Linear Equations and Lie Quadratics

Lyle Noakes
School of Mathematics and Statistics
The University of Western Australia
Nedlands, WA 6009, Australia
http://www.maths.uwa.edu.au/~1yle/
https://www.maths.uwa.edu.au/research/mathinf/

April 19, 2006

Abstract

Consider an ordinary differential equation $$
\frac{d x}{d t}=B(t) x(t)
$$ for a curve $x: \mathbb{R} \rightarrow \mathbb{R}^{3}$, where $B(t)$ is a skew-symmetric 3×3 matrix affinely dependent on t.

The theory of Lie quadratics and Riemannian cubics will be briefly reviewed, then applied to reveal some mathematical structure associated with this elementary linear ODE with (slightly) variable coefficients.

