define best response function
 \[
 B_i(s_{-i}) = \{ s_i \in S_i \mid u_i(s_i, s_{-i}) \geq u_i(s_i', s_{-i}) \quad \forall s_i' \in S_i \}.
 \]

Then a strategy profile \(s^* \) is a Nash equilibrium
iff \(s^*_i \in B_i(s^*_{-i}) \).
Examples

- **Battle of the Sexes**

<table>
<thead>
<tr>
<th></th>
<th>Ballet</th>
<th>Soccer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ballet</td>
<td>2,1</td>
<td>0,0</td>
</tr>
<tr>
<td>Soccer</td>
<td>0,0</td>
<td>1,2</td>
</tr>
</tbody>
</table>

Two Nash equilibria (Ballet, Ballet) and (Soccer, Soccer)
Cournot Competition

- Suppose a price function \(p(s_1 + s_2) = \max\{0, 1 - (s_1 + s_2)\} \)
- Suppose cost \(0 \leq c_1 = c_2 = c \leq 1 \)
- Then, the best response function

\[
B_1(s_2) = \frac{(1 - s_2 - c)}{2}, \quad B_2(s_1) = \frac{(1 - s_1 - c)}{2}
\]

- Nash equilibrium satisfies \(s_1 = B_1(s_2), s_2 = B_2(s_1) \), i.e.,
 \[
 s_1 = \frac{(1 - c)}{3}, \quad s_2 = \frac{(1 - c)}{3}
 \]
Potential games (atomic)

- **Def:** A function $\Phi : S \rightarrow R$ is a potential function for game G if for $\forall i, \forall s_{-i} \in S_{-i}, \forall s_i, \overline{s_i} \in S_i$,

$$u_i(s_i, s_{-i}) - u_i(\overline{s_i}, s_{-i}) = \Phi(s_i, s_{-i}) - \Phi(\overline{s_i}, s_{-i}).$$

When Φ exists, the game is called a potential game.

- **Def:** A function $\Phi : S \rightarrow R$ is an ordinal potential function for game G if for $\forall i, \forall s_{-i} \in S_{-i}, \forall s_i, \overline{s_i} \in S_i$,

$$u_i(s_i, s_{-i}) - u_i(\overline{s_i}, s_{-i}) > 0 \iff \Phi(s_i, s_{-i}) - \Phi(\overline{s_i}, s_{-i}) > 0.$$

When Φ exists, the game is called an ordinal potential game.
Example

<table>
<thead>
<tr>
<th>Game</th>
<th>Potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1</td>
<td>2</td>
</tr>
<tr>
<td>3,0</td>
<td>1</td>
</tr>
<tr>
<td>0,3</td>
<td>1</td>
</tr>
<tr>
<td>2,2</td>
<td>0</td>
</tr>
</tbody>
</table>
Equilibrium

- s^* is a pure strategy Nash equilibrium for ordinal potential game G, iff

\[\Phi(s^*_i, s^*_i) \geq \Phi(s^*_i, s^*_{-i}), \forall i, \forall s_i \in S_i. \]

- **Proof:** If Φ is a potential function

\[u_i(s^*_i, s^*_i) - u_i(s_i, s^*_i) = 0 \iff \Phi(s^*_i, s^*_i) - \Phi(s_i, s^*_i) = 0. \]

s^* is a pure strategy Nash equilibrium, iff

\[u_i(s^*_i, s^*_i) \geq u_i(s_i, s^*_i) \iff \Phi(s^*_i, s^*_i) \geq \Phi(s_i, s^*_i). \]
If Φ has a maximum at s^*, then s^* is a pure strategy Nash equilibrium of the ordinal game.

Every finite ordinal potential game has a pure strategy Nash equilibrium.

Continuous ordinal potential game has a pure strategy Nash equilibrium if the strategy space is compact and potential is continuous.
Congestion games

- **Def**: A congestion model $\{N, M, S_{i\in N}, c_{j\in M}\}$ is defined as follows
 - N is the set of players
 - M is the set of facilities or resources
 - S_i is the sets of the resources that player i can use
 - $c_j(k_j)$ is the cost to users who use the resource j when k_j users are using it

- **Def**: A congestion game associated with a congestion model is a game $\{N, S_{i\in N}, c_{i\in N}\}$ with cost $c_i(s) = \sum_{j\in S_i} c_j(k_j)$
Every congestion game is a potential game, with potential

$$\Phi(s) = \sum_{j \in \cup s_i} \sum_{k=1}^{k_j} c_j(k).$$

Congestion games have many applications
- Network design
Potential games (nonatomic)

- Nonatomic game: the user number is infinite
 - N classes of “infinitesimal” players
 - r_i the “mass” of class i players
 - $f(i, s_i)$ the fraction of class i players that choose strategy s_i
 - $u_i(s_i; f)$ the payoff for a player of class i with s_i

- **Def:** f^* is an equilibrium if for all $\forall i, \forall s_i, \bar{s}_i \in S_i$,
 $$f^*(i, s_i) > 0 \Rightarrow u_i(s_i; f^*) \geq u_i(\bar{s}_i; f^*).$$

- **Def:** A nonatomic game is a potential game if there exists potential function $\Phi(f)$ such that
 $$u_i(s_i; f) = \frac{\partial \Phi(f)}{\partial f(i, s_i)}.$$
Example: selfish routing

- Consider a multicommodity flow network \((V, E)\)
 - \(N\) source-destination pairs (commodities)
 - Each commodity \(i\) has a total rate \(r_i\), and can use a set \(P_i\) of paths
 - The aggregate traffic among link \(e\)
 \[f_e = \sum_{i, s_i \in P_i} f(i, s_i) \]
 - \(c_e(f_e)\) link \(e\) cost, a nonnegative, continuous non-decreasing function of traffic \(f_e\)
 - The cost \(c_i(s_i; f) = \sum_{e \in P_i} c_e(f_e)\)
- Wardrop equilibrium: the costs of all the paths actually used are equal, and less than those which would be experienced by a single user on any unused path.
- $\{V, E; r, c\}$ is a potential game with potential
 \[
 \Phi(f) = \sum_e \int_0^{f_e} c_e(x)\,dx.
 \]
Inefficiency of equilibria

- Equilibria of strategic games are typically inefficient
- Example: Prisoner's Dilemma

<table>
<thead>
<tr>
<th></th>
<th>D</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>3,3</td>
<td>0,4</td>
</tr>
<tr>
<td>C</td>
<td>4,0</td>
<td>1,1</td>
</tr>
</tbody>
</table>
Pigou’s example

One commodity with rate 1

- A unique Wardrop equilibrium, with all traffic routed on the lower edge
- A better flow: route half of the traffic on each of the two edges
Quantify the inefficiency

- Price of anarchy: quantify inefficiency with respect to some objective function

\[
\text{price of anarchy} = \frac{\text{obj fn value of the worst equilibrium}}{\text{optimal obj fn value}}
\]

- \(\leq 1 \) for maximization; \(\geq 1 \) for minimization

- Interested in situations in which we can bound the price of anarchy
Selfish Routing

- At Wardrop equilibrium
 \[f(i, s_i)(c_i(s_i; f) - c_i(f)) = 0 \]
 \[c_i(s_i; f) - c_i(f) \geq 0 \]
 \[\sum_{s_i} f(i, s_i) = r_i \]
 \[c_i(f) = \min_{s_i} c_i(s_i, f) \]

- The above is the KKT optimality condition for
 \[
 \min_f \quad \Phi(f) = \sum_e \int_0^{f_e} c_e(x) \, dx \\
 \text{s.t.} \quad \sum_{s_i} f(i, s_i) = r_i \\
 \sum_{i, s_i : e \in s_i} f(i, s_i) = f_e
 \]
A flow f for $\{V, E; r, c\}$ is a Wardrop equilibrium if and only if it is a global minimum of the potential function

$$\Phi(f) = \sum_e \int_0^{f_e} c_e(x) \, dx.$$

Define the objective function, i.e., the cost of flow as

$$C(f) = \sum_{i,s_i} f(i,s_i)c_i(s_i,f) = \sum_e f_e c_e(f_e)$$

Def: An optimal flow f^* for $\{V, E; r, c\}$ is the flow that minimizes $C(f)$.

The price of anarchy

- The price of anarchy is
 \[\rho = \frac{C(f)}{C(f^*)}. \]

- Pigou’s example \(\rho = 4/3 \)

- Suppose that \(x \cdot c_e(x) \leq \gamma \cdot \int_0^x c_e(y)\,dy \), then \(\rho \leq \gamma \).

- Pigou’s example with degree-d polynomial cost
 - \(x \cdot c_e(x) \leq (d+1) \cdot \int_0^x c_e(y)\,dy \)
 - \(\rho \leq d + 1 \)

- Tight bounds are 4/3 and \(d / \ln d \) respectively.
Consider a simple network: the sources (users) share a link and the network (link) manager wants to allocate link rate such that

\[
\text{System:} \quad \max_x \sum_s U_s(x_s) \\
\text{s.t.} \quad \sum_s x_s \leq c
\]

Utility functions are not known to the link manager.
Market-clearing mechanism

- Each user s submits a bid (or willingness to pay) w_s.
- The manager seeks to allocate the entire link capacity, and sets a price p such that

$$\sum_s \frac{w_s}{p} = c$$

- As if the user has a demand function

$$D(p, w_s) = \frac{w_s}{p}$$

- The link manager chooses a price to clear the market

$$\sum_s D(p, w_s) = c$$
Price taking users and competitive equilibrium

- The user is a price taker: does not anticipate the effect of his payment on the price
- It is rational for the user to maximize the following payoff (Kelly '98)

\[u_s(p, w_s) = U_s\left(\frac{w_s}{p}\right) - w_s \]

- A pair \((p, w)\) is a competitive equilibrium if

\[u_s(p, w_s) \geq u_s(p, \bar{w}_s) \text{ for any } \bar{w}_s \geq 0 \]

\[p = \left(\sum_s w_s\right) / c \]
Theorem (Kelly ’98): there exist a unique competitive equilibrium \((p, w)\) such that \(x = w/p\) solves the problem \(\text{System}\).

Proof: consider the Lagrangian
\[
D(p, x) = \sum_s U(x_s) - p(\sum_s x_s - c)
\]

At primal-dual optimal
\[
U'_s(x_s) = p, \text{ if } x_s > 0 \\
U'_s(x_s) \leq p, \text{ if } x_s = 0 \\
p \geq 0 \\
p(\sum_s x_s - c) = 0
\]
Since $c > 0$, at least one x_s is positive. So, $p > 0$.

Thus, $\sum_{s} x_s = c$.

Let $w = px$, then (p, w) is a competitive equilibrium and $x = w/p$ solves the problem $System$.

In this case, the uniqueness of x follows from the uniqueness of p.
Price anticipating users and Nash equilibrium

- Price anticipating users realizes that the price is set according to \(p = (\sum s w_s) / c \), and will adjust their bids accordingly.

- This makes the model a game, where user payoff is (Johari ’04)

\[
 u_s(w_s, w_{-w}) = \begin{cases}
 U_s\left(\frac{w_s}{\sum_s w_s} c\right) - w_s, & \text{if } w_s > 0 \\
 U_s(0), & \text{if } w_s = 0
 \end{cases}
\]

- Consider Nash equilibrium \(w \) such that

\[
 u_s(w_s, w_{-s}) \geq u_s(w_{\bar{s}}, w_{-s}), \text{ for all } \bar{w} \geq 0, \text{ for all } s
\]
Theorem (Hajek, et al): there exists a unique Nash equilibrium \(w \geq 0 \). Moreover, the rates are unique solution of the following problem

\[
\text{Game: } \max_x \sum_s \hat{U}_s(x_s) \\
\text{s.t. } \sum_s x_s \leq c
\]

where

\[
\hat{U}_s(x_s) = (1 - \frac{x_s}{c})U_s(x_s) + \frac{x_s}{c} \left(\frac{1}{x_s} \int_0^{x_s} U_s(z) \, dz \right).
\]
Proof:

- If w is a Nash equilibrium, at least two players have nonzero bids.
- Then $u_s(w_s, w_{-w})$ is strictly concave and continuously differentiable in w_s.
- Then, at equilibrium

$$U'_s \left(\frac{w_s}{\sum_t w_t} c \right) \left(1 - \frac{w_s}{\sum_t w_t} \right) = \frac{\sum_t w_t}{c}, \text{ if } w_s > 0$$

$$U'_s(0) \leq \frac{\sum_t w_t}{c}, \text{ if } w_s = 0$$

- The above condition is also sufficient.
The problem \textit{Game} has a unique optimal x. Moreover, there exist a p such that

\[U'_s(x_s)(1 - \frac{x_s}{c}) = p, \text{ if } x_s > 0 \]

\[U'_s(x_s) \leq p, \text{ if } x_s = 0 \]

$p \geq 0$

$p\left(\sum_s x_s - c\right) = 0$

Let $x = \frac{w}{p}$ and $p = \sum_t \frac{w_t}{c}$. Then (x, p) satisfies the above optimality condition.
The price of anarchy

- Assume $U_s(0) \geq 0$, we have
 $$\frac{1}{x_s} \int_0^{x_s} U_s(z)dz \leq U_s(x_s)$$

- Then $\hat{U}_s(x_s) \leq U_s(x_s)$

- Since $U_s(z) \geq \frac{z}{x_s} U_s(x_s) + (1 - \frac{z}{x_s})U_s(0)$, $0 \leq z \leq x_s$, we have
 $$\int_0^{x_s} U_s(z)dz \geq \frac{x_s}{2} U_s(x_s)$$

- Then, $\hat{U}_s(x_s) \geq \frac{1}{2} U_s(x_s)$
Let \(x^* \) and \(x \) are the optima of problems \textit{System} and \textit{Game}, we have

\[
\frac{1}{2} \sum_s U_s(x^*_s) \leq \sum_s \hat{U}_s(x^*_s) \leq \sum_s \hat{U}_s(x_s) \leq \sum_s U_s(x_s)
\]

- The price of anarchy \(\rho \geq 1/2 \)
Tight bound

- Define the JT bound β by
 \[
 \beta = \inf_{U} \inf_{c} \inf_{0 \leq x, x^* \leq c} \frac{U(x) + \hat{U}'(x)(x^* - x)}{U(x^*)}
 \]

- For any $\varepsilon > 0$, there is a resource allocation game with the price of anarchy at most $\beta + \varepsilon$.
 - Proof: first note that we can assume $x < x^*$ & $c = x^*$.
 - Define a game with $U_1(x_1) = U(x_1)$
 \[
 U_s(x_s) = \hat{U}'(x) \cdot x_s, \ s \geq 2
 \]
 - At optimal, the efficiency is $U_1(c) = U(x^*)$
 - At equilibrium $\hat{U}'(x_1) = \hat{U}'(x) = \hat{U}'(x) = \hat{U}'(x)(1 - x_s / C)$
Then, $x_1 \to x$ as the player number goes to infinity.

Thus, the efficiency at equilibrium approaching

$$\hat{U}_1(x) + \hat{U}'(x)(C - x) = \hat{U}(x) + \hat{U}'(x)(x^* - x).$$

In every resource allocation game, the price of anarchy is at least β.

Proof: let x^* and x are the optimal and equilibrium

$$\sum_s U_s(x^*_s) \leq \sum_s \frac{i}{\beta} (U_s(x_s) + \hat{U}_s'(x_s)(x^*_s - x_s)) \leq \frac{1}{\beta} \sum_s U_s(x_s)$$
The bound $\beta = 3/4$.

Proof: setting $U(x) = x$ & $x = 1/2$ & $c = x^* = 1$ shows the bound is at most $3/4$.

Assume $x < x^* = c$, we have

$$U(x) + \hat{U}'(x)(x^* - x) = U(x) + (1 - x / x^*)U'(x)(x^* - x)$$
$$\geq U(x) + (1 - x / x^*)(U(x^*) - U(x))$$
$$= (x / x^*)U(x) + (1 - x / x^*)U(x^*)$$
$$\geq (x / x^*)^2 U(x) + (1 - x / x^*)U(x^*)$$
$$\geq \frac{3}{4} U(x^*).$$
Consider a network (V,E) with a nonnegative cost c_e for each edge $e \in E$.

- N source-destination pairs (players)
- Each player i can choose a path $s_i \in P_i$
- The total cost is $c(s) = \sum_{e \in \bigcup s_i} c_e$

Let n_e denote the number of players whose paths are using edge e. Each of those players pays a share $\pi_e = c_e / n_e$ of the cost.

The cost for each player i is $c_i(s_i; s_{-i}) = \sum_{e \in s_i} c_e / n_e$
\(\{V, E; c\} \) is a potential game with potential function
\[
\Phi(s) = \sum_{e} \sum_{j=1}^{n_e} \frac{c_e}{j}.
\]

Every network design game has at least one Nash equilibrium.
k players and $a > 0$ arbitrarily small

- Two Nash equilibria: all chooses the upper edges, or all choose the lower edge
Price of stability

- **Price of stability**

 \[
 \text{price of stability} = \frac{\text{obj fn value of the best equilibrium}}{\text{optimal obj fn value}}
 \]

- **Since** \(C(s) \leq \Phi(s) \leq (1 + 1/2 + \cdots + 1/k)C(s) \), the **price of stability** is at most \(1 + 1/2 + \cdots + 1/k \).