Manifolds, Mappings, Vector Fields

Jerrold E. Marsden

Control and Dynamical Systems, Caltech http://www.cds.caltech.edu/ marsden/

Some History

\square Carl Friedrich Gauss

- Born: 30 April 1777 in Brunswick (Germany)
- Died: 23 Feb 1855 in Göttingen (Germany)
- PhD, 1799, University of Helmstedt, advisor was Pfaff. Dissertation was on the fundamental theorem of algebra.
- 1801, predicted position of asteroid Ceres; used averaging methods; famous as an astronomer; 1807, director of the Göttingen observatory
- 1801-1830, Continued to work on algebra, and increasingly in geometry of surfaces, motivated by non-Euclidean geometry.
- 1818, Fame as a geologist; used geometry to do a geodesic survey.
- 1831, work on potential theory (Gauss' theorem), terrestrial magnetism, etc.
- 1845 to 1851, worked in finance and got rich.

Some History

Some History

\square Carl Gustav Jacob Jacobi

- Born: 10 Dec 1804 in Potsdam
- Died: 18 Feb 1851 in Berlin
- 1821, entered the University of Berlin
- 1825, PhD Disquisitiones Analyticae de Fractionibus Simplicibus
- 1825-26 Humboldt-Universität, Berlin
- 1826-1844 University of Königsberg
- 1827, Fundamental work on elliptic functions
- 1844-1851 University of Berlin
- Lectures on analytical mechanics (Berlin, 1847-1848); gave a detailed and critical discussion of Lagrange's mechanics.

Some History

Some History

\square Georg Friedrich Bernhard Riemann

- Born: 17 Sept 1826 in Breselenz (Germany)
- Died: 20 July 1866 in Selasca, Italy
- PhD, 1851, Göttingen, advisor was Gauss; thesis in complex analysis on Riemann surfaces
- 1854, Habilitation lecture: Über die Hypothesen welche der Geometrie zu Grunde liegen (On the hypotheses that lie at the foundations of geometry), laid the foundations of manifold theory and Riemannian geometry
- 1857, Professor at Göttingen
- 1859, Reported on the Riemann hypothesis as part of his induction into the Berlin academy
- 1866, Died at the age of 40 in Italy,

Some History

Some History

\square Felix Klein

- Born: 25 April 1849 in Dsseldorf, Germany
- Died: 22 June 1925 in Göttingen, Germany
- 1871; University of Christiania (the city which became Kristiania, then Oslo in 1925)
- PhD, 1868, University of Bonn under Plücker, on applications of geometry to mechanics.
- 1872, professor at Erlangen, in Bavaria; laid foundations of geometry and how it connected to group theory (Erlangen Programm); collaborations with Lie.
- 1880 to 1886, chair of geometry at Leipzig
- 1886, moved to Göttingen to join Hilbert's group
- 1890-1900+, More on mathematical physics, mechanics; corresponded with Poincaré

Some History

Some History

\square Marius Sophus Lie

- Born: 17 Dec 1842 in Nordfjordeide, Norway
- Died: 18 Feb 1899 in Kristiania (now Oslo), Norway
- 1871; University of Christiania (the city which became Kristiania, then Oslo in 1925)
- PhD, 1872, University of Christiania On a class of geometric transformations
- 1886-1898 University of Leipzig (got the chair of Klein); where he wrote his famous 3 volume work Theorie der Transformationsgruppen
- 1894, Kummer was his student at Leipzig
- 1898-1899, Returned to the University of Christiania; dies shortly after his return.

Some History

Some History

\square Henri Poincaré

- Born: 29 April 1854 in Nancy, Lorraine, France
- Died: 17 July 1912 in Paris, France
- 1879, Ph.D. University of Paris, Advisor: Charles Hermite
- 1879, University of Caen
- 1881, Faculty of Science in Paris in 1881
- 1886, Sorbonne and École Polytechnique until his death at age 58
- 1887, elected to the Acadmie des Sciences; 1906, President.
- 1895, Analysis situs (algebraic topology)
- 1892-1899, Les Méthodes nouvelles de la méchanique céleste (3 volumes) and, in 1905, Leçons de mecanique céleste
- His cousin, Raymond Poincaré, was President of France during World War I.

Manifolds

Manifolds

\square Manifolds are sets M that locally "look like" linear spaces - such as \mathbb{R}^{n}.

Manifolds

\square Manifolds are sets M that locally "look like" linear spaces-such as \mathbb{R}^{n}.
\square A chart on M is a subset U of M together with a bijective map $\varphi: U \rightarrow \varphi(U) \subset \mathbb{R}^{n}$.

Manifolds

\square Manifolds are sets M that locally "look like" linear spaces-such as \mathbb{R}^{n}.
\square A chart on M is a subset U of M together with a bijective map $\varphi: U \rightarrow \varphi(U) \subset \mathbb{R}^{n}$.
\square Usually, we denote $\varphi(m)$ by $\left(x^{1}, \ldots, x^{n}\right)$ and call the x^{i} the coordinates of the point $m \in U \subset M$.

Manifolds

\square Manifolds are sets M that locally "look like" linear spaces-such as \mathbb{R}^{n}.
\square A chart on M is a subset U of M together with a bijective map $\varphi: U \rightarrow \varphi(U) \subset \mathbb{R}^{n}$.
\square Usually, we denote $\varphi(m)$ by $\left(x^{1}, \ldots, x^{n}\right)$ and call the x^{i} the coordinates of the point $m \in U \subset M$.
\square Two charts (U, φ) and $\left(U^{\prime}, \varphi^{\prime}\right)$ such that $U \cap U^{\prime} \neq \varnothing$ are called compatible if $\varphi\left(U \cap U^{\prime}\right)$ and $\varphi^{\prime}\left(U^{\prime} \cap U\right)$ are open subsets of \mathbb{R}^{n} and the maps

$$
\varphi^{\prime} \circ \varphi^{-1} \mid \varphi\left(U \cap U^{\prime}\right): \varphi\left(U \cap U^{\prime}\right) \longrightarrow \varphi^{\prime}\left(U \cap U^{\prime}\right)
$$

and

$$
\varphi \circ\left(\varphi^{\prime}\right)^{-1} \mid \varphi^{\prime}\left(U \cap U^{\prime}\right): \varphi^{\prime}\left(U \cap U^{\prime}\right) \longrightarrow \varphi\left(U \cap U^{\prime}\right)
$$

Manifolds

are C^{∞}. Here, $\varphi^{\prime} \circ \varphi^{-1} \mid \varphi\left(U \cap U^{\prime}\right)$ denotes the restriction of the map $\varphi^{\prime} \circ \varphi^{-1}$ to the set $\varphi\left(U \cap U^{\prime}\right)$.

Manifolds

\square We call M a differentiable n-manifold when:
M1. The set M is covered by a collection of charts, that is, every point is represented in at least one chart.
M2. M has an atlas; that is, M can be written as a union of compatible charts.

Manifolds

\square We call M a differentiable n-manifold when:
M1. The set M is covered by a collection of charts, that is, every point is represented in at least one chart.
M2. M has an atlas; that is, M can be written as a union of compatible charts.
\square Differentiable structure: Start with a given atlas and (be democratic and) include all charts compatible with the given ones.

Manifolds

\square We call M a differentiable n-manifold when:
M1. The set M is covered by a collection of charts, that is, every point is represented in at least one chart.
M2. M has an atlas; that is, M can be written as a union of compatible charts.
\square Differentiable structure: Start with a given atlas and (be democratic and) include all charts compatible with the given ones.
\square Example: Start with \mathbb{R}^{3} as a manifold with simply one (identity) chart. We then allow other charts such as those defined by spherical coordinates - this is then a differentiable structure on \mathbb{R}^{3}. This will be understood to have been done when we say we have a manifold.

Manifolds

\square Topology. Every manifold has a topology obtained by declaring open neighborhoods in charts to be open neighborhoods when mapped to M by the chart.

Manifolds

\square Topology. Every manifold has a topology obtained by declaring open neighborhoods in charts to be open neighborhoods when mapped to M by the chart.
\square Tangent Vectors. Two curves $t \mapsto c_{1}(t)$ and $t \mapsto$ $c_{2}(t)$ in an n-manifold M are called equivalent at the point m if

$$
c_{1}(0)=c_{2}(0)=m
$$

and

$$
\left.\frac{d}{d t}\left(\varphi \circ c_{1}\right)\right|_{t=0}=\left.\frac{d}{d t}\left(\varphi \circ c_{2}\right)\right|_{t=0}
$$

in some chart φ.

Manifolds

Tangent Vectors

\square A tangent vector v to a manifold M at a point $m \in M$ is an equivalence class of curves at m.

Tangent Vectors

\square A tangent vector v to a manifold M at a point $m \in M$ is an equivalence class of curves at m.
\square Set of tangent vectors to M at m is a vector space.

Tangent Vectors

\square A tangent vector v to a manifold M at a point $m \in M$ is an equivalence class of curves at m.
\square Set of tangent vectors to M at m is a vector space.
\square Notation: $T_{m} M=$ tangent space to M at $m \in M$.

Tangent Vectors

\square A tangent vector v to a manifold M at a point $m \in M$ is an equivalence class of curves at m.
\square Set of tangent vectors to M at m is a vector space.
\square Notation: $T_{m} M=$ tangent space to M at $m \in M$.
\square We think of $\mathbf{v} \in T_{m} M$ as tangent to a curve in M.

Tangent Vectors

Tangent Vectors

\square Components of a tangent vector.
$\circ \varphi: U \subset M \rightarrow \mathbb{R}^{n}$ a chart M

Tangent Vectors

\square Components of a tangent vector.
$\circ \varphi: U \subset M \rightarrow \mathbb{R}^{n}$ a chart M

- gives associated coordinates $\left(x^{1}, \ldots, x^{n}\right)$ for points in U.

Tangent Vectors

\square Components of a tangent vector.
$\circ \varphi: U \subset M \rightarrow \mathbb{R}^{n}$ a chart M

- gives associated coordinates $\left(x^{1}, \ldots, x^{n}\right)$ for points in U.
- Let $v \in T_{m} M$ be a tangent vector to M at m;

Tangent Vectors

\square Components of a tangent vector.

$\circ \varphi: U \subset M \rightarrow \mathbb{R}^{n}$ a chart M

- gives associated coordinates $\left(x^{1}, \ldots, x^{n}\right)$ for points in U.
- Let $v \in T_{m} M$ be a tangent vector to M at m;
$\circ c$ a curve representative of the equivalence class v.

Tangent Vectors

\square Components of a tangent vector.

$\circ \varphi: U \subset M \rightarrow \mathbb{R}^{n}$ a chart M

- gives associated coordinates $\left(x^{1}, \ldots, x^{n}\right)$ for points in U.
- Let $v \in T_{m} M$ be a tangent vector to M at m;
$\circ c$ a curve representative of the equivalence class v.
- The components of v are the numbers v^{1}, \ldots, v^{n} defined by taking the derivatives of the components of the curve $\varphi \circ c$:

$$
v^{i}=\left.\frac{d}{d t}(\varphi \circ c)^{i}\right|_{t=0}
$$

where $i=1, \ldots, n$.

Tangent Vectors

\square Components of a tangent vector.

$\circ \varphi: U \subset M \rightarrow \mathbb{R}^{n}$ a chart M

- gives associated coordinates $\left(x^{1}, \ldots, x^{n}\right)$ for points in U.
- Let $v \in T_{m} M$ be a tangent vector to M at m;
$\circ c$ a curve representative of the equivalence class v.
- The components of v are the numbers v^{1}, \ldots, v^{n} defined by taking the derivatives of the components of the curve $\varphi \circ c$:

$$
v^{i}=\left.\frac{d}{d t}(\varphi \circ c)^{i}\right|_{t=0}
$$

where $i=1, \ldots, n$.

- Components are independent of the representative curve chosen, but they do depend on the chart chosen.

Tangent Bundles

\square Tangent bundle of M, denoted by $T M$, is the disjoint union of the tangent spaces to M at the points $m \in M$, that is,

$$
T M=\bigcup_{m \in M} T_{m} M
$$

Tangent Bundles

\square Tangent bundle of M, denoted by $T M$, is the disjoint union of the tangent spaces to M at the points $m \in M$, that is,

$$
T M=\bigcup_{m \in M} T_{m} M
$$

\square Points of $T M$: vectors v tangent at some $m \in M$.

Tangent Bundles

\square Tangent bundle of M, denoted by $T M$, is the disjoint union of the tangent spaces to M at the points $m \in M$, that is,

$$
T M=\bigcup_{m \in M} T_{m} M
$$

\square Points of $T M$: vectors v tangent at some $m \in M$.
\square If M is an n-manifold, then $T M$ is a $2 n$-manifold.

Tangent Bundles

\square Tangent bundle of M, denoted by $T M$, is the disjoint union of the tangent spaces to M at the points $m \in M$, that is,

$$
T M=\bigcup_{m \in M} T_{m} M
$$

\square Points of $T M$: vectors v tangent at some $m \in M$.
\square If M is an n-manifold, then $T M$ is a $2 n$-manifold.
\square The natural projection is the map $\tau_{M}: T M \rightarrow M$ that takes a tangent vector v to the point $m \in M$ at which the vector v is attached.

Tangent Bundles

\square Tangent bundle of M, denoted by $T M$, is the disjoint union of the tangent spaces to M at the points $m \in M$, that is,

$$
T M=\bigcup_{m \in M} T_{m} M
$$

\square Points of $T M$: vectors v tangent at some $m \in M$.
\square If M is an n-manifold, then $T M$ is a $2 n$-manifold.
\square The natural projection is the map $\tau_{M}: T M \rightarrow M$ that takes a tangent vector v to the point $m \in M$ at which the vector v is attached.
\square The inverse image $\tau_{M}^{-1}(m)$ of $m \in M$ is the tangent space $T_{m} M$ - the fiber of $T M$ over the point $m \in M$.

Differentiable Maps

\square A map $f: M \rightarrow N$ is differentiable (resp. C^{k}) if in local coordinates on M and N, the map f is represented by differentiable (resp. C^{k}) functions.

Differentiable Maps

\square A map $f: M \rightarrow N$ is differentiable (resp. C^{k}) if in local coordinates on M and N, the map f is represented by differentiable (resp. C^{k}) functions.
\square The derivative of $f: M \rightarrow N$ at a point $m \in M$ is a linear map $T_{m} f: T_{m} M \rightarrow T_{f(m)} N$. Here's how:

Differentiable Maps

\square A map $f: M \rightarrow N$ is differentiable (resp. C^{k}) if in local coordinates on M and N, the map f is represented by differentiable (resp. C^{k}) functions.
\square The derivative of $f: M \rightarrow N$ at a point $m \in M$ is a linear map $T_{m} f: T_{m} M \rightarrow T_{f(m)} N$. Here's how:

- For $v \in T_{m} M$, choose a curve c in M with $c(0)=m$, and velocity vector $d c /\left.d t\right|_{t=0}=v$.

Differentiable Maps

\square A map $f: M \rightarrow N$ is differentiable (resp. C^{k}) if in local coordinates on M and N, the map f is represented by differentiable (resp. C^{k}) functions.
\square The derivative of $f: M \rightarrow N$ at a point $m \in M$ is a linear map $T_{m} f: T_{m} M \rightarrow T_{f(m)} N$. Here's how:

- For $v \in T_{m} M$, choose a curve c in M with $c(0)=m$, and velocity vector $d c /\left.d t\right|_{t=0}=v$.
- $T_{m} f \cdot v$ is the velocity vector at $t=0$ of the curve $f \circ c: \mathbb{R} \rightarrow N$, that is,

$$
T_{m} f \cdot v=\left.\frac{d}{d t} f(c(t))\right|_{t=0}
$$

Chain Rule

\square The vector $T_{m} f \cdot v$ does not depend on the curve c but only on the vector v.

Chain Rule

\square The vector $T_{m} f \cdot v$ does not depend on the curve c but only on the vector v.
\square If $f: M \rightarrow N$ is of class C^{k}, then $T f: T M \rightarrow T N$ is a mapping of class C^{k-1}.

Chain Rule

\square The vector $T_{m} f \cdot v$ does not depend on the curve c but only on the vector v.
\square If $f: M \rightarrow N$ is of class C^{k}, then $T f: T M \rightarrow T N$ is a mapping of class C^{k-1}.
\square If $f: M \rightarrow N$ and $g: N \rightarrow P$ are differentiable maps (or maps of class C^{k}), then $g \circ f: M \rightarrow P$ is differentiable (or of class C^{k}), and the chain rule holds:

$$
T(g \circ f)=T g \circ T f
$$

Diffeomorphisms

\square A differentiable (or of class C^{k}) map $f: M \rightarrow N$ is called a diffeomorphism if it is bijective and its inverse is also differentiable (or of class C^{k}).

Diffeomorphisms

\square A differentiable (or of class C^{k}) map $f: M \rightarrow N$ is called a diffeomorphism if it is bijective and its inverse is also differentiable (or of class C^{k}).
\square If $T_{m} f: T_{m} M \rightarrow T_{f(m)} N$ is an isomorphism, the $i n-$ verse function theorem states that f is a local diffeomorphism around $m \in M$

Diffeomorphisms

$\square \mathrm{A}$ differentiable (or of class C^{k}) map $f: M \rightarrow N$ is called a diffeomorphism if it is bijective and its inverse is also differentiable (or of class C^{k}).
\square If $T_{m} f: T_{m} M \rightarrow T_{f(m)} N$ is an isomorphism, the $i n-$ verse function theorem states that f is a local diffeomorphism around $m \in M$
\square The set of all diffeomorphisms $f: M \rightarrow M$ forms a group under composition, and the chain rule shows that $T\left(f^{-1}\right)=(T f)^{-1}$.

Submanifolds

\square Sulbmanifold $(\operatorname{dim} k): S \subset M$; for $s \in S$ there is a chart (U, φ) in M with the submanifold property: SM. $\varphi: U \rightarrow \mathbb{R}^{k} \times \mathbb{R}^{n-k}$ and $\varphi(U \cap S)=\varphi(U) \cap\left(\mathbb{R}^{k} \times\{\mathbf{0}\}\right)$.
$\square S$ is a manifold in its own right.

Submanifolds

\square If $f: M \rightarrow N$ is a smooth map, a point $m \in M$ is a regular point if $T_{m} f$ is surjective; otherwise, m is a critical point of f. A value $n \in N$ is regular if all points mapping to n are regular.

Submanifolds

\square If $f: M \rightarrow N$ is a smooth map, a point $m \in M$ is a regular point if $T_{m} f$ is surjective; otherwise, m is a critical point of f. A value $n \in N$ is regular if all points mapping to n are regular.
\square Sulbmersion theorem: If $f: M \rightarrow N$ is a smooth map and n is a regular value of f, then $f^{-1}(n)$ is a smooth submanifold of M of dimension $\operatorname{dim} M-\operatorname{dim} N$ and

$$
T_{m}\left(f^{-1}(n)\right)=\operatorname{ker} T_{m} f
$$

Submanifolds

\square If $f: M \rightarrow N$ is a smooth map, a point $m \in M$ is a regular point if $T_{m} f$ is surjective; otherwise, m is a critical point of f. A value $n \in N$ is regular if all points mapping to n are regular.
\square Sulbmersion theorem: If $f: M \rightarrow N$ is a smooth map and n is a regular value of f, then $f^{-1}(n)$ is a smooth submanifold of M of dimension $\operatorname{dim} M-\operatorname{dim} N$ and

$$
T_{m}\left(f^{-1}(n)\right)=\operatorname{ker} T_{m} f
$$

\square This is an excellent technique for showing various sets are manifolds, such as $O(n)$, the set of orthogonal $n \times n$ matrices.

Vector Fields and Flows

\square Vector field X on $M:$ a map $X: M \rightarrow T M$ that assigns a vector $X(m)$ at the point $m \in M$; that is, $\tau_{M} \circ X=$ identity.

Vector Fields and Flows

\square Vector field X on $M:$ a map $X: M \rightarrow T M$ that assigns a vector $X(m)$ at the point $m \in M$; that is, $\tau_{M} \circ X=$ identity.
\square Vector space of vector fields on M is denoted $\mathfrak{X}(M)$.

Vector Fields and Flows

\square Vector field X on $M:$ a map $X: M \rightarrow T M$ that assigns a vector $X(m)$ at the point $m \in M$; that is, $\tau_{M} \circ X=$ identity.
\square Vector space of vector fields on M is denoted $\mathfrak{X}(M)$.
\square An integral curve of X with initial condition m_{0} at $t=0$ is a (differentiable) map $c:] a, b[\rightarrow M$ such that] $a, b\left[\right.$ is an open interval containing $0, c(0)=m_{0}$, and

$$
c^{\prime}(t)=X(c(t))
$$

for all $t \in] a, b[$; i.e., a solution curve of this ODE.

Vector Fields and Flows

\square Vector field X on $M:$ a map $X: M \rightarrow T M$ that assigns a vector $X(m)$ at the point $m \in M$; that is, $\tau_{M} \circ X=$ identity.
\square Vector space of vector fields on M is denoted $\mathfrak{X}(M)$.
\square An integral curve of X with initial condition m_{0} at $t=0$ is a (differentiable) map $c:] a, b[\rightarrow M$ such that $] a, b\left[\right.$ is an open interval containing $0, c(0)=m_{0}$, and

$$
c^{\prime}(t)=X(c(t))
$$

for all $t \in] a, b[$; i.e., a solution curve of this ODE.
\square Flow of X : The collection of maps $\varphi_{t}: M \rightarrow M$ such that $t \mapsto \varphi_{t}(m)$ is the integral curve of X with initial condition m.

Vector Fields and Flows

\square Existence and uniqueness theorems from ODE guarantee that φ exists is smooth in m and t (where defined) if X is.

Vector Fields and Flows

\square Existence and uniqueness theorems from ODE guarantee that φ exists is smooth in m and t (where defined) if X is.
\square Uniqueness \Rightarrow flow property

$$
\varphi_{t+s}=\varphi_{t} \circ \varphi_{s}
$$

along with the initial condition $\varphi_{0}=$ identity.

Vector Fields and Flows

\square Existence and uniqueness theorems from ODE guarantee that φ exists is smooth in m and t (where defined) if X is.
\square Uniqueness \Rightarrow flow property

$$
\varphi_{t+s}=\varphi_{t} \circ \varphi_{s}
$$

along with the initial condition $\varphi_{0}=$ identity.
\square This generalizes the situation where $M=V$ is a linear space, $X(m)=A m$ for a (bounded) linear operator A, and where

$$
\varphi_{t}(m)=e^{t A} m
$$

to the nonlinear case.

Vector Fields and Flows

\square An important fact is that if X is a C^{r} vector field, then its flow is a C^{r} map in all variables.

Vector Fields and Flows

\square An important fact is that if X is a C^{r} vector field, then its flow is a C^{r} map in all variables.
\square An important estimate that is the key to proving things like this is the Gronwall inequality: if on an interval $[a, b]$, we have

$$
f(t) \leq A+\int_{a}^{t} f(s) g(s) d s
$$

where $A \geq 0$, and $f, g \geq 0$ are continuous, then

$$
f(t) \leq A \exp \int_{a}^{t} g(s) d s
$$

Vector Fields and Flows

\square An important fact is that if X is a C^{r} vector field, then its flow is a C^{r} map in all variables.
\square An important estimate that is the key to proving things like this is the Gronwall inequality: if on an interval $[a, b]$, we have

$$
f(t) \leq A+\int_{a}^{t} f(s) g(s) d s
$$

where $A \geq 0$, and $f, g \geq 0$ are continuous, then

$$
f(t) \leq A \exp \int_{a}^{t} g(s) d s
$$

\square This is used on the integral equation defining a flow (using a chart).

Vector Fields and Flows

\square Strategy for proving that the flow is C^{1} :

Vector Fields and Flows

\square Strategy for proving that the flow is C^{1} :
\square Formally linearize the equations and find the equation that $\mathbf{D} \varphi_{t}$ should satisfy. This is the first variation equation.

Vector Fields and Flows

\square Strategy for proving that the flow is C^{1} :
\square Formally linearize the equations and find the equation that $\mathbf{D} \varphi_{t}$ should satisfy. This is the first variation equation.
\square Use the basic existence theory to see that the first variation equation has a solution.
\square Strategy for proving that the flow is C^{1} :
\square Formally linearize the equations and find the equation that $\mathbf{D} \varphi_{t}$ should satisfy. This is the first variation equation.
\square Use the basic existence theory to see that the first variation equation has a solution.
\square Show that this solution actually satisfies the definition of the derivative of φ_{t} by making use of Gronwall.

Vector Fields and Flows

\square Time-dependent vector field: $X: M \times \mathbb{R} \rightarrow$ $T M$ such that $X(m, t) \in T_{m} M$ for $m \in M, t \in \mathbb{R}$.
\square Time-dependent vector field: $X: M \times \mathbb{R} \rightarrow$ $T M$ such that $X(m, t) \in T_{m} M$ for $m \in M, t \in \mathbb{R}$.
\square Integral curve: $c(t)$ such that $c^{\prime}(t)=X(c(t), t)$. The flow is the collection of maps

$$
\varphi_{t, s}: M \rightarrow M
$$

such that $t \mapsto \varphi_{t, s}(m)$ is the integral curve $c(t)$ with initial condition $c(s)=m$ at $t=s$.

Vector Fields and Flows

\square Time-dependent vector field: $X: M \times \mathbb{R} \rightarrow$ $T M$ such that $X(m, t) \in T_{m} M$ for $m \in M, t \in \mathbb{R}$.
\square Integral curve: $c(t)$ such that $c^{\prime}(t)=X(c(t), t)$. The flow is the collection of maps

$$
\varphi_{t, s}: M \rightarrow M
$$

such that $t \mapsto \varphi_{t, s}(m)$ is the integral curve $c(t)$ with initial condition $c(s)=m$ at $t=s$.
\square Existence and uniqueness \Rightarrow time-dependent flow property

$$
\varphi_{t, s} \circ \varphi_{s, r}=\varphi_{t, r} .
$$

If X happens to be time independent, the two notions of flows are related by $\varphi_{t, s}=\varphi_{t-s}$.

Vector Fields and Flows

\square Notion of completeness of vector fields; integral curves are defined for all time.
\square Notion of completeness of vector fields; integral curves are defined for all time.
\square Criteria discussed in book; an important case is that if, for example, by making a priori estimates, one can show that any integral curve defined on a finite open time interval (a, b) remains in a compact set, then the vector field is complete.

Vector Fields and Flows

\square Notion of completeness of vector fields; integral curves are defined for all time.
\square Criteria discussed in book; an important case is that if, for example, by making a priori estimates, one can show that any integral curve defined on a finite open time interval (a, b) remains in a compact set, then the vector field is complete.
\square For instance sometimes such an estimate can be obtained as an energy estimate; eg, the flow of $\ddot{x}+$ $x^{3}=0$ is complete since it has the preserved energy $H(x, \dot{x})=\frac{1}{2} \dot{x}^{2}+\frac{1}{4} x^{4}$, which confines integral curves to balls for finite time intervals.

Differential of a Function

\square Derivative of $f: M \rightarrow \mathbb{R}$ at $m \in M$: gives a map $T_{m} f: T_{m} M \rightarrow T_{f(m)} \mathbb{R} \cong \mathbb{R}$.

Differential of a Function

\square Derivative of $f: M \rightarrow \mathbb{R}$ at $m \in M$: gives a map $T_{m} f: T_{m} M \rightarrow T_{f(m)} \mathbb{R} \cong \mathbb{R}$.
\square Gives a linear map $\mathbf{d} f(m): T_{m} M \rightarrow \mathbb{R}$.

Differential of a Function

\square Derivative of $f: M \rightarrow \mathbb{R}$ at $m \in M$: gives a map $T_{m} f: T_{m} M \rightarrow T_{f(m)} \mathbb{R} \cong \mathbb{R}$.
\square Gives a linear map $\mathbf{d} f(m): T_{m} M \rightarrow \mathbb{R}$.
\square Thus, $\mathbf{d} f(m) \in T_{m}^{*} M$, the dual of $T_{m} M$.

Differential of a Function

\square Derivative of $f: M \rightarrow \mathbb{R}$ at $m \in M$: gives a map $T_{m} f: T_{m} M \rightarrow T_{f(m)} \cong \mathbb{R} \cong$.
\square Gives a linear map $\mathbf{d} f(m): T_{m} M \rightarrow \mathbb{R}$.
\square Thus, $\mathbf{d} f(m) \in T_{m}^{*} M$, the dual of $T_{m} M$.
\square If we replace each vector space $T_{m} M$ with its dual $T_{m}^{*} M$, we obtain a new $2 n$-manifold called the cotangent bundle and denoted by $T^{*} M$.

Differential of a Function

\square Derivative of $f: M \rightarrow \mathbb{R}$ at $m \in M$: gives a map $T_{m} f: T_{m} M \rightarrow T_{f(m)} \cong \mathbb{R} \cong$.
\square Gives a linear map $\mathbf{d} f(m): T_{m} M \rightarrow \mathbb{R}$.
\square Thus, $\mathbf{d} f(m) \in T_{m}^{*} M$, the dual of $T_{m} M$.
\square If we replace each vector space $T_{m} M$ with its dual $T_{m}^{*} M$, we obtain a new $2 n$-manifold called the cotangent bundle and denoted by $T^{*} M$.
\square We call $\mathbf{d} f$ the differential of f. For $v \in T_{m} M$, we call $\mathbf{d} f(m) \cdot v$ the directional derivative of f in the direction v.

Differential of a Function

\square In a coordinate chart or in linear spaces, this notion coincides with the usual notion of a directional derivative learned in vector calculus.

Differential of a Function

\square In a coordinate chart or in linear spaces, this notion coincides with the usual notion of a directional derivative learned in vector calculus.
\square Using a chart φ, the directional derivative is

$$
\mathbf{d} f(m) \cdot v=\sum_{i=1}^{n} \frac{\partial\left(f \circ \varphi^{-1}\right)}{\partial x^{i}} v^{i}
$$

Differential of a Function

\square In a coordinate chart or in linear spaces, this notion coincides with the usual notion of a directional derivative learned in vector calculus.
\square Using a chart φ, the directional derivative is

$$
\mathbf{d} f(m) \cdot v=\sum_{i=1}^{n} \frac{\partial\left(f \circ \varphi^{-1}\right)}{\partial x^{i}} v^{i}
$$

\square Use the summation convention: drop the summation sign when there are repeated indices.

Differential of a Function

\square In a coordinate chart or in linear spaces, this notion coincides with the usual notion of a directional derivative learned in vector calculus.
\square Using a chart φ, the directional derivative is

$$
\mathbf{d} f(m) \cdot v=\sum_{i=1}^{n} \frac{\partial\left(f \circ \varphi^{-1}\right)}{\partial x^{i}} v^{i}
$$

\square Use the summation convention: drop the summation sign when there are repeated indices.
\square For short, we write

$$
\mathbf{d} f(m) \cdot v=\frac{\partial f}{\partial x^{i}} v^{i}
$$

Vector Fields as Differential Operators

\square Specifying the directional derivatives completely determines a vector, and so we can identify a basis of $T_{m} M$ using the operators $\partial / \partial x^{i}$. We write

$$
\left\{e_{1}, \ldots, e_{n}\right\}=\left\{\frac{\partial}{\partial x^{1}}, \ldots, \frac{\partial}{\partial x^{n}}\right\}
$$

for this basis, so that $v=v^{i} \partial / \partial x^{i}$.

Vector Fields as Differential Operators

\square Specifying the directional derivatives completely determines a vector, and so we can identify a basis of $T_{m} M$ using the operators $\partial / \partial x^{i}$. We write

$$
\left\{e_{1}, \ldots, e_{n}\right\}=\left\{\frac{\partial}{\partial x^{1}}, \ldots, \frac{\partial}{\partial x^{n}}\right\}
$$

for this basis, so that $v=v^{i} \partial / \partial x^{i}$.
\square There is a one to one correspondence between vector fields X on M and the differential operators

$$
X[f](x)=\mathbf{d} f(x) \cdot X(x)
$$

Vector Fields as Differential Operators

\square The dual basis to $\partial / \partial x^{i}$ is denoted by $d x^{i}$. Thus, relative to a choice of local coordinates we get the basic formula

$$
\mathbf{d} f(x)=\frac{\partial f}{\partial x^{i}} d x^{i}
$$

for any smooth function $f: M \rightarrow \mathbb{R}$.

Vector Fields as Differential Operators

\square The dual basis to $\partial / \partial x^{i}$ is denoted by $d x^{i}$. Thus, relative to a choice of local coordinates we get the basic formula

$$
\mathbf{d} f(x)=\frac{\partial f}{\partial x^{i}} d x^{i}
$$

for any smooth function $f: M \rightarrow \mathbb{R}$.
\square We also have

$$
X[f]=X^{i} \frac{\partial f}{\partial x^{i}}
$$

which is why we write

$$
X=X^{i} \frac{\partial}{\partial x^{i}}
$$

Jacobi-Lie Bracket

\square Given two vector fields X and Y, here is a unique vector field $[X, Y]$ such that as a differential operator,

$$
[X, Y][f]=X[Y[f]]-Y[X[f]]
$$

Jacobi-Lie Bracket

\square Given two vector fields X and Y, here is a unique vector field $[X, Y]$ such that as a differential operator,

$$
[X, Y][f]=X[Y[f]]-Y[X[f]]
$$

\square Easiest to see what is going on by computing the commutator in coordinates:

Jacobi-Lie Bracket

\square We get

$$
\begin{aligned}
{[X, Y] } & =\left[X^{i} \frac{\partial}{\partial x^{i}}, Y^{j} \frac{\partial}{\partial x^{j}}\right] \\
& =\left[X^{i} \frac{\partial}{\partial x^{i}} Y^{j} \frac{\partial}{\partial x^{j}}-Y^{j} \frac{\partial}{\partial x^{j}} X^{i} \frac{\partial}{\partial x^{i}}\right] \\
& =X^{i} \frac{\partial Y^{j}}{\partial x^{i}} \frac{\partial}{\partial x^{j}}-Y^{j} \frac{\partial X^{i}}{\partial x^{j}} \frac{\partial}{\partial x^{i}} \\
& =\left(X^{i} \frac{\partial Y^{j}}{\partial x^{i}}-Y^{i} \frac{\partial X^{j}}{\partial x^{i}}\right) \frac{\partial}{\partial x^{j}}
\end{aligned}
$$

\square Note that the second derivative terms $\partial^{2} / \partial x^{i} \partial x^{j}$ canceled out. This is the secret why the bracket is a differential operator and so defines a vector field.

