Index Theory

- Provide **global information** about phase portrait.
- Let $\dot{x} = f(x)$ be **vector field**, C **simple closed curve** that doesn’t pass through any **fixed point**, then **index** of C w.r.t. f:
 \[
 I_C = \frac{1}{2\pi} [\phi]_C
 \]
 where $[\phi]_C$ is **net change** in ϕ over one circuit.

- Example (figure 6.8.3): $I_C = +1$.

![Figure 6.8.1](image1) ![Figure 6.8.3](image2)
Index Theory (Examples)

- **Index** of C w.r.t. f:
 \[I_C = \frac{1}{2\pi} [\phi]_C \]
 where $[\phi]_C$ is **net change** in ϕ over one circuit.

- **Example** (figure 6.8.4): $I_C = -1$.

- Consider vector field $\dot{x} = x^2y, \dot{y} = x^2 - y^2, C : x^2 + y^2 = 1$: $I_C = 0$.

![Figure 6.8.4](image1.png)

![Figure 6.8.5](image2.png)
Properties of the Index

- Suppose C continuously **deformed** into C' without passing through fixed point, then $I_C = I_{C'}$.
- If C doesn’t enclose any **fixed points**, then $I_C = 0$.
- If reverse all arrows in vector field ($t \rightarrow -t$), index unchanged.
- Suppose C is a **trajectory**, then $I_C = +1$.

Figure 6.8.6

Figure 6.8.7
Index of a Point

- Suppose \(x^* \) is isolated fixed point, index \(I \) of \(x^* \) is \(I_C \) where \(C \) is any closed curve that encloses \(x^* \) and no other fixed points.
- Stable and unstable node (\(I = +1 \)). Saddle point (\(I = -1 \)).
- **Theorem**: If \(C \) surrounds \(n \) isolated fixed points, then

\[
I_C = I_1 + \ldots + I_n.
\]
- **Theorem**: Any closed orbit in phase plane must enclose fixed points whose *indices* sum to +1.

![Diagram](image-url)
Consequences of Theorem 6.8.2

- Theorem 6.8.2: Any closed orbit in phase plane must enclose fixed points whose *indices* sum to +1.
- At least one *fixed point* inside any closed orbit in phase plane.
- If only one fixed point inside, it cannot be *saddle point*.
- Rule out *closed trajectories* (for Rabbit vs Sheep).

![Figure 6.8.9]
Pendulum Equation

If no damping and external driving, motion of pendulum

\[\frac{d^2 \theta}{dt^2} + \frac{g}{L} \sin \theta = 0. \]

With \(\tau = \omega t \) (dimensionless time) where \(\omega = \sqrt{g/L} \) (frequency),

\[\dot{\theta} = \nu, \quad \dot{\nu} = -\sin \theta. \]

where \(\nu \) is (dimensionless) angular velocity.

\[\frac{d^2 \theta}{dt^2} \]

\[g \]

\[L \]

\[\theta \]

\[m \]

\[\text{Figure 6.7.1} \]
Nonlinear Centers and Saddle Points

- Fixed points: \((k\pi, 0)\).
- **Nonlinear center** at \((0, 0)\). **Reversible** \((\tau \rightarrow -\tau, \nu \rightarrow -\nu)\).
- **Nonlinear center** at \((0, 0)\). **Conservative** \((E = \frac{1}{2}\nu^2 - \cos \theta)\).
- **Saddle** at \((\pi, 0)\). \(\lambda = \pm 1\) with \(v = (1, \pm 1)\).

![Figure 6.7.3](image-url)
Adding Linear Damping

Equation becomes

\[\ddot{\theta} + b\dot{\theta} + \sin \theta = 0. \]

Centers become stable spirals. Saddles remain saddles.

Change in energy along a trajectory

\[\frac{dE}{d\tau} = \dot{\theta}(\ddot{\theta} + \sin \theta) = -b\dot{\theta}^2 \leq 0. \]

Whirl clockwise. Settle into small oscillation. Come to rest.