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Some History
� Carl Friedrich Gauss

◦Born: 30 April 1777 in Brunswick (Germany)

◦Died: 23 Feb 1855 in Göttingen (Germany)

◦ PhD, 1799, University of Helmstedt, advisor was Pfaff. Dissertation
was on the fundamental theorem of algebra.

◦ 1801, predicted position of asteroid Ceres; used averaging methods;
famous as an astronomer; 1807, director of the Göttingen observatory

◦ 1801–1830, Continued to work on algebra, and increasingly in geometry
of surfaces, motivated by non-Euclidean geometry.

◦ 1818, Fame as a geologist; used geometry to do a geodesic survey.

◦ 1831, work on potential theory (Gauss’ theorem), terrestrial mag-
netism, etc.

◦ 1845 to 1851, worked in finance and got rich.
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Some History
� Carl Gustav Jacob Jacobi

◦Born: 10 Dec 1804 in Potsdam

◦Died: 18 Feb 1851 in Berlin

◦ 1821, entered the University of Berlin

◦ 1825, PhD Disquisitiones Analyticae de Fractionibus Simplicibus

◦ 1825-26 Humboldt-Universität, Berlin

◦ 1826–1844 University of Königsberg

◦ 1827, Fundamental work on elliptic functions

◦ 1844–1851 University of Berlin

◦ Lectures on analytical mechanics (Berlin, 1847 - 1848); gave a de-
tailed and critical discussion of Lagrange’s mechanics.
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Some History
� Georg Friedrich Bernhard Riemann

◦Born: 17 Sept 1826 in Breselenz (Germany)

◦Died: 20 July 1866 in Selasca, Italy

◦ PhD, 1851, Göttingen, advisor was Gauss; thesis in complex analysis
on Riemann surfaces

◦ 1854, Habilitation lecture: Über die Hypothesen welche der Geome-
trie zu Grunde liegen (On the hypotheses that lie at the foun-
dations of geometry), laid the foundations of manifold theory and
Riemannian geometry

◦ 1857, Professor at Göttingen

◦ 1859, Reported on the Riemann hypothesis as part of his induction
into the Berlin academy

◦ 1866, Died at the age of 40 in Italy,
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Some History
� Felix Klein

◦Born: 25 April 1849 in Dsseldorf, Germany

◦Died: 22 June 1925 in Göttingen, Germany

◦ 1871; University of Christiania (the city which became Kristiania, then
Oslo in 1925)

◦ PhD, 1868, University of Bonn under Plücker, on applications of ge-
ometry to mechanics.

◦ 1872, professor at Erlangen, in Bavaria; laid foundations of geometry
and how it connected to group theory (Erlangen Programm); collabo-
rations with Lie.

◦ 1880 to 1886, chair of geometry at Leipzig

◦ 1886, moved to Göttingen to join Hilbert’s group

◦ 1890–1900+, More on mathematical physics, mechanics; corresponded
with Poincaré
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Some History
� Marius Sophus Lie

◦Born: 17 Dec 1842 in Nordfjordeide, Norway

◦Died: 18 Feb 1899 in Kristiania (now Oslo), Norway

◦ 1871; University of Christiania (the city which became Kristiania, then
Oslo in 1925)

◦ PhD, 1872, University of Christiania On a class of geometric trans-
formations

◦ 1886–1898 University of Leipzig (got the chair of Klein); where he wrote
his famous 3 volume work Theorie der Transformationsgruppen

◦ 1894, Kummer was his student at Leipzig

◦ 1898–1899, Returned to the University of Christiania; dies shortly after
his return.
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Some History
� Henri Poincaré

◦Born: 29 April 1854 in Nancy, Lorraine, France

◦Died: 17 July 1912 in Paris, France

◦ 1879, Ph.D. University of Paris, Advisor: Charles Hermite

◦ 1879, University of Caen

◦ 1881, Faculty of Science in Paris in 1881

◦ 1886, Sorbonne and École Polytechnique until his death at age 58

◦ 1887, elected to the Acadmie des Sciences; 1906, President.

◦ 1895, Analysis situs (algebraic topology)

◦ 1892–1899, Les Méthodes nouvelles de la méchanique céleste (3 vol-
umes) and, in 1905, Leçons de mecanique céleste

◦ His cousin, Raymond Poincaré, was President of France during World
War I.

12



Manifolds

13



Manifolds
� Manifolds are sets M that locally “look like” linear

spaces—such as Rn.
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Manifolds
� Manifolds are sets M that locally “look like” linear

spaces—such as Rn.

� A chart on M is a subset U of M together with a
bijective map ϕ : U → ϕ(U) ⊂ Rn.

� Usually, we denote ϕ(m) by (x1, . . . , xn) and call the
xi the coordinates of the point m ∈ U ⊂ M .

� Two charts (U,ϕ) and (U ′, ϕ′) such that U ∩ U ′ 6= ∅
are called compatible if ϕ(U ∩ U ′) and ϕ′(U ′ ∩ U)
are open subsets of Rn and the maps

ϕ′ ◦ ϕ−1|ϕ(U ∩ U ′) : ϕ(U ∩ U ′) −→ ϕ′(U ∩ U ′)

and

ϕ ◦ (ϕ′)−1|ϕ′(U ∩ U ′) : ϕ′(U ∩ U ′) −→ ϕ(U ∩ U ′)
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Manifolds

are C∞. Here, ϕ′ ◦ ϕ−1|ϕ(U ∩U ′) denotes the restric-
tion of the map ϕ′ ◦ ϕ−1 to the set ϕ(U ∩ U ′).
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Manifolds
� We call M a differentiable n-manifold when:

M1. The set M is covered by a collection of charts, that is, every
point is represented in at least one chart.

M2. M has an atlas; that is, M can be written as a union of
compatible charts.
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Manifolds
� We call M a differentiable n-manifold when:

M1. The set M is covered by a collection of charts, that is, every
point is represented in at least one chart.

M2. M has an atlas; that is, M can be written as a union of
compatible charts.

� Differentiable structure: Start with a given atlas
and (be democratic and) include all charts compatible
with the given ones.

� Example: Start with R3 as a manifold with simply
one (identity) chart. We then allow other charts such
as those defined by spherical coordinates—this is then a
differentiable structure on R3. This will be understood
to have been done when we say we have a manifold.
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Manifolds
� Topology. Every manifold has a topology obtained

by declaring open neighborhoods in charts to be open
neighborhoods when mapped to M by the chart.
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Manifolds
� Topology. Every manifold has a topology obtained

by declaring open neighborhoods in charts to be open
neighborhoods when mapped to M by the chart.

� Tangent Vectors. Two curves t 7→ c1(t) and t 7→
c2(t) in an n-manifold M are called equivalent at the
point m if

c1(0) = c2(0) = m

and
d

dt
(ϕ ◦ c1)

∣∣∣∣
t=0

=
d

dt
(ϕ ◦ c2)

∣∣∣∣
t=0

in some chart ϕ.
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Tangent Vectors
� A tangent vector v to a manifold M at a point

m ∈ M is an equivalence class of curves at m.
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Tangent Vectors
� A tangent vector v to a manifold M at a point

m ∈ M is an equivalence class of curves at m.

� Set of tangent vectors to M at m is a vector space.

� Notation: TmM = tangent space to M at m ∈ M .

� We think of v ∈ TmM as tangent to a curve in M .
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Tangent Vectors
� Components of a tangent vector.

◦ ϕ : U ⊂ M → Rn a chart M

21



Tangent Vectors
� Components of a tangent vector.

◦ ϕ : U ⊂ M → Rn a chart M

◦ gives associated coordinates (x1, . . . , xn) for points in U .

21



Tangent Vectors
� Components of a tangent vector.

◦ ϕ : U ⊂ M → Rn a chart M

◦ gives associated coordinates (x1, . . . , xn) for points in U .

◦ Let v ∈ TmM be a tangent vector to M at m;

21



Tangent Vectors
� Components of a tangent vector.

◦ ϕ : U ⊂ M → Rn a chart M

◦ gives associated coordinates (x1, . . . , xn) for points in U .

◦ Let v ∈ TmM be a tangent vector to M at m;

◦ c a curve representative of the equivalence class v.

21



Tangent Vectors
� Components of a tangent vector.

◦ ϕ : U ⊂ M → Rn a chart M

◦ gives associated coordinates (x1, . . . , xn) for points in U .

◦ Let v ∈ TmM be a tangent vector to M at m;

◦ c a curve representative of the equivalence class v.

◦ The components of v are the numbers v1, . . . , vn defined by tak-
ing the derivatives of the components of the curve ϕ ◦ c:

vi =
d

dt
(ϕ ◦ c)i

∣∣∣∣
t=0

,

where i = 1, . . . , n.
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Tangent Vectors
� Components of a tangent vector.

◦ ϕ : U ⊂ M → Rn a chart M

◦ gives associated coordinates (x1, . . . , xn) for points in U .

◦ Let v ∈ TmM be a tangent vector to M at m;

◦ c a curve representative of the equivalence class v.

◦ The components of v are the numbers v1, . . . , vn defined by tak-
ing the derivatives of the components of the curve ϕ ◦ c:

vi =
d

dt
(ϕ ◦ c)i

∣∣∣∣
t=0

,

where i = 1, . . . , n.

◦ Components are independent of the representative curve chosen, but
they do depend on the chart chosen.
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Tangent Bundles
� Tangent bundle of M , denoted by TM , is the dis-

joint union of the tangent spaces to M at the points
m ∈ M , that is,

TM =
⋃

m∈M

TmM.
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Tangent Bundles
� Tangent bundle of M , denoted by TM , is the dis-

joint union of the tangent spaces to M at the points
m ∈ M , that is,

TM =
⋃

m∈M

TmM.

� Points of TM : vectors v tangent at some m ∈ M .

� If M is an n-manifold, then TM is a 2n-manifold.

� The natural projection is the map τM : TM → M
that takes a tangent vector v to the point m ∈ M at
which the vector v is attached.

� The inverse image τ−1
M (m) of m ∈ M is the tangent

space TmM—the fiber of TM over the point m ∈ M .
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Differentiable Maps

� A map f : M → N is differentiable (resp. Ck) if
in local coordinates on M and N , the map f is repre-
sented by differentiable (resp. Ck) functions.
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Differentiable Maps

� A map f : M → N is differentiable (resp. Ck) if
in local coordinates on M and N , the map f is repre-
sented by differentiable (resp. Ck) functions.

� The derivative of f : M → N at a point m ∈ M is
a linear map Tmf : TmM → Tf (m)N . Here’s how:

◦ For v ∈ TmM , choose a curve c in M with c(0) = m, and velocity
vector dc/dt |t=0 = v .

◦ Tmf · v is the velocity vector at t = 0 of the curve f ◦ c : R → N ,
that is,

Tmf · v =
d

dt
f (c(t))

∣∣∣∣
t=0

.
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Chain Rule
� The vector Tmf ·v does not depend on the curve c but

only on the vector v.
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is a mapping of class Ck−1.
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Chain Rule
� The vector Tmf ·v does not depend on the curve c but

only on the vector v.

� If f : M → N is of class Ck, then Tf : TM → TN
is a mapping of class Ck−1.

� If f : M → N and g : N → P are differentiable
maps (or maps of class Ck), then g ◦ f : M → P is
differentiable (or of class Ck), and the chain rule
holds:

T (g ◦ f ) = Tg ◦ Tf.
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Diffeomorphisms

� A differentiable (or of class Ck) map f : M → N
is called a diffeomorphism if it is bijective and its
inverse is also differentiable (or of class Ck).
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Diffeomorphisms

� A differentiable (or of class Ck) map f : M → N
is called a diffeomorphism if it is bijective and its
inverse is also differentiable (or of class Ck).

� If Tmf : TmM → Tf (m)N is an isomorphism, the in-
verse function theorem states that f is a local
diffeomorphism around m ∈ M

� The set of all diffeomorphisms f : M → M forms
a group under composition, and the chain rule shows
that T (f−1) = (Tf )−1.
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Submanifolds
� Submanifold (dim k): S ⊂ M ; for s ∈ S there is a

chart (U,ϕ) in M with the submanifold property:

SM. ϕ : U → Rk × Rn−k and ϕ(U ∩ S) = ϕ(U) ∩ (Rk × {0}).

� S is a manifold in its own right.

S1

U

2 2

ϕ
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Submanifolds
� If f : M → N is a smooth map, a point m ∈ M is a

regular point if Tmf is surjective; otherwise, m is a
critical point of f . A value n ∈ N is regular if all
points mapping to n are regular.
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regular point if Tmf is surjective; otherwise, m is a
critical point of f . A value n ∈ N is regular if all
points mapping to n are regular.

� Submersion theorem: If f : M → N is a smooth
map and n is a regular value of f , then f−1(n) is a
smooth submanifold of M of dimension dim M−dim N
and

Tm

(
f−1(n)

)
= ker Tmf.
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Submanifolds
� If f : M → N is a smooth map, a point m ∈ M is a

regular point if Tmf is surjective; otherwise, m is a
critical point of f . A value n ∈ N is regular if all
points mapping to n are regular.

� Submersion theorem: If f : M → N is a smooth
map and n is a regular value of f , then f−1(n) is a
smooth submanifold of M of dimension dim M−dim N
and

Tm

(
f−1(n)

)
= ker Tmf.

� This is an excellent technique for showing various sets
are manifolds, such as O(n), the set of orthogonal n×n
matrices.
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Vector Fields and Flows
�Vector field X on M : a map X : M → TM that

assigns a vector X(m) at the point m ∈ M ; that is,
τM ◦X = identity.
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� An integral curve of X with initial condition m0 at
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c′(t) = X(c(t))

for all t ∈ ]a, b[; i.e., a solution curve of this ODE.
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�Vector field X on M : a map X : M → TM that

assigns a vector X(m) at the point m ∈ M ; that is,
τM ◦X = identity.

� Vector space of vector fields on M is denoted X(M).

� An integral curve of X with initial condition m0 at
t = 0 is a (differentiable) map c : ]a, b[→ M such that
]a, b[ is an open interval containing 0, c(0) = m0, and

c′(t) = X(c(t))

for all t ∈ ]a, b[; i.e., a solution curve of this ODE.

�Flow of X : The collection of maps ϕt : M → M
such that t 7→ ϕt(m) is the integral curve of X with
initial condition m.
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Vector Fields and Flows
� Existence and uniqueness theorems from ODE guaran-

tee that ϕ exists is smooth in m and t (where defined)
if X is.
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Vector Fields and Flows
� Existence and uniqueness theorems from ODE guaran-

tee that ϕ exists is smooth in m and t (where defined)
if X is.

� Uniqueness ⇒ flow property

ϕt+s = ϕt ◦ ϕs

along with the initial condition ϕ0 = identity.

� This generalizes the situation where M = V is a linear
space, X(m) = Am for a (bounded) linear operator
A, and where

ϕt(m) = etAm

to the nonlinear case.
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Vector Fields and Flows
� An important fact is that if X is a Cr vector field, then

its flow is a Cr map in all variables.
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its flow is a Cr map in all variables.

� An important estimate that is the key to proving things
like this is the Gronwall inequality : if on an inter-
val [a, b], we have

f (t) ≤ A +

∫ t

a

f (s)g(s)ds

where A ≥ 0, and f, g ≥ 0 are continuous, then

f (t) ≤ A exp

∫ t

a

g(s)ds
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Vector Fields and Flows
� An important fact is that if X is a Cr vector field, then

its flow is a Cr map in all variables.

� An important estimate that is the key to proving things
like this is the Gronwall inequality : if on an inter-
val [a, b], we have

f (t) ≤ A +

∫ t

a

f (s)g(s)ds

where A ≥ 0, and f, g ≥ 0 are continuous, then

f (t) ≤ A exp

∫ t

a

g(s)ds

� This is used on the integral equation defining a flow
(using a chart).
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Vector Fields and Flows

� Strategy for proving that the flow is C1:

� Formally linearize the equations and find the equation
that Dϕt should satisfy. This is the first variation
equation .

� Use the basic existence theory to see that the first vari-
ation equation has a solution.

� Show that this solution actually satisfies the definition
of the derivative of ϕt by making use of Gronwall.

31



Vector Fields and Flows
�Time-dependent vector field: X : M × R →

TM such that X(m, t) ∈ TmM for m ∈ M , t ∈ R.
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�Time-dependent vector field: X : M × R →

TM such that X(m, t) ∈ TmM for m ∈ M , t ∈ R.

� Integral curve: c(t) such that c′(t) = X(c(t), t).
The flow is the collection of maps

ϕt,s : M → M

such that t 7→ ϕt,s(m) is the integral curve c(t) with
initial condition c(s) = m at t = s.
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Vector Fields and Flows
�Time-dependent vector field: X : M × R →

TM such that X(m, t) ∈ TmM for m ∈ M , t ∈ R.

� Integral curve: c(t) such that c′(t) = X(c(t), t).
The flow is the collection of maps

ϕt,s : M → M

such that t 7→ ϕt,s(m) is the integral curve c(t) with
initial condition c(s) = m at t = s.

� Existence and uniqueness⇒ time-dependent flow
property

ϕt,s ◦ ϕs,r = ϕt,r.

If X happens to be time independent, the two notions
of flows are related by ϕt,s = ϕt−s.

32



Vector Fields and Flows
� Notion of completeness of vector fields ; integral

curves are defined for all time.
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� Criteria discussed in book; an important case is that
if, for example, by making a priori estimates, one can
show that any integral curve defined on a finite open
time interval (a, b) remains in a compact set, then the
vector field is complete.
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Vector Fields and Flows
� Notion of completeness of vector fields ; integral

curves are defined for all time.

� Criteria discussed in book; an important case is that
if, for example, by making a priori estimates, one can
show that any integral curve defined on a finite open
time interval (a, b) remains in a compact set, then the
vector field is complete.

� For instance sometimes such an estimate can be ob-
tained as an energy estimate ; eg, the flow of ẍ +
x3 = 0 is complete since it has the preserved energy
H(x, ẋ) = 1

2ẋ
2 + 1

4x
4, which confines integral curves to

balls for finite time intervals.
33



Differential of a Function
� Derivative of f : M → R at m ∈ M : gives a map

Tmf : TmM → Tf (m)R ∼= R.

34



Differential of a Function
� Derivative of f : M → R at m ∈ M : gives a map

Tmf : TmM → Tf (m)R ∼= R.

� Gives a linear map df (m) : TmM → R.

34



Differential of a Function
� Derivative of f : M → R at m ∈ M : gives a map

Tmf : TmM → Tf (m)R ∼= R.

� Gives a linear map df (m) : TmM → R.

� Thus, df (m) ∈ T ∗
mM , the dual of TmM .

34



Differential of a Function
� Derivative of f : M → R at m ∈ M : gives a map

Tmf : TmM → Tf (m)R ∼= R.

� Gives a linear map df (m) : TmM → R.

� Thus, df (m) ∈ T ∗
mM , the dual of TmM .

� If we replace each vector space TmM with its dual
T ∗

mM , we obtain a new 2n-manifold called the cotan-
gent bundle and denoted by T ∗M .

34



Differential of a Function
� Derivative of f : M → R at m ∈ M : gives a map

Tmf : TmM → Tf (m)R ∼= R.

� Gives a linear map df (m) : TmM → R.

� Thus, df (m) ∈ T ∗
mM , the dual of TmM .

� If we replace each vector space TmM with its dual
T ∗

mM , we obtain a new 2n-manifold called the cotan-
gent bundle and denoted by T ∗M .

� We call df the differential of f . For v ∈ TmM , we
call df (m) · v the directional derivative of f in
the direction v.
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� In a coordinate chart or in linear spaces, this notion co-

incides with the usual notion of a directional derivative
learned in vector calculus.
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∂(f ◦ ϕ−1)

∂xi
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� Using a chart ϕ, the directional derivative is

df (m) · v =

n∑
i=1

∂(f ◦ ϕ−1)

∂xi
vi.

� Use the summation convention : drop the sum-
mation sign when there are repeated indices.
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Differential of a Function
� In a coordinate chart or in linear spaces, this notion co-

incides with the usual notion of a directional derivative
learned in vector calculus.

� Using a chart ϕ, the directional derivative is

df (m) · v =

n∑
i=1

∂(f ◦ ϕ−1)

∂xi
vi.

� Use the summation convention : drop the sum-
mation sign when there are repeated indices.

� For short, we write

df (m) · v =
∂f

∂xi
vi.
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Vector Fields as Differential Operators

� Specifying the directional derivatives completely deter-
mines a vector, and so we can identify a basis of TmM
using the operators ∂/∂xi. We write

{e1, . . . , en} =

{
∂

∂x1
, . . . ,

∂

∂xn

}
for this basis, so that v = vi∂/∂xi.
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Vector Fields as Differential Operators

� Specifying the directional derivatives completely deter-
mines a vector, and so we can identify a basis of TmM
using the operators ∂/∂xi. We write

{e1, . . . , en} =

{
∂

∂x1
, . . . ,

∂

∂xn

}
for this basis, so that v = vi∂/∂xi.

� There is a one to one correspondence between vector
fields X on M and the differential operators

X [f ](x) = df (x) ·X(x)
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Vector Fields as Differential Operators

� The dual basis to ∂/∂xi is denoted by dxi. Thus, rel-
ative to a choice of local coordinates we get the basic
formula

df (x) =
∂f

∂xi
dxi

for any smooth function f : M → R.
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Vector Fields as Differential Operators

� The dual basis to ∂/∂xi is denoted by dxi. Thus, rel-
ative to a choice of local coordinates we get the basic
formula

df (x) =
∂f

∂xi
dxi

for any smooth function f : M → R.

� We also have

X [f ] = X i ∂f

∂xi

which is why we write

X = X i ∂

∂xi
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Jacobi-Lie Bracket
� Given two vector fields X and Y , here is a unique

vector field [X, Y ] such that as a differential operator,

[X, Y ][f ] = X [Y [f ]]− Y [X [f ]]
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Jacobi-Lie Bracket
� Given two vector fields X and Y , here is a unique

vector field [X, Y ] such that as a differential operator,

[X, Y ][f ] = X [Y [f ]]− Y [X [f ]]

� Easiest to see what is going on by computing the com-
mutator in coordinates:
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Jacobi-Lie Bracket
� We get

[X, Y ] =

[
X i ∂

∂xi
, Y j ∂

∂xj

]
=

[
X i ∂

∂xi
Y j ∂

∂xj
− Y j ∂

∂xj
X i ∂

∂xi

]
= X i∂Y j

∂xi

∂

∂xj
− Y j∂X i

∂xj

∂

∂xi

=

(
X i∂Y j

∂xi
− Y i∂Xj

∂xi

)
∂

∂xj

� Note that the second derivative terms ∂2/∂xi∂xj can-
celed out. This is the secret why the bracket is a
differential operator and so defines a vector field.
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