Differential Forms and Stokes' Theorem

Jerrold E. Marsden

Control and Dynamical Systems, Caltech http://www.cds.caltech.edu/ marsden/

Differential Forms

\square Main idea: Generalize the basic operations of vector calculus, div, grad, curl, and the integral theorems of Green, Gauss, and Stokes to manifolds of arbitrary dimension.

Differential Forms

\square Main idea: Generalize the basic operations of vector calculus, div, grad, curl, and the integral theorems of Green, Gauss, and Stokes to manifolds of arbitrary dimension.
$\square 1$-forms. The term "1-form" is used in two waysthey are either members of a particular cotangent space $T_{m}^{*} M$ or else, analogous to a vector field, an assignment of a covector in $T_{m}^{*} M$ to each $m \in M$.

Differential Forms

\square Main idea: Generalize the basic operations of vector calculus, div, grad, curl, and the integral theorems of Green, Gauss, and Stokes to manifolds of arbitrary dimension.
$\square 1$-forms. The term "1-form" is used in two waysthey are either members of a particular cotangent space $T_{m}^{*} M$ or else, analogous to a vector field, an assignment of a covector in $T_{m}^{*} M$ to each $m \in M$.
\square Basic example: differential of a real-valued function.

Differential Forms

\square Main idea: Generalize the basic operations of vector calculus, div, grad, curl, and the integral theorems of Green, Gauss, and Stokes to manifolds of arbitrary dimension.
$\square 1$-forms. The term "1-form" is used in two waysthey are either members of a particular cotangent space $T_{m}^{*} M$ or else, analogous to a vector field, an assignment of a covector in $T_{m}^{*} M$ to each $m \in M$.
\square Basic example: differential of a real-valued function.
\square 2-form Ω : a map $\Omega(m): T_{m} M \times T_{m} M \rightarrow \mathbb{R}$ that assigns to each point $m \in M$ a skew-symmetric bilinear form on the tangent space $T_{m} M$ to M at m.

Differential Forms

\square A k-form α (or differential form of degree k) is a map

$$
\alpha(m): T_{m} M \times \cdots \times T_{m} M(k \text { factors }) \rightarrow \mathbb{R},
$$

which, for each $m \in M$, is a skew-symmetric k-multilinear map on the tangent space $T_{m} M$ to M at m.

Differential Forms

\square A k-form α (or differential form of degree k) is a map

$$
\alpha(m): T_{m} M \times \cdots \times T_{m} M(k \text { factors }) \rightarrow \mathbb{R}
$$

which, for each $m \in M$, is a skew-symmetric k-multilinear map on the tangent space $T_{m} M$ to M at m.
\square Without the skew-symmetry assumption, α would be a $(0, k)$-tensor.

Differential Forms

\square A k-form α (or differential form of degree k) is a map

$$
\alpha(m): T_{m} M \times \cdots \times T_{m} M(k \text { factors }) \rightarrow \mathbb{R}
$$

which, for each $m \in M$, is a skew-symmetric k-multilinear map on the tangent space $T_{m} M$ to M at m.
\square Without the skew-symmetry assumption, α would be a $(0, k)$-tensor.
\square A map $\alpha: V \times \cdots \times V$ (V is a vector space and there are k factors) $\rightarrow \mathbb{R}$ is multilinear when it is linear in each of its factors.

Differential Forms

\square A k-form α (or differential form of degree k) is a map

$$
\alpha(m): T_{m} M \times \cdots \times T_{m} M(k \text { factors }) \rightarrow \mathbb{R}
$$

which, for each $m \in M$, is a skew-symmetric k-multilinear map on the tangent space $T_{m} M$ to M at m.
\square Without the skew-symmetry assumption, α would be a $(0, k)$-tensor.
\square A map $\alpha: V \times \cdots \times V$ (V is a vector space and there are k factors) $\rightarrow \mathbb{R}$ is multilinear when it is linear in each of its factors.
\square It is is skew (or alternating) when it changes sign whenever two of its arguments are interchanged

Differential Forms

\square Why is skew-symmetry important? Some examples where it is implicitly used

Differential Forms

\square Why is skew-symmetry important? Some examples where it is implicitly used

- Determinants and integration: Jacobian determinants in the change of variables theorem.

Differential Forms

\square Why is skew-symmetry important? Some examples where it is implicitly used

- Determinants and integration: Jacobian determinants in the change of variables theorem.
- Cross products and the curl

Differential Forms

\square Why is skew-symmetry important? Some examples where it is implicitly used

- Determinants and integration: Jacobian determinants in the change of variables theorem.
- Cross products and the curl
- Orientation or "handedness"

Differential Forms

\square Let x^{1}, \ldots, x^{n} denote coordinates on M, let

$$
\left\{e_{1}, \ldots, e_{n}\right\}=\left\{\partial / \partial x^{1}, \ldots, \partial / \partial x^{n}\right\}
$$

be the corresponding basis for $T_{m} M$.

Differential Forms

\square Let x^{1}, \ldots, x^{n} denote coordinates on M, let

$$
\left\{e_{1}, \ldots, e_{n}\right\}=\left\{\partial / \partial x^{1}, \ldots, \partial / \partial x^{n}\right\}
$$

be the corresponding basis for $T_{m} M$.
\square Let $\left\{e^{1}, \ldots, e^{n}\right\}=\left\{d x^{1}, \ldots, d x^{n}\right\}$ be the dual basis for $T_{m}^{*} M$.

Differential Forms

\square Let x^{1}, \ldots, x^{n} denote coordinates on M, let

$$
\left\{e_{1}, \ldots, e_{n}\right\}=\left\{\partial / \partial x^{1}, \ldots, \partial / \partial x^{n}\right\}
$$

be the corresponding basis for $T_{m} M$.
\square Let $\left\{e^{1}, \ldots, e^{n}\right\}=\left\{d x^{1}, \ldots, d x^{n}\right\}$ be the dual basis for $T_{m}^{*} M$.
\square At each $m \in M$, we can write a 2 -form as

$$
\Omega_{m}(v, w)=\Omega_{i j}(m) v^{i} w^{j}
$$

where

$$
\Omega_{i j}(m)=\Omega_{m}\left(\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}}\right)
$$

Differential Forms

\square Let x^{1}, \ldots, x^{n} denote coordinates on M, let

$$
\left\{e_{1}, \ldots, e_{n}\right\}=\left\{\partial / \partial x^{1}, \ldots, \partial / \partial x^{n}\right\}
$$

be the corresponding basis for $T_{m} M$.
\square Let $\left\{e^{1}, \ldots, e^{n}\right\}=\left\{d x^{1}, \ldots, d x^{n}\right\}$ be the dual basis for $T_{m}^{*} M$.
\square At each $m \in M$, we can write a 2 -form as

$$
\Omega_{m}(v, w)=\Omega_{i j}(m) v^{i} w^{j}
$$

where

$$
\Omega_{i j}(m)=\Omega_{m}\left(\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}}\right)
$$

\square Similarly for k-forms.

Tensor and Wedge Products

\square If α is a $(0, k)$-tensor on a manifold M and β is a $(0, l)$ tensor, their tensor product (sometimes called the outer product), $\alpha \otimes \beta$ is the ($0, k+l$)-tensor on M defined by

$$
\begin{aligned}
& (\alpha \otimes \beta)_{m}\left(v_{1}, \ldots, v_{k+l}\right) \\
& \quad=\alpha_{m}\left(v_{1}, \ldots, v_{k}\right) \beta_{m}\left(v_{k+1}, \ldots, v_{k+l}\right)
\end{aligned}
$$

at each point $m \in M$.

Tensor and Wedge Products

\square If α is a $(0, k)$-tensor on a manifold M and β is a $(0, l)$ tensor, their tensor product (sometimes called the outer product), $\alpha \otimes \beta$ is the ($0, k+l$)-tensor on M defined by

$$
\begin{aligned}
& (\alpha \otimes \beta)_{m}\left(v_{1}, \ldots, v_{k+l}\right) \\
& \quad=\alpha_{m}\left(v_{1}, \ldots, v_{k}\right) \beta_{m}\left(v_{k+1}, \ldots, v_{k+l}\right)
\end{aligned}
$$

at each point $m \in M$.
\square Outer product of two vectors is a matrix

Tensor and Wedge Products

\square If t is a $(0, p)$-tensor, define the alternation operator \mathbf{A} acting on t by

$$
\mathbf{A}(t)\left(v_{1}, \ldots, v_{p}\right)=\frac{1}{p!} \sum_{\pi \in S_{p}} \operatorname{sgn}(\pi) t\left(v_{\pi(1)}, \ldots, v_{\pi(p)}\right)
$$

where $\operatorname{sgn}(\pi)$ is the sign of the permutation π,

$$
\operatorname{sgn}(\pi)=\left\{\begin{array}{l}
+1 \text { if } \pi \text { is even } \\
-1 \text { if } \pi \text { is odd }
\end{array}\right.
$$

and S_{p} is the group of all permutations of the set $\{1,2, \ldots, p\}$.

Tensor and Wedge Products

\square If t is a $(0, p)$-tensor, define the alternation operator \mathbf{A} acting on t by

$$
\mathbf{A}(t)\left(v_{1}, \ldots, v_{p}\right)=\frac{1}{p!} \sum_{\pi \in S_{p}} \operatorname{sgn}(\pi) t\left(v_{\pi(1)}, \ldots, v_{\pi(p)}\right)
$$

where $\operatorname{sgn}(\pi)$ is the sign of the permutation π,

$$
\operatorname{sgn}(\pi)=\left\{\begin{array}{l}
+1 \text { if } \pi \text { is even } \\
-1 \text { if } \pi \text { is odd }
\end{array}\right.
$$

and S_{p} is the group of all permutations of the set $\{1,2, \ldots, p\}$.
\square The operator \mathbf{A} therefore skew-symmetrizes pmultilinear maps.

Tensor and Wedge Products

\square If α is a k-form and β is an l-form on M, their wedge product $\alpha \wedge \beta$ is the $(k+l)$-form on M defined by

$$
\alpha \wedge \beta=\frac{(k+l)!}{k!l!} \mathbf{A}(\alpha \otimes \beta)
$$

Tensor and Wedge Products

\square If α is a k-form and β is an l-form on M, their wedge product $\alpha \wedge \beta$ is the $(k+l)$-form on M defined by

$$
\alpha \wedge \beta=\frac{(k+l)!}{k!l!} \mathbf{A}(\alpha \otimes \beta)
$$

\square One has to be careful here as some authors use different conventions.

Tensor and Wedge Products

\square If α is a k-form and β is an l-form on M, their wedge product $\alpha \wedge \beta$ is the $(k+l)$-form on M defined by

$$
\alpha \wedge \beta=\frac{(k+l)!}{k!l!} \mathbf{A}(\alpha \otimes \beta)
$$

\square One has to be careful here as some authors use different conventions.
\square Examples: if α and β are one-forms, then

$$
(\alpha \wedge \beta)\left(v_{1}, v_{2}\right)=\alpha\left(v_{1}\right) \beta\left(v_{2}\right)-\alpha\left(v_{2}\right) \beta\left(v_{1}\right),
$$

Tensor and Wedge Products

\square If α is a k-form and β is an l-form on M, their wedge product $\alpha \wedge \beta$ is the $(k+l)$-form on M defined by

$$
\alpha \wedge \beta=\frac{(k+l)!}{k!l!} \mathbf{A}(\alpha \otimes \beta)
$$

\square One has to be careful here as some authors use different conventions.
\square Examples: if α and β are one-forms, then

$$
(\alpha \wedge \beta)\left(v_{1}, v_{2}\right)=\alpha\left(v_{1}\right) \beta\left(v_{2}\right)-\alpha\left(v_{2}\right) \beta\left(v_{1}\right),
$$

\square If α is a 2 -form and β is a 1 -form,
$(\alpha \wedge \beta)\left(v_{1}, v_{2}, v_{3}\right)$

$$
=\alpha\left(v_{1}, v_{2}\right) \beta\left(v_{3}\right)-\alpha\left(v_{1}, v_{3}\right) \beta\left(v_{2}\right)+\alpha\left(v_{2}, v_{3}\right) \beta\left(v_{1}\right) .
$$

Tensor and Wedge Products

\square Wedge product properties:

(i) Associative: $\alpha \wedge(\beta \wedge \gamma)=(\alpha \wedge \beta) \wedge \gamma$.
(ii) Bilinear:

$$
\begin{aligned}
& \left(a \alpha_{1}+b \alpha_{2}\right) \wedge \beta=a\left(\alpha_{1} \wedge \beta\right)+b\left(\alpha_{2} \wedge \beta\right) \\
& \alpha \wedge\left(c \beta_{1}+d \beta_{2}\right)=c\left(\alpha \wedge \beta_{1}\right)+d\left(\alpha \wedge \beta_{2}\right) .
\end{aligned}
$$

(iii) Anticommutative: $\alpha \wedge \beta=(-1)^{k l} \beta \wedge \alpha$, where α is a k-form and β is an l-form.

Tensor and Wedge Products

\square Wedge product properties:

(i) Associative: $\alpha \wedge(\beta \wedge \gamma)=(\alpha \wedge \beta) \wedge \gamma$.
(ii) Bilinear:

$$
\begin{aligned}
& \left(a \alpha_{1}+b \alpha_{2}\right) \wedge \beta=a\left(\alpha_{1} \wedge \beta\right)+b\left(\alpha_{2} \wedge \beta\right) \\
& \alpha \wedge\left(c \beta_{1}+d \beta_{2}\right)=c\left(\alpha \wedge \beta_{1}\right)+d\left(\alpha \wedge \beta_{2}\right) .
\end{aligned}
$$

(iii) Anticommutative: $\alpha \wedge \beta=(-1)^{k l} \beta \wedge \alpha$, where α is a k-form and β is an l-form.
\square Coordinate Representation: Use dual basis $d x^{i}$; a k-form can be written

$$
\alpha=\alpha_{i_{1} \ldots i_{k}} d x^{i_{1}} \wedge \cdots \wedge d x^{i_{k}},
$$

where the sum is over all i_{j} satisfying $i_{1}<\cdots<i_{k}$.

Pull-Back and Push-Forward

$\square \varphi: M \rightarrow N$, a smooth map and α a k-form on N.

Pull-Back and Push-Forward

$\square \varphi: M \rightarrow N$, a smooth map and α a k-form on N.
\square Pull-back: $\varphi^{*} \alpha$ of α by φ : the k-form on M

$$
\left(\varphi^{*} \alpha\right)_{m}\left(v_{1}, \ldots, v_{k}\right)=\alpha_{\varphi(m)}\left(T_{m} \varphi \cdot v_{1}, \ldots, T_{m} \varphi \cdot v_{k}\right)
$$

Pull-Back and Push-Forward

$\square \varphi: M \rightarrow N$, a smooth map and α a k-form on N.
\square Pull-back: $\varphi^{*} \alpha$ of α by φ : the k-form on M

$$
\left(\varphi^{*} \alpha\right)_{m}\left(v_{1}, \ldots, v_{k}\right)=\alpha_{\varphi(m)}\left(T_{m} \varphi \cdot v_{1}, \ldots, T_{m} \varphi \cdot v_{k}\right)
$$

$\square P u s h-f o r w a r d$ (if φ is a diffeomorphism): $\varphi_{*}=\left(\varphi^{-1}\right)^{*}$.

Pull-Back and Push-Forward

$\square \varphi: M \rightarrow N$, a smooth map and α a k-form on N.
\square Pull-back: $\varphi^{*} \alpha$ of α by φ : the k-form on M

$$
\left(\varphi^{*} \alpha\right)_{m}\left(v_{1}, \ldots, v_{k}\right)=\alpha_{\varphi(m)}\left(T_{m} \varphi \cdot v_{1}, \ldots, T_{m} \varphi \cdot v_{k}\right)
$$

$\square P u s h-f o r w a r d$ (if φ is a diffeomorphism): $\varphi_{*}=\left(\varphi^{-1}\right)^{*}$.
\square The pull-back of a wedge product is the wedge product of the pull-backs:

$$
\varphi^{*}(\alpha \wedge \beta)=\varphi^{*} \alpha \wedge \varphi^{*} \beta
$$

Interior Products

\square Let α be a k-form on a manifold M and X a vector field.

Interior Products

\square Let α be a k-form on a manifold M and X a vector field.
\square The interior product $\mathbf{i}_{X} \alpha$ (sometimes called the contraction of X and α and written, using the "hook" notation, as $X-\alpha)$ is defined by

$$
\left(\mathbf{i}_{X} \alpha\right)_{m}\left(v_{2}, \ldots, v_{k}\right)=\alpha_{m}\left(X(m), v_{2}, \ldots, v_{k}\right)
$$

Interior Products

\square Let α be a k-form on a manifold M and X a vector field.
\square The interior product $\mathbf{i}_{X} \alpha$ (sometimes called the contraction of X and α and written, using the "hook" notation, as $X\lrcorner \alpha)$ is defined by

$$
\left(\mathbf{i}_{X} \alpha\right)_{m}\left(v_{2}, \ldots, v_{k}\right)=\alpha_{m}\left(X(m), v_{2}, \ldots, v_{k}\right)
$$

\square Product Rule-Like Property. Let α be a k-form and β a 1-form on a manifold M. Then

$$
\mathbf{i}_{X}(\alpha \wedge \beta)=\left(\mathbf{i}_{X} \alpha\right) \wedge \beta+(-1)^{k} \alpha \wedge\left(\mathbf{i}_{X} \beta\right)
$$

or, in the hook notation,

$$
\left.X\lrcorner(\alpha \wedge \beta)=(X\lrcorner \alpha) \wedge \beta+(-1)^{k} \alpha \wedge(X\lrcorner \beta\right)
$$

Exterior Derivative

\square The exterior derivative $\mathbf{d} \alpha$ of a k-form α is the $(k+1)$-form determined by the following properties:

Exterior Derivative

\square The exterior derivative $\mathbf{d} \alpha$ of a k-form α is the $(k+1)$-form determined by the following properties:
\circ If $\alpha=f$ is a 0 -form, then $\mathbf{d} f$ is the differential of f.

Exterior Derivative

\square The exterior derivative $\mathbf{d} \alpha$ of a k-form α is the $(k+1)$-form determined by the following properties:

- If $\alpha=f$ is a 0 -form, then $\mathbf{d} f$ is the differential of f.
$\circ \mathbf{d} \alpha$ is linear in α-for all real numbers c_{1} and c_{2},

$$
\mathbf{d}\left(c_{1} \alpha_{1}+c_{2} \alpha_{2}\right)=c_{1} \mathbf{d} \alpha_{1}+c_{2} \mathbf{d} \alpha_{2} .
$$

Exterior Derivative

\square The exterior derivative $\mathbf{d} \alpha$ of a k-form α is the $(k+1)$-form determined by the following properties:

- If $\alpha=f$ is a 0 -form, then $\mathbf{d} f$ is the differential of f.
$\circ \mathbf{d} \alpha$ is linear in α-for all real numbers c_{1} and c_{2},

$$
\mathbf{d}\left(c_{1} \alpha_{1}+c_{2} \alpha_{2}\right)=c_{1} \mathbf{d} \alpha_{1}+c_{2} \mathbf{d} \alpha_{2} .
$$

- $\mathbf{d} \alpha$ satisfies the product rule-

$$
\mathbf{d}(\alpha \wedge \beta)=\mathbf{d} \alpha \wedge \beta+(-1)^{k} \alpha \wedge \mathbf{d} \beta
$$

where α is a k-form and β is an l-form.

Exterior Derivative

\square The exterior derivative $\mathbf{d} \alpha$ of a k-form α is the $(k+1)$-form determined by the following properties:

- If $\alpha=f$ is a 0 -form, then $\mathbf{d} f$ is the differential of f.
$\circ \mathbf{d} \alpha$ is linear in α-for all real numbers c_{1} and c_{2},

$$
\mathbf{d}\left(c_{1} \alpha_{1}+c_{2} \alpha_{2}\right)=c_{1} \mathbf{d} \alpha_{1}+c_{2} \mathbf{d} \alpha_{2} .
$$

- $\mathbf{d} \alpha$ satisfies the product rule-

$$
\mathbf{d}(\alpha \wedge \beta)=\mathbf{d} \alpha \wedge \beta+(-1)^{k} \alpha \wedge \mathbf{d} \beta
$$

where α is a k-form and β is an l-form.
$\circ \mathbf{d}^{2}=0$, that is, $\mathbf{d}(\mathbf{d} \alpha)=0$ for any k-form α.

Exterior Derivative

\square The exterior derivative $\mathbf{d} \alpha$ of a k-form α is the $(k+1)$-form determined by the following properties:

- If $\alpha=f$ is a 0 -form, then $\mathbf{d} f$ is the differential of f.
$\circ \mathbf{d} \alpha$ is linear in α-for all real numbers c_{1} and c_{2},

$$
\mathbf{d}\left(c_{1} \alpha_{1}+c_{2} \alpha_{2}\right)=c_{1} \mathbf{d} \alpha_{1}+c_{2} \mathbf{d} \alpha_{2} .
$$

- $\mathbf{d} \alpha$ satisfies the product rule-

$$
\mathbf{d}(\alpha \wedge \beta)=\mathbf{d} \alpha \wedge \beta+(-1)^{k} \alpha \wedge \mathbf{d} \beta
$$

where α is a k-form and β is an l-form.
$\circ \mathbf{d}^{2}=0$, that is, $\mathbf{d}(\mathbf{d} \alpha)=0$ for any k-form α.
$\circ \mathbf{d}$ is a local operator, that is, $\mathbf{d} \alpha(m)$ depends only on α restricted to any open neighborhood of m; that is, if U is open in M, then

$$
\mathbf{d}(\alpha \mid U)=(\mathbf{d} \alpha) \mid U
$$

Exterior Derivative

\square If α is a k-form given in coordinates by

$$
\alpha=\alpha_{i_{1} \ldots i_{k}} d x^{i_{1}} \wedge \cdots \wedge d x^{i_{k}} \quad\left(\text { sum on } i_{1}<\cdots<i_{k}\right),
$$

then the coordinate expression for the exterior derivative is

$$
\mathbf{d} \alpha=\frac{\partial \alpha_{i_{1} \ldots i_{k}}}{\partial x^{j}} d x^{j} \wedge d x^{i_{1}} \wedge \cdots \wedge d x^{i_{k}} .
$$

with a sum over j and $i_{1}<\cdots<i_{k}$

Exterior Derivative

\square If α is a k-form given in coordinates by

$$
\alpha=\alpha_{i_{1} \ldots i_{k}} d x^{i_{1}} \wedge \cdots \wedge d x^{i_{k}} \quad\left(\text { sum on } i_{1}<\cdots<i_{k}\right)
$$

then the coordinate expression for the exterior derivative is

$$
\mathbf{d} \alpha=\frac{\partial \alpha_{i_{1} \ldots i_{k}}}{\partial x^{j}} d x^{j} \wedge d x^{i_{1}} \wedge \cdots \wedge d x^{i_{k}}
$$

with a sum over j and $i_{1}<\cdots<i_{k}$
\square This formula is easy to remember from the properties.

Exterior Derivative

\square Properties.

- Exterior differentiation commutes with pull-back, that is,

$$
\mathbf{d}\left(\varphi^{*} \alpha\right)=\varphi^{*}(\mathbf{d} \alpha)
$$

where α is a k-form on a manifold N and $\varphi: M \rightarrow N$.

Exterior Derivative

\square Properties.

- Exterior differentiation commutes with pull-back, that is,

$$
\mathbf{d}\left(\varphi^{*} \alpha\right)=\varphi^{*}(\mathbf{d} \alpha)
$$

where α is a k-form on a manifold N and $\varphi: M \rightarrow N$.

- A k-form α is called closed if $\mathbf{d} \alpha=0$ and is exact if there is a $(k-1)$-form β such that $\alpha=\mathbf{d} \beta$.

Exterior Derivative

\square Properties.

- Exterior differentiation commutes with pull-back, that is,

$$
\mathbf{d}\left(\varphi^{*} \alpha\right)=\varphi^{*}(\mathbf{d} \alpha),
$$

where α is a k-form on a manifold N and $\varphi: M \rightarrow N$.

- A k-form α is called closed if $\mathbf{d} \alpha=0$ and is exact if there is a $(k-1)$-form β such that $\alpha=\mathbf{d} \beta$.
$\circ \mathbf{d}^{2}=0 \Rightarrow$ an exact form is closed (but the converse need not holdwe recall the standard vector calculus example shortly)

Exterior Derivative

\square Properties.

- Exterior differentiation commutes with pull-back, that is,

$$
\mathbf{d}\left(\varphi^{*} \alpha\right)=\varphi^{*}(\mathbf{d} \alpha),
$$

where α is a k-form on a manifold N and $\varphi: M \rightarrow N$.

- A k-form α is called closed if $\mathbf{d} \alpha=0$ and is exact if there is a $(k-1)$-form β such that $\alpha=\mathbf{d} \beta$.
$\circ \mathbf{d}^{2}=0 \Rightarrow$ an exact form is closed (but the converse need not holdwe recall the standard vector calculus example shortly)
- Poincaré Lemma A closed form is locally exact; that is, if $\mathbf{d} \alpha=0$, there is a neighborhood about each point on which $\alpha=\mathbf{d} \beta$.

Vector Calculus

\square Sharp and $\mathbb{F l a t}$ (Using standard coordinates in \mathbb{R}^{3}) (a) $v^{b}=v^{1} d x+v^{2} d y+v^{3} d z$, the one-form corresponding to the vector $v=v^{1} \mathbf{e}_{1}+v^{2} \mathbf{e}_{2}+v^{3} \mathbf{e}_{3}$.
(b) $\alpha^{\sharp}=\alpha_{1} \mathbf{e}_{1}+\alpha_{2} \mathbf{e}_{2}+\alpha_{3} \mathbf{e}_{3}$, the vector corresponding to the one-form $\alpha=\alpha_{1} d x+\alpha_{2} d y+\alpha_{3} d z$.

Vector Calculus

\square Sharp and $\mathbb{F l}$ lat (Using standard coordinates in \mathbb{R}^{3})
(a) $v^{b}=v^{1} d x+v^{2} d y+v^{3} d z$, the one-form corresponding to the vector $v=v^{1} \mathbf{e}_{1}+v^{2} \mathbf{e}_{2}+v^{3} \mathbf{e}_{3}$.
(b) $\alpha^{\sharp}=\alpha_{1} \mathbf{e}_{1}+\alpha_{2} \mathbf{e}_{2}+\alpha_{3} \mathbf{e}_{3}$, the vector corresponding to the one-form $\alpha=\alpha_{1} d x+\alpha_{2} d y+\alpha_{3} d z$.

\square Hodge Star Operator

(a) $* 1=d x \wedge d y \wedge d z$.
(b) $* d x=d y \wedge d z, * d y=-d x \wedge d z, * d z=d x \wedge d y$,
$*(d y \wedge d z)=d x, *(d x \wedge d z)=-d y, *(d x \wedge d y)=d z$.
(c) $*(d x \wedge d y \wedge d z)=1$.

Vector Calculus

\square Sharp and $\mathbb{F l}$ lat (Using standard coordinates in \mathbb{R}^{3})
(a) $v^{b}=v^{1} d x+v^{2} d y+v^{3} d z$, the one-form corresponding to the vector $v=v^{1} \mathbf{e}_{1}+v^{2} \mathbf{e}_{2}+v^{3} \mathbf{e}_{3}$.
(b) $\alpha^{\sharp}=\alpha_{1} \mathbf{e}_{1}+\alpha_{2} \mathbf{e}_{2}+\alpha_{3} \mathbf{e}_{3}$, the vector corresponding to the one-form $\alpha=\alpha_{1} d x+\alpha_{2} d y+\alpha_{3} d z$.

\square Hodge Star Operator

(a) $* 1=d x \wedge d y \wedge d z$.
(b) $* d x=d y \wedge d z, * d y=-d x \wedge d z, * d z=d x \wedge d y$,

$$
*(d y \wedge d z)=d x, *(d x \wedge d z)=-d y, *(d x \wedge d y)=d z .
$$

(c) $*(d x \wedge d y \wedge d z)=1$.
\square Cross Product and Dot Product
(a) $v \times w=\left[*\left(v^{b} \wedge w^{b}\right)\right]^{\sharp}$.
(b) $(v \cdot w) d x \wedge d y \wedge d z=v^{b} \wedge *\left(w^{b}\right)$.

Vector Calculus

\square Gradient

$$
\nabla f=\operatorname{grad} f=(\mathbf{d} f)^{\sharp} .
$$

Vector Calculus

\square Gradient
$\nabla f=\operatorname{grad} f=(\mathbf{d} f)^{\sharp}$.
\square Curl
$\nabla \times F=\operatorname{curl} F=\left[*\left(\mathbf{d} F^{b}\right)\right]^{\#}$.

Vector Calculus

\square Gradient
$\nabla f=\operatorname{grad} f=(\mathbf{d} f)^{\sharp}$.
\square Curl
$\nabla \times F=\operatorname{curl} F=\left[*\left(\mathbf{d} F^{b}\right)\right]^{\#}$.
\square Divergence
$\nabla \cdot F=\operatorname{div} F=* \mathbf{d}\left(* F^{b}\right)$.

Lie Derivative

\square Dynamic definition: Let α be a k-form and X be a vector field with flow φ_{t}. The Lie derivative of α along X is

$$
£_{X} \alpha=\lim _{t \rightarrow 0} \frac{1}{t}\left[\left(\varphi_{t}^{*} \alpha\right)-\alpha\right]=\left.\frac{d}{d t} \varphi_{t}^{*} \alpha\right|_{t=0}
$$

Lie Derivative

\square Dynamic definition: Let α be a k-form and X be a vector field with flow φ_{t}. The Lie derivative of α along X is

$$
£_{X} \alpha=\lim _{t \rightarrow 0} \frac{1}{t}\left[\left(\varphi_{t}^{*} \alpha\right)-\alpha\right]=\left.\frac{d}{d t} \varphi_{t}^{*} \alpha\right|_{t=0}
$$

\square Extend to non-zero values of t :

$$
\frac{d}{d t} \varphi_{t}^{*} \alpha=\varphi_{t}^{*} £_{X} \alpha
$$

Lie Derivative

\square Dynamic definition: Let α be a k-form and X be a vector field with flow φ_{t}. The Lie derivative of α along X is

$$
£_{X} \alpha=\lim _{t \rightarrow 0} \frac{1}{t}\left[\left(\varphi_{t}^{*} \alpha\right)-\alpha\right]=\left.\frac{d}{d t} \varphi_{t}^{*} \alpha\right|_{t=0}
$$

\square Extend to non-zero values of t :

$$
\frac{d}{d t} \varphi_{t}^{*} \alpha=\varphi_{t}^{*} £_{X} \alpha
$$

\square Time-dependent vector fields

$$
\frac{d}{d t} \varphi_{t, s}^{*} \alpha=\varphi_{t, s}^{*} £_{X} \alpha
$$

Lie Derivative

\square Real Valued Functions. The Lie derivative of f along X is the directional derivative

$$
\begin{equation*}
£_{X} f=X[f]:=\mathbf{d} f \cdot X . \tag{1}
\end{equation*}
$$

Lie Derivative

\square Real Valued Functions. The Lie derivative of f along X is the directional derivative

$$
\begin{equation*}
£_{X} f=X[f]:=\mathbf{d} f \cdot X \tag{1}
\end{equation*}
$$

\square In coordinates

$$
£_{X} f=X^{i} \frac{\partial f}{\partial x^{i}}
$$

Lie Derivative

\square Real Valued Functions. The Lie derivative of f along X is the directional derivative

$$
\begin{equation*}
£_{X} f=X[f]:=\mathbf{d} f \cdot X \tag{1}
\end{equation*}
$$

\square In coordinates

$$
£_{X} f=X^{i} \frac{\partial f}{\partial x^{i}}
$$

\square Useful Notation.

$$
X=X^{i} \frac{\partial}{\partial x^{i}}
$$

Lie Derivative

\square Real Valued Functions. The Lie derivative of f along X is the directional derivative

$$
\begin{equation*}
£_{X} f=X[f]:=\mathbf{d} f \cdot X \tag{1}
\end{equation*}
$$

\square In coordinates

$$
£_{X} f=X^{i} \frac{\partial f}{\partial x^{i}}
$$

\square Useful Notation.

$$
X=X^{i} \frac{\partial}{\partial x^{i}}
$$

\square Operator notation: $X[f]=\mathbf{d} f \cdot X$

Lie Derivative

\square Real Valued Functions. The Lie derivative of f along X is the directional derivative

$$
\begin{equation*}
£_{X} f=X[f]:=\mathbf{d} f \cdot X \tag{1}
\end{equation*}
$$

\square In coordinates

$$
£_{X} f=X^{i} \frac{\partial f}{\partial x^{i}}
$$

\square Useful Notation.

$$
X=X^{i} \frac{\partial}{\partial x^{i}}
$$

\square Operator notation: $X[f]=\mathbf{d} f \cdot X$
\square The operator is a derivation; that is, the product rule holds.

Lie Derivative

\square Pull-back. If Y is a vector field on a manifold N and $\varphi: M \rightarrow N$ is a diffeomorphism, the pull-back $\varphi^{*} Y$ is a vector field on M defined by

$$
\left(\varphi^{*} Y\right)(m)=\left(T_{m} \varphi^{-1} \circ Y \circ \varphi\right)(m)
$$

Lie Derivative

$\square \mathrm{Pu}$ ull-back. If Y is a vector field on a manifold N and $\varphi: M \rightarrow N$ is a diffeomorphism, the pull-back $\varphi^{*} Y$ is a vector field on M defined by

$$
\left(\varphi^{*} Y\right)(m)=\left(T_{m} \varphi^{-1} \circ Y \circ \varphi\right)(m)
$$

\square Push-forward. For a diffeomorphism φ, the pushforward is defined, as for forms, by $\varphi_{*}=\left(\varphi^{-1}\right)^{*}$.

Lie Derivative

$\square \mathrm{Pu}$ ull-back. If Y is a vector field on a manifold N and $\varphi: M \rightarrow N$ is a diffeomorphism, the pull-back $\varphi^{*} Y$ is a vector field on M defined by

$$
\left(\varphi^{*} Y\right)(m)=\left(T_{m} \varphi^{-1} \circ Y \circ \varphi\right)(m)
$$

\square Push-forward. For a diffeomorphism φ, the pushforward is defined, as for forms, by $\varphi_{*}=\left(\varphi^{-1}\right)^{*}$.
\square Flows of X and $\varphi_{*} X$ related by conjugation.

Lie Derivative

Jacobi-Lie Bracket

\square The Lie derivative on functions is a derivation; conversely, derivations determine vector fields.

Jacobi-Lie Bracket

\square The Lie derivative on functions is a derivation; conversely, derivations determine vector fields.
\square The commutator is a derivation

$$
f \mapsto X[Y[f]]-Y[X[f]]=[X, Y][f],
$$

which determines the unique vector field $[X, Y]$ the Jacobi-Lie bracket of X and Y.

Jacobi-Lie Bracket

\square The Lie derivative on functions is a derivation; conversely, derivations determine vector fields.
\square The commutator is a derivation

$$
f \mapsto X[Y[f]]-Y[X[f]]=[X, Y][f],
$$

which determines the unique vector field $[X, Y]$ the Jacobi-Lie bracket of X and Y.
$\square £_{X} Y=[X, Y]$, Lie derivative of Y along X.

Jacobi-Lie Bracket

\square The Lie derivative on functions is a derivation; conversely, derivations determine vector fields.
\square The commutator is a derivation

$$
f \mapsto X[Y[f]]-Y[X[f]]=[X, Y][f],
$$

which determines the unique vector field $[X, Y]$ the Jacobi-Lie bracket of X and Y.
$\square £_{X} Y=[X, Y]$, Lie derivative of Y along X.
\square The analog of the Lie derivative formula holds.

Jacobi-Lie Bracket

\square The Lie derivative on functions is a derivation; conversely, derivations determine vector fields.
\square The commutator is a derivation

$$
f \mapsto X[Y[f]]-Y[X[f]]=[X, Y][f],
$$

which determines the unique vector field $[X, Y]$ the Jacobi-Lie bracket of X and Y.
$\square £_{X} Y=[X, Y]$, Lie derivative of Y along X.
\square The analog of the Lie derivative formula holds.
\square Coordinates:
$\left(£_{X} Y\right)^{j}=X^{i} \frac{\partial Y^{j}}{\partial x^{i}}-Y^{i} \frac{\partial X^{j}}{\partial x^{i}}=(X \cdot \nabla) Y^{j}-(Y \cdot \nabla) X^{j}$,

Jacobi-Lie Bracket

\square The formula for $[X, Y]=£_{X} Y$ can be remembered by writing

$$
\left[X^{i} \frac{\partial}{\partial x^{i}}, Y^{j} \frac{\partial}{\partial x^{j}}\right]=X^{i} \frac{\partial Y^{j}}{\partial x^{i}} \frac{\partial}{\partial x^{j}}-Y^{j} \frac{\partial X^{i}}{\partial x^{j}} \frac{\partial}{\partial x^{i}} .
$$

Algebraic Approach.

\square Program: Extend the definition of the Lie derivative from functions and vector fields to differential forms, by requiring that the Lie derivative be a derivation

Algebraic Approach.

\square Program: Extend the definition of the Lie derivative from functions and vector fields to differential forms, by requiring that the Lie derivative be a derivation
\square Example. For a 1-form α,

$$
£_{X}\langle\alpha, Y\rangle=\left\langle £_{X} \alpha, Y\right\rangle+\left\langle\alpha, £_{X} Y\right\rangle,
$$

where X, Y are vector fields and $\langle\alpha, Y\rangle=\alpha(Y)$.

Algebraic Approach.

\square Program: Extend the definition of the Lie derivative from functions and vector fields to differential forms, by requiring that the Lie derivative be a derivation
\square Example. For a 1-form α,

$$
£_{X}\langle\alpha, Y\rangle=\left\langle £_{X} \alpha, Y\right\rangle+\left\langle\alpha, £_{X} Y\right\rangle,
$$

where X, Y are vector fields and $\langle\alpha, Y\rangle=\alpha(Y)$.
\square More generally, determine $£_{X} \alpha$ by

$$
£_{X}\left(\alpha\left(Y_{1}, \ldots, Y_{k}\right)\right)
$$

$$
=\left(£_{X} \alpha\right)\left(Y_{1}, \ldots, Y_{k}\right)+\sum_{i=1}^{k} \alpha\left(Y_{1}, \ldots, £_{X} Y_{i}, \ldots, Y_{k}\right)
$$

Equivalence

\square The dynamic and algebraic definitions of the Lie derivative of a differential k-form are equivalent.

Equivalence

\square The dynamic and algebraic definitions of the Lie derivative of a differential k-form are equivalent.
\square The Lie derivative formalism holds for all tensors, not just differential forms.

Equivalence

\square The dynamic and algebraic definitions of the Lie derivative of a differential k-form are equivalent.
\square The Lie derivative formalism holds for all tensors, not just differential forms.
\square Very useful in all areas of mechanics: eg, the rate of strain tensor in elasticity is a Lie derivative and the vorticity advection equation in fluid dynamics are both Lie derivative equations.

Properties

\square Cartan's Magic Formula. For X a vector field and α a k-form

$$
£_{X} \alpha=\mathbf{d i}_{X} \alpha+\mathbf{i}_{X} \mathbf{d} \alpha,
$$

Properties

\square Cartan's Magic Formula. For X a vector field and α a k-form

$$
£_{X} \alpha=\mathbf{d i}_{X} \alpha+\mathbf{i}_{X} \mathbf{d} \alpha
$$

\square In the "hook" notation,

$$
\left.\left.£_{X} \alpha=\mathbf{d}(X\lrcorner \alpha\right)+X\right\lrcorner \mathbf{d} \alpha .
$$

Properties

\square Cartan's Magic Formula. For X a vector field and α a k-form

$$
£_{X} \alpha=\mathbf{d i}_{X} \alpha+\mathbf{i}_{X} \mathbf{d} \alpha
$$

\square In the "hook" notation,

$$
\left.\left.£_{X} \alpha=\mathbf{d}(X\lrcorner \alpha\right)+X\right\lrcorner \mathbf{d} \alpha
$$

\square If $\varphi: M \rightarrow N$ is a diffeomorphism, then

$$
\varphi^{*} £_{Y} \beta=£_{\varphi^{*} Y} \varphi^{*} \beta
$$

for $Y \in \mathfrak{X}(N)$ and $\beta \in \Omega^{k}(M)$.

Properties

\square Cartan's Magic Formula. For X a vector field and α a k-form

$$
£_{X} \alpha=\mathbf{d i}_{X} \alpha+\mathbf{i}_{X} \mathbf{d} \alpha
$$

\square In the "hook" notation,

$$
\left.\left.£_{X} \alpha=\mathbf{d}(X\lrcorner \alpha\right)+X\right\lrcorner \mathbf{d} \alpha .
$$

\square If $\varphi: M \rightarrow N$ is a diffeomorphism, then

$$
\varphi^{*} £_{Y} \beta=£_{\varphi^{*} Y} \varphi^{*} \beta
$$

for $Y \in \mathfrak{X}(N)$ and $\beta \in \Omega^{k}(M)$.
\square Many other useful identities, such as

$$
\mathbf{d} \Theta(X, Y)=X[\Theta(Y)]-Y[\Theta(X)]-\Theta([X, Y])
$$

Volume Forms and Divergence

\square An n-manifold M is orientable if there is a nowherevanishing n-form μ on it; μ is a volume form

Volume Forms and Divergence

\square An n-manifold M is orientable if there is a nowherevanishing n-form μ on it; μ is a volume form
\square Two volume forms μ_{1} and μ_{2} on M define the same orientation if $\mu_{2}=f \mu_{1}$, where $f>0$.

Volume Forms and Divergence

\square An n-manifold M is orientable if there is a nowherevanishing n-form μ on it; μ is a volume form
\square Two volume forms μ_{1} and μ_{2} on M define the same orientation if $\mu_{2}=f \mu_{1}$, where $f>0$.
\square Oriented Basis. A basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of $T_{m} M$ is positively oriented relative to the volume form μ on M if $\mu(m)\left(v_{1}, \ldots, v_{n}\right)>0$.

Volume Forms and Divergence

\square An n-manifold M is orientable if there is a nowherevanishing n-form μ on it; μ is a volume form
\square Two volume forms μ_{1} and μ_{2} on M define the same orientation if $\mu_{2}=f \mu_{1}$, where $f>0$.
\square Oriented Basis. A basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of $T_{m} M$ is positively oriented relative to the volume form μ on M if $\mu(m)\left(v_{1}, \ldots, v_{n}\right)>0$.
\square Divergence. If μ is a volume form, there is a function, called the divergence of X relative to μ and denoted by $\operatorname{div}_{\mu}(X)$ or simply $\operatorname{div}(X)$, such that

$$
£_{X} \mu=\operatorname{div}_{\mu}(X) \mu
$$

Volume Forms and Divergence

\square Dynamic approach to Lie derivatives $\Rightarrow \operatorname{div}_{\mu}(X)=0$ if and only if $F_{t}^{*} \mu=\mu$, where F_{t} is the flow of X (that is, F_{t} is volume preserving.)

Volume Forms and Divergence

\square Dynamic approach to Lie derivatives $\Rightarrow \operatorname{div}_{\mu}(X)=0$ if and only if $F_{t}^{*} \mu=\mu$, where F_{t} is the flow of X (that is, F_{t} is volume preserving.)
\square If $\varphi: M \rightarrow M$, there is a function, called the Jacobian of φ and denoted by $J_{\mu}(\varphi)$ or simply $J(\varphi)$, such that

$$
\varphi^{*} \mu=J_{\mu}(\varphi) \mu
$$

Volume Forms and Divergence

\square Dynamic approach to Lie derivatives $\Rightarrow \operatorname{div}_{\mu}(X)=0$ if and only if $F_{t}^{*} \mu=\mu$, where F_{t} is the flow of X (that is, F_{t} is volume preserving.)
\square If $\varphi: M \rightarrow M$, there is a function, called the Jacobian of φ and denoted by $J_{\mu}(\varphi)$ or simply $J(\varphi)$, such that

$$
\varphi^{*} \mu=J_{\mu}(\varphi) \mu .
$$

\square Consequence: φ is volume preserving if and only if $J_{\mu}(\varphi)=1$.

Frobenius' Theorem

\square A vector subbundle (a regular distribution) $E \subset T M$ is involutive if for any two vector fields X, Y on M with values in E, the Jacobi-Lie bracket $[X, Y]$ is also a vector field with values in E.

Frobenius' Theorem

\square A vector subbundle (a regular distribution) $E \subset T M$ is involutive if for any two vector fields X, Y on M with values in E, the Jacobi-Lie bracket $[X, Y]$ is also a vector field with values in E.
$\square E$ is integrable if for each $m \in M$ there is a local submanifold of M containing m such that its tangent bundle equals E restricted to this submanifold.

Frobenius' Theorem

\square A vector subbundle (a regular distribution) $E \subset T M$ is involutive if for any two vector fields X, Y on M with values in E, the Jacobi-Lie bracket $[X, Y]$ is also a vector field with values in E.
$\square E$ is integrable if for each $m \in M$ there is a local submanifold of M containing m such that its tangent bundle equals E restricted to this submanifold.
\square If E is integrable, the local integral manifolds can be extended to a maximal integral manifold. The collection of these forms a foliation.

Frobenius' Theorem

\square A vector subbundle (a regular distribution) $E \subset T M$ is involutive if for any two vector fields X, Y on M with values in E, the Jacobi-Lie bracket $[X, Y]$ is also a vector field with values in E.
$\square E$ is integrable if for each $m \in M$ there is a local submanifold of M containing m such that its tangent bundle equals E restricted to this submanifold.
\square If E is integrable, the local integral manifolds can be extended to a maximal integral manifold. The collection of these forms a foliation.
\square Frobenius theorem: E is involutive if and only if it is integrable.

Stokes' Theorem

\square Idea: Integral of an n-form μ on an oriented n-manifold M : pick a covering by coordinate charts and sum up the ordinary integrals of $f\left(x^{1}, \ldots, x^{n}\right) d x^{1} \cdots d x^{n}$, where

$$
\mu=f\left(x^{1}, \ldots, x^{n}\right) d x^{1} \wedge \cdots \wedge d x^{n}
$$

(don't count overlaps twice).

Stokes' Theorem

\square Idea: Integral of an n-form μ on an oriented n-manifold M : pick a covering by coordinate charts and sum up the ordinary integrals of $f\left(x^{1}, \ldots, x^{n}\right) d x^{1} \cdots d x^{n}$, where

$$
\mu=f\left(x^{1}, \ldots, x^{n}\right) d x^{1} \wedge \cdots \wedge d x^{n}
$$

(don't count overlaps twice).
\square The change of variables formula guarantees that the result, denoted by $\int_{M} \mu$, is well-defined.

Stokes' Theorem

\square Idea: Integral of an n-form μ on an oriented n-manifold M : pick a covering by coordinate charts and sum up the ordinary integrals of $f\left(x^{1}, \ldots, x^{n}\right) d x^{1} \cdots d x^{n}$, where

$$
\mu=f\left(x^{1}, \ldots, x^{n}\right) d x^{1} \wedge \cdots \wedge d x^{n}
$$

(don't count overlaps twice).
\square The change of variables formula guarantees that the result, denoted by $\int_{M} \mu$, is well-defined.
\square Oriented manifold with boundary: the boundary, ∂M, inherits a compatible orientation: generalizes the relation between the orientation of a surface and its boundary in the classical Stokes' theorem in \mathbb{R}^{3}.

Stokes' Theorem

Stokes' Theorem

\square Stokes’ Theorem Suppose that M is a compact, oriented k-dimensional manifold with boundary ∂M. Let α be a smooth $(k-1)$-form on M. Then

$$
\int_{M} \mathbf{d} \alpha=\int_{\partial M} \alpha
$$

Stokes' Theorem

\square Stokes’ Theorem Suppose that M is a compact, oriented k-dimensional manifold with boundary ∂M. Let α be a smooth $(k-1)$-form on M. Then

$$
\int_{M} \mathbf{d} \alpha=\int_{\partial M} \alpha
$$

\square Special cases: The classical vector calculus theorems of Green, Gauss and Stokes.

Stokes' Theorem

(a) Fundamental Theorem of Calculus.

$$
\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)
$$

(b) Green's Theorem. For a region $\Omega \subset \mathbb{R}^{2}$,

$$
\iint_{\Omega}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x d y=\int_{\partial \Omega} P d x+Q d y
$$

(c) Divergence Theorem. For a region $\Omega \subset \mathbb{R}^{3}$,

$$
\iiint_{\Omega} \operatorname{div} \mathbf{F} d V=\iint_{\partial \Omega} \mathbf{F} \cdot n d A
$$

Stokes' Theorem

(d) Classical Stokes' Theorem. For a surface $S \subset \mathbb{R}^{3}$,

$$
\begin{aligned}
\iint_{S}\{ & \left(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}\right) d y \wedge d z \\
& \left.+\left(\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}\right) d z \wedge d x+\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x \wedge d y\right\} \\
= & \iint_{S} \mathbf{n} \cdot \operatorname{curl} \mathbf{F} d A=\int_{\partial S} P d x+Q d y+R d z
\end{aligned}
$$

where $\mathbf{F}=(P, Q, R)$.

Stokes' Theorem

\square Poincaré lemma: generalizes vector calculus theorems: if curl $\mathbf{F}=0$, then $\mathbf{F}=\nabla f$, and if $\operatorname{div} \mathbf{F}=0$, then $\mathbf{F}=\nabla \times \mathbf{G}$.

Stokes' Theorem

\square Poincaré lemma: generalizes vector calculus theorems: if curl $\mathbf{F}=0$, then $\mathbf{F}=\nabla f$, and if $\operatorname{div} \mathbf{F}=0$, then $\mathbf{F}=\nabla \times \mathbf{G}$.
\square Recall: if α is closed, then locally α is exact; that is, if $\mathbf{d} \alpha=0$, then locally $\alpha=\mathbf{d} \beta$ for some β.

Stokes' Theorem

\square Poincaré lemma: generalizes vector calculus theorems: if curl $\mathbf{F}=0$, then $\mathbf{F}=\nabla f$, and if $\operatorname{div} \mathbf{F}=0$, then $\mathbf{F}=\nabla \times \mathbf{G}$.
\square Recall: if α is closed, then locally α is exact; that is, if $\mathbf{d} \alpha=0$, then locally $\alpha=\mathbf{d} \beta$ for some β.
\square Calculus Examples: need not hold globally:

$$
\alpha=\frac{x d y-y d x}{x^{2}+y^{2}}
$$

is closed (or as a vector field, has zero curl) but is not exact (not the gradient of any function on \mathbb{R}^{2} minus the origin).

Change of Variables

$\square M$ and N oriented n-manifolds; $\varphi: M \rightarrow N$ an orientation-preserving diffeomorphism, α an n-form on N (with, say, compact support), then

$$
\int_{M} \varphi^{*} \alpha=\int_{N} \alpha
$$

Identities for Vector Fields and Forms

- Vector fields on M with the bracket $[X, Y]$ form a Lie algebra; that is, $[X, Y]$ is real bilinear, skew-symmetric, and Jacobi's identity holds:

$$
[[X, Y], Z]+[[Z, X], Y]+[[Y, Z], X]=0
$$

Locally,

$$
[X, Y]=(X \cdot \nabla) Y-(Y \cdot \nabla) X
$$

and on functions,

$$
[X, Y][f]=X[Y[f]]-Y[X[f]]
$$

- For diffeomorphisms φ and ψ,

$$
\varphi_{*}[X, Y]=\left[\varphi_{*} X, \varphi_{*} Y\right] \quad \text { and } \quad(\varphi \circ \psi)_{*} X=\varphi_{*} \psi_{*} X .
$$

$\circ(\alpha \wedge \beta) \wedge \gamma=\alpha \wedge(\beta \wedge \gamma)$ and $\alpha \wedge \beta=(-1)^{k l} \beta \wedge \alpha$ for k - and l-forms α and β.

- For maps φ and ψ,

$$
\varphi^{*}(\alpha \wedge \beta)=\varphi^{*} \alpha \wedge \varphi^{*} \beta \quad \text { and } \quad(\varphi \circ \psi)^{*} \alpha=\psi^{*} \varphi^{*} \alpha
$$

Identities for Vector Fields and Forms

$\circ \mathbf{d}$ is a real linear map on forms, $\mathbf{d d} \alpha=0$, and

$$
\mathbf{d}(\alpha \wedge \beta)=\mathbf{d} \alpha \wedge \beta+(-1)^{k} \alpha \wedge \mathbf{d} \beta
$$

for α a k-form.

- For α a k-form and X_{0}, \ldots, X_{k} vector fields,

$$
\begin{aligned}
& (\mathbf{d} \alpha)\left(X_{0}, \ldots, X_{k}\right)=\sum_{i=0}^{k}(-1)^{i} X_{i}\left[\alpha\left(X_{0}, \ldots, \hat{X}_{i}, \ldots, X_{k}\right)\right] \\
& \quad+\sum_{0 \leq i<j \leq k}(-1)^{i+j} \alpha\left(\left[X_{i}, X_{j}\right], X_{0}, \ldots, \hat{X}_{i}, \ldots, \hat{X}_{j}, \ldots, X_{k}\right)
\end{aligned}
$$

where \hat{X}_{i} means that X_{i} is omitted. Locally,

$$
\mathbf{d} \alpha(x)\left(v_{0}, \ldots, v_{k}\right)=\sum_{i=0}^{k}(-1)^{i} \mathbf{D} \alpha(x) \cdot v_{i}\left(v_{0}, \ldots, \hat{v}_{i}, \ldots, v_{k}\right)
$$

- For a map φ,

$$
\varphi^{*} \mathbf{d} \alpha=\mathbf{d} \varphi^{*} \alpha
$$

Identities for Vector Fields and Forms

- Poincaré Lemma. If $\mathbf{d} \alpha=0$, then the k-form α is locally exact; that is, there is a neighborhood U about each point on which $\alpha=\mathbf{d} \beta$. This statement is global on contractible manifolds or more generally if $H^{k}(M)=0$.
$\circ \mathbf{i}_{X} \alpha$ is real bilinear in X, α, and for $h: M \rightarrow \mathbb{R}$,

$$
\mathbf{i}_{h X} \alpha=h \mathbf{i}_{X} \alpha=\mathbf{i}_{X} h \alpha
$$

Also, $\mathbf{i}_{X} \mathbf{i}_{X} \alpha=0$ and

$$
\mathbf{i}_{X}(\alpha \wedge \beta)=\mathbf{i}_{X} \alpha \wedge \beta+(-1)^{k} \alpha \wedge \mathbf{i}_{X} \beta
$$

for α a k-form.

- For a diffeomorphism φ,

$$
\varphi^{*}\left(\mathbf{i}_{X} \alpha\right)=\mathbf{i}_{\varphi^{*} X}\left(\varphi^{*} \alpha\right), \quad \text { i.e., } \quad \varphi^{*}(X-\alpha)=\left(\varphi^{*} X\right)-\left(\varphi^{*} \alpha\right) .
$$

- If $f: M \rightarrow N$ is a mapping and Y is f-related to X, that is,

$$
T f \circ X=Y \circ f
$$

Identities for Vector Fields and Forms

then

$$
\left.\left.\mathbf{i}_{X} f^{*} \alpha=f^{*} \mathbf{i}_{Y} \alpha ; \quad \text { i.e., } \quad X\right\lrcorner\left(f^{*} \alpha\right)=f^{*}(Y\lrcorner \alpha\right) .
$$

- $£_{X} \alpha$ is real bilinear in X, α and

$$
£_{X}(\alpha \wedge \beta)=£_{X} \alpha \wedge \beta+\alpha \wedge £_{X} \beta
$$

- Cartan's Magic Formula:

$$
\left.\left.£_{X}^{\alpha}=\mathbf{d i}_{X} \alpha+\mathbf{i}_{X} \mathbf{d} \alpha=\mathbf{d}(X\lrcorner \alpha\right)+X\right\lrcorner \mathbf{d} \alpha
$$

- For a diffeomorphism φ,

$$
\varphi^{*} £_{X} \alpha=£_{\varphi^{*} X} \varphi^{*} \alpha
$$

If $f: M \rightarrow N$ is a mapping and Y is f-related to X, then

$$
£_{Y} f^{*} \alpha=f^{*} £_{X} \alpha
$$

Identities for Vector Fields and Forms

- $\quad\left(£_{X} \alpha\right)\left(X_{1}, \ldots, X_{k}\right)=X\left[\alpha\left(X_{1}, \ldots, X_{k}\right)\right]$

$$
-\sum_{i=0}^{k} \alpha\left(X_{1}, \ldots,\left[X, X_{i}\right], \ldots, X_{k}\right)
$$

Locally,

$$
\begin{aligned}
\left(£_{X} \alpha\right)(x) \cdot\left(v_{1}, \ldots, v_{k}\right)= & \left(\mathbf{D} \alpha_{x} \cdot X(x)\right)\left(v_{1}, \ldots, v_{k}\right) \\
& +\sum_{i=0}^{k} \alpha_{x}\left(v_{1}, \ldots, \mathbf{D} X_{x} \cdot v_{i}, \ldots, v_{k}\right) .
\end{aligned}
$$

- More identities:
- $£_{f X} \alpha=f £_{X} \alpha+\mathrm{d} f \wedge \mathbf{i}_{X} \alpha$;
- $£_{[X, Y]} \alpha=£_{X} £_{Y} \alpha-£_{Y} £_{X} \alpha$;
- $\mathbf{i}_{[X, Y]} \alpha=£_{X} \mathbf{i}_{Y} \alpha-\mathbf{i}_{Y} £_{X} \alpha ;$
- $£_{X} \mathbf{d} \alpha=\mathbf{d} £_{X} \alpha$;
- $£_{X} \mathbf{i}_{X} \alpha=\mathbf{i}_{X} £_{X} \alpha ;$

Identities for Vector Fields and Forms

$$
£_{X}(\alpha \wedge \beta)=£_{X} \alpha \wedge \beta+\alpha \wedge £_{X} \beta
$$

Identities for Vector Fields and Forms

- Coordinate formulas: for $X=X^{l} \partial / \partial x^{l}$, and

$$
\alpha=\alpha_{i_{1} \ldots i_{k}} d x^{i_{1}} \wedge \cdots \wedge d x^{i_{k}}
$$

where $i_{1}<\cdots<i_{k}$:

$$
\begin{gathered}
\mathbf{d} \alpha=\left(\frac{\partial \alpha_{i_{1} \ldots i_{k}}}{\partial x^{l}}\right) d x^{l} \wedge d x^{i_{1}} \wedge \cdots \wedge d x^{i_{k}} \\
\mathbf{i}_{X} \alpha=X^{l} \alpha_{l i_{2} \ldots i_{k}} d x^{i_{2}} \wedge \cdots \wedge d x^{i_{k}}, \\
£_{X} \alpha=X^{l}\left(\frac{\partial \alpha_{i_{1} \ldots i_{k}}}{\partial x^{l}}\right) d x^{i_{1}} \wedge \cdots \wedge d x^{i_{k}} \\
+\alpha_{l i_{2} \ldots i_{k}}\left(\frac{\partial X^{l}}{\partial x^{i_{1}}}\right) d x^{i_{1}} \wedge d x^{i_{2}} \wedge \cdots \wedge d x^{i_{k}}+\ldots
\end{gathered}
$$

