

Differential Forms and Stokes' Theorem

Jerrold E. Marsden

Control and Dynamical Systems, Caltech http://www.cds.caltech.edu/~marsden/

□ Main idea: Generalize the basic operations of vector calculus, div, grad, curl, and the integral theorems of *Green, Gauss, and Stokes* to manifolds of arbitrary dimension.

□ Main idea: Generalize the basic operations of vector calculus, div, grad, curl, and the integral theorems of *Green, Gauss, and Stokes* to manifolds of arbitrary dimension.

□ 1-forms. The term "1-form" is used in two ways they are either members of a particular cotangent space T_m^*M or else, analogous to a vector field, an assignment of a covector in T_m^*M to each $m \in M$.

□ Main idea: Generalize the basic operations of vector calculus, div, grad, curl, and the integral theorems of *Green, Gauss, and Stokes* to manifolds of arbitrary dimension.

□ 1-forms. The term "1-form" is used in two ways they are either members of a particular cotangent space T_m^*M or else, analogous to a vector field, an assignment of a covector in T_m^*M to each $m \in M$.

□ Basic example: differential of a real-valued function.

□ Main idea: Generalize the basic operations of vector calculus, div, grad, curl, and the integral theorems of *Green, Gauss, and Stokes* to manifolds of arbitrary dimension.

□ 1-forms. The term "1-form" is used in two ways they are either members of a particular cotangent space T_m^*M or else, analogous to a vector field, an assignment of a covector in T_m^*M to each $m \in M$.

 \Box Basic example: differential of a real-valued function.

 $\square 2$ -form Ω : a map $\Omega(m) : T_m M \times T_m M \to \mathbb{R}$ that assigns to each point $m \in M$ a skew-symmetric bilinear form on the tangent space $T_m M$ to M at m.

\Box A k-form α (or differential form of degree k) is a map

 $\alpha(m): T_m M \times \cdots \times T_m M(k \text{ factors}) \to \mathbb{R},$ which, for each $m \in M$, is a skew-symmetric k-multilinear map on the tangent space $T_m M$ to M at m.

- \Box A k-form α (or differential form of degree k) is a map
- $\alpha(m): T_m M \times \cdots \times T_m M(k \text{ factors}) \to \mathbb{R},$ which, for each $m \in M$, is a skew-symmetric k-multilinear map on the tangent space $T_m M$ to M at m. \Box Without the skew-symmetry assumption, α would be a (0, k)-tensor.

- \Box A k-form α (or differential form of degree k) is a map
 - $\alpha(m): T_m M \times \cdots \times T_m M(k \text{ factors}) \to \mathbb{R},$ which, for each $m \in M$, is a skew-symmetric k-multilinear map on the tangent space $T_m M$ to M at m.
- □ Without the skew-symmetry assumption, α would be a (0, k)-**tensor**.
- \Box A map $\alpha : V \times \cdots \times V$ (V is a vector space and there are k factors) $\rightarrow \mathbb{R}$ is **multilinear** when it is linear in each of its factors.

- \Box A k-form α (or differential form of degree k) is a map
 - $\alpha(m): T_m M \times \cdots \times T_m M(k \text{ factors}) \to \mathbb{R},$ which, for each $m \in M$, is a skew-symmetric k-multilinear map on the tangent space $T_m M$ to M at m.
- □ Without the skew-symmetry assumption, α would be a (0, k)-**tensor**.
- \Box A map $\alpha : V \times \cdots \times V$ (V is a vector space and there are k factors) $\rightarrow \mathbb{R}$ is **multilinear** when it is linear in each of its factors.
- \Box It is is **skew** (or **alternating**) when it changes sign whenever two of its arguments are interchanged

□ Why is skew-symmetry important? Some examples where it is implicitly used

- □ Why is skew-symmetry important? Some examples where it is implicitly used
 - Determinants and integration: Jacobian determinants in the change of variables theorem.

- □ Why is skew-symmetry important? Some examples where it is implicitly used
 - Determinants and integration: Jacobian determinants in the change of variables theorem.
 - ${\rm \circ}$ Cross products and the curl

- □ Why is skew-symmetry important? Some examples where it is implicitly used
 - Determinants and integration: Jacobian determinants in the change of variables theorem.
 - Cross products and the curl
 - Orientation or "handedness"

 \Box Let x^1, \ldots, x^n denote coordinates on M, let $\{e_1, \ldots, e_n\} = \{\partial/\partial x^1, \ldots, \partial/\partial x^n\}$

be the corresponding basis for $T_m M$.

□ Let x¹,..., xⁿ denote coordinates on M, let
{e₁,..., e_n} = {∂/∂x¹,...,∂/∂xⁿ}
be the corresponding basis for T_mM.
□ Let {e¹,..., eⁿ} = {dx¹,...,dxⁿ} be the dual basis
for T_m^{*}M.

$$\Omega_m(v,w) = \Omega_{ij}(m)v^i w^j,$$

where

$$\Omega_{ij}(m) = \Omega_m \left(\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j} \right),$$

$$\Omega_m(v,w) = \Omega_{ij}(m)v^i w^j,$$

where

$$\Omega_{ij}(m) = \Omega_m \left(\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j} \right),\,$$

 \Box Similarly for *k*-forms.

□ If α is a (0, k)-tensor on a manifold M and β is a (0, l)-tensor, their **tensor product** (sometimes called the **outer product**), $\alpha \otimes \beta$ is the (0, k + l)-tensor on M defined by

$$(\alpha \otimes \beta)_m(v_1, \dots, v_{k+l})$$

= $\alpha_m(v_1, \dots, v_k)\beta_m(v_{k+1}, \dots, v_{k+l})$
at each point $m \in M$.

□ If α is a (0, k)-tensor on a manifold M and β is a (0, l)-tensor, their **tensor product** (sometimes called the **outer product**), $\alpha \otimes \beta$ is the (0, k + l)-tensor on M defined by

$$(lpha \otimes eta)_m(v_1, \dots, v_{k+l}) \ = lpha_m(v_1, \dots, v_k) eta_m(v_{k+1}, \dots, v_{k+l})$$

at each point $m \in M$.

 \Box Outer product of two vectors is a *matrix*

□ If t is a (0, p)-tensor, define the **alternation operator** A acting on t by

$$\mathbf{A}(t)(v_1,\ldots,v_p) = \frac{1}{p!} \sum_{\pi \in S_p} \operatorname{sgn}(\pi) t(v_{\pi(1)},\ldots,v_{\pi(p)}),$$

where $sgn(\pi)$ is the **sign** of the permutation π ,

$$\operatorname{sgn}(\pi) = \begin{cases} +1 \text{ if } \pi \text{ is even }, \\ -1 \text{ if } \pi \text{ is odd }, \end{cases}$$

and S_p is the group of all permutations of the set $\{1, 2, \ldots, p\}$.

□ If t is a (0, p)-tensor, define the **alternation operator** A acting on t by

$$\mathbf{A}(t)(v_1,\ldots,v_p) = \frac{1}{p!} \sum_{\pi \in S_p} \operatorname{sgn}(\pi) t(v_{\pi(1)},\ldots,v_{\pi(p)}),$$

where $sgn(\pi)$ is the **sign** of the permutation π ,

$$\operatorname{sgn}(\pi) = \begin{cases} +1 \text{ if } \pi \text{ is even }, \\ -1 \text{ if } \pi \text{ is odd }, \end{cases}$$

and S_p is the group of all permutations of the set $\{1, 2, \ldots, p\}$.

 \Box The operator **A** therefore *skew-symmetrizes p*-multilinear maps.

□ If α is a k-form and β is an *l*-form on M, their **wedge product** $\alpha \land \beta$ is the (k + l)-form on M defined by

$$\alpha \wedge \beta = \frac{(k+l)!}{k! \, l!} \mathbf{A}(\alpha \otimes \beta).$$

 $\Box \text{ If } \alpha \text{ is a } k \text{-form and } \beta \text{ is an } l \text{-form on } M, \text{ their } wedge$ $product \ \alpha \wedge \beta \text{ is the } (k+l) \text{-form on } M \text{ defined by}$

$$\alpha \wedge \beta = \frac{(k+l)!}{k! \, l!} \mathbf{A}(\alpha \otimes \beta).$$

□ One has to be careful here as some authors use different conventions.

 $\Box \text{ If } \alpha \text{ is a } k \text{-form and } \beta \text{ is an } l \text{-form on } M, \text{ their } wedge$ $product \ \alpha \land \beta \text{ is the } (k+l) \text{-form on } M \text{ defined by}$

$$\alpha \wedge \beta = \frac{(k+l)!}{k! \, l!} \mathbf{A}(\alpha \otimes \beta).$$

- □ One has to be careful here as some authors use different conventions.
- **Examples:** if α and β are one-forms, then $(\alpha \wedge \beta)(v_1, v_2) = \alpha(v_1)\beta(v_2) - \alpha(v_2)\beta(v_1),$

 $\Box \text{ If } \alpha \text{ is a } k \text{-form and } \beta \text{ is an } l \text{-form on } M, \text{ their } wedge$ $product \ \alpha \land \beta \text{ is the } (k+l) \text{-form on } M \text{ defined by}$ $\alpha \land \beta = \frac{(k+l)!}{k! \, l!} \mathbf{A}(\alpha \otimes \beta).$

One has to be careful here as some authors use different conventions.

Examples: if α and β are one-forms, then $(\alpha \wedge \beta)(v_1, v_2) = \alpha(v_1)\beta(v_2) - \alpha(v_2)\beta(v_1),$

 \Box If α is a 2-form and β is a 1-form,

$$(\alpha \wedge \beta)(v_1, v_2, v_3)$$

= $\alpha(v_1, v_2)\beta(v_3) - \alpha(v_1, v_3)\beta(v_2) + \alpha(v_2, v_3)\beta(v_1).$

□ Wedge product properties: (i) Associative: $\alpha \land (\beta \land \gamma) = (\alpha \land \beta) \land \gamma$. (ii) Bilinear:

$$(a\alpha_1 + b\alpha_2) \wedge \beta = a(\alpha_1 \wedge \beta) + b(\alpha_2 \wedge \beta),$$

$$\alpha \wedge (c\beta_1 + d\beta_2) = c(\alpha \wedge \beta_1) + d(\alpha \wedge \beta_2).$$

(iii) **Anticommutative:** $\alpha \wedge \beta = (-1)^{kl}\beta \wedge \alpha$, where α is a k-form and β is an l-form.

□ Wedge product properties: (i) Associative: $\alpha \land (\beta \land \gamma) = (\alpha \land \beta) \land \gamma$. (ii) Bilinear:

$$(a\alpha_1 + b\alpha_2) \wedge \beta = a(\alpha_1 \wedge \beta) + b(\alpha_2 \wedge \beta),$$

$$\alpha \wedge (c\beta_1 + d\beta_2) = c(\alpha \wedge \beta_1) + d(\alpha \wedge \beta_2).$$

(iii) **Anticommutative:** $\alpha \wedge \beta = (-1)^{kl}\beta \wedge \alpha$, where α is a k-form and β is an l-form.

 \Box Coordinate Representation: Use dual basis dx^i ; a k-form can be written

$$\alpha = \alpha_{i_1 \dots i_k} dx^{i_1} \wedge \dots \wedge dx^{i_k},$$

where the sum is over all i_j satisfying $i_1 < \cdots < i_k$.

 $\Box \varphi : M \to N$, a smooth map and α a k-form on N.

 $\Box \varphi : M \to N, \text{ a smooth map and } \alpha \text{ a } k \text{-form on } N.$ $\Box \textbf{Pull-back:} \varphi^* \alpha \text{ of } \alpha \text{ by } \varphi: \text{ the } k \text{-form on } M$ $(\varphi^* \alpha) \quad (w_1, \dots, w_k) = \alpha \quad (T, (\varphi, w_1, \dots, T, (\varphi, w_k)))$

 $(\varphi^*\alpha)_m(v_1,\ldots,v_k)=\alpha_{\varphi(m)}(T_m\varphi\cdot v_1,\ldots,T_m\varphi\cdot v_k).$

 $\Box \varphi : M \to N, \text{ a smooth map and } \alpha \text{ a } k\text{-form on } N.$ $\Box \textbf{Pull-back: } \varphi^* \alpha \text{ of } \alpha \text{ by } \varphi \text{: the } k\text{-form on } M$ $(\varphi^* \alpha)_m(v_1, \dots, v_k) = \alpha_{\varphi(m)}(T_m \varphi \cdot v_1, \dots, T_m \varphi \cdot v_k).$ $\Box \textbf{Push-forward} \text{ (if } \varphi \text{ is a diffeomorphism):}$ $\varphi_* = (\varphi^{-1})^*.$

 $\Box \varphi : M \to N, \text{ a smooth map and } \alpha \text{ a } k \text{-form on } N.$ $\Box \textbf{Pull-back: } \varphi^* \alpha \text{ of } \alpha \text{ by } \varphi \text{: the } k \text{-form on } M$ $(\varphi^* \alpha)_m(v_1, \dots, v_k) = \alpha_{\varphi(m)}(T_m \varphi \cdot v_1, \dots, T_m \varphi \cdot v_k).$ $\Box \textbf{Push-forward} \text{ (if } \varphi \text{ is a diffeomorphism):}$ $\varphi_* = (\varphi^{-1})^*.$

 \Box The pull-back of a wedge product is the wedge product of the pull-backs:

$$\varphi^*(\alpha \wedge \beta) = \varphi^* \alpha \wedge \varphi^* \beta.$$

Interior Products

 \Box Let α be a k-form on a manifold M and X a vector field.

Interior Products

- \Box Let α be a k-form on a manifold M and X a vector field.
- □ The *interior product* $\mathbf{i}_X \alpha$ (sometimes called the *contraction* of X and α and written, using the "hook" notation, as $X \perp \alpha$) is defined by

$$(\mathbf{i}_X\alpha)_m(v_2,\ldots,v_k)=\alpha_m(X(m),v_2,\ldots,v_k).$$

Interior Products

- \Box Let α be a k-form on a manifold M and X a vector field.
- □ The *interior product* $\mathbf{i}_X \alpha$ (sometimes called the *contraction* of X and α and written, using the "hook" notation, as $X \perp \alpha$) is defined by

$$(\mathbf{i}_X \alpha)_m(v_2,\ldots,v_k) = \alpha_m(X(m),v_2,\ldots,v_k).$$

Product Rule-Like Property. Let α be a k-form and β a 1-form on a manifold M. Then

$$\mathbf{i}_X(\alpha \wedge \beta) = (\mathbf{i}_X \alpha) \wedge \beta + (-1)^k \alpha \wedge (\mathbf{i}_X \beta).$$

or, in the hook notation,

$$X \, \sqcup \, (\alpha \land \beta) = (X \, \sqcup \, \alpha) \land \beta + (-1)^k \alpha \land (X \, \sqcup \, \beta).$$

Exterior Derivative

The *exterior derivative* $d\alpha$ of a k-form α is the (k+1)-form determined by the following properties:

Exterior Derivative

The *exterior derivative* dα of a k-form α is the (k + 1)-form determined by the following properties:
If α = f is a 0-form, then df is the differential of f.

The exterior derivative dα of a k-form α is the (k + 1)-form determined by the following properties:
If α = f is a 0-form, then df is the differential of f.
dα is *linear* in α—for all real numbers c₁ and c₂,
d(c₁α₁ + c₂α₂) = c₁dα₁ + c₂dα₂.

The exterior derivative dα of a k-form α is the (k + 1)-form determined by the following properties:
If α = f is a 0-form, then df is the differential of f.
dα is *linear* in α—for all real numbers c₁ and c₂,
d(c₁α₁ + c₂α₂) = c₁dα₁ + c₂dα₂.

• $\mathbf{d}\alpha$ satisfies the **product rule**—

$$\mathbf{d}(\alpha \wedge \beta) = \mathbf{d}\alpha \wedge \beta + (-1)^k \alpha \wedge \mathbf{d}\beta,$$

where α is a k-form and β is an l-form.

The exterior derivative dα of a k-form α is the (k + 1)-form determined by the following properties:
If α = f is a 0-form, then df is the differential of f.
dα is *linear* in α—for all real numbers c₁ and c₂,
d(c₁α₁ + c₂α₂) = c₁dα₁ + c₂dα₂.

• $\mathbf{d}\alpha$ satisfies the **product rule**—

$$\mathbf{d}(\alpha \wedge \beta) = \mathbf{d}\alpha \wedge \beta + (-1)^k \alpha \wedge \mathbf{d}\beta,$$

where α is a k-form and β is an *l*-form. • $\mathbf{d}^2 = 0$, that is, $\mathbf{d}(\mathbf{d}\alpha) = 0$ for any k-form α .

The *exterior derivative* dα of a k-form α is the (k + 1)-form determined by the following properties:
If α = f is a 0-form, then df is the differential of f.
dα is *linear* in α—for all real numbers c₁ and c₂,

 $\mathbf{d}(c_1\alpha_1 + c_2\alpha_2) = c_1\mathbf{d}\alpha_1 + c_2\mathbf{d}\alpha_2.$

• $\mathbf{d}\alpha$ satisfies the *product rule*—

$$\mathbf{d}(\alpha \wedge \beta) = \mathbf{d}\alpha \wedge \beta + (-1)^k \alpha \wedge \mathbf{d}\beta,$$

where α is a k-form and β is an l-form.

• $\mathbf{d}^2 = 0$, that is, $\mathbf{d}(\mathbf{d}\alpha) = 0$ for any k-form α .

• **d** is a *local operator*, that is, $\mathbf{d}\alpha(m)$ depends only on α restricted to any open neighborhood of m; that is, if U is open in M, then

$$\mathbf{d}(\alpha|U) = (\mathbf{d}\alpha)|U.$$

 \Box If α is a k-form given in coordinates by

 $\alpha = \alpha_{i_1 \dots i_k} dx^{i_1} \wedge \dots \wedge dx^{i_k} \quad (\text{sum on } i_1 < \dots < i_k),$

then the coordinate expression for the exterior derivative is

$$\mathbf{d}\alpha = \frac{\partial \alpha_{i_1...i_k}}{\partial x^j} dx^j \wedge dx^{i_1} \wedge \cdots \wedge dx^{i_k}.$$

with a sum over j and $i_1 < \cdots < i_k$

 \Box If α is a k-form given in coordinates by

 $\alpha = \alpha_{i_1 \dots i_k} dx^{i_1} \wedge \dots \wedge dx^{i_k} \quad (\text{sum on } i_1 < \dots < i_k),$

then the coordinate expression for the exterior derivative is

$$\mathbf{d}\alpha = \frac{\partial \alpha_{i_1\dots i_k}}{\partial x^j} dx^j \wedge dx^{i_1} \wedge \dots \wedge dx^{i_k}.$$

with a sum over j and $i_1 < \cdots < i_k$

 \Box This formula is easy to remember from the properties.

Properties.

• Exterior differentiation commutes with pull-back, that is,

$$\mathbf{d}(\varphi^*\alpha) = \varphi^*(\mathbf{d}\alpha),$$

where α is a k-form on a manifold N and $\varphi: M \to N$.

Properties.

• Exterior differentiation commutes with pull-back, that is,

$$\mathbf{d}(\varphi^*\alpha) = \varphi^*(\mathbf{d}\alpha),$$

where α is a k-form on a manifold N and $\varphi: M \to N$.

• A k-form α is called *closed* if $\mathbf{d}\alpha = 0$ and is *exact* if there is a (k-1)-form β such that $\alpha = \mathbf{d}\beta$.

Properties.

• Exterior differentiation commutes with pull-back, that is,

$$\mathbf{d}(\varphi^*\alpha) = \varphi^*(\mathbf{d}\alpha),$$

where α is a k-form on a manifold N and $\varphi: M \to N$.

- A k-form α is called *closed* if $\mathbf{d}\alpha = 0$ and is *exact* if there is a (k-1)-form β such that $\alpha = \mathbf{d}\beta$.
- $\mathbf{d}^2 = 0 \Rightarrow$ an exact form is closed (but the converse need not hold we recall the standard vector calculus example shortly)

Properties.

• Exterior differentiation commutes with pull-back, that is,

$$\mathbf{d}(\varphi^*\alpha) = \varphi^*(\mathbf{d}\alpha),$$

where α is a k-form on a manifold N and $\varphi: M \to N$.

- A k-form α is called *closed* if $\mathbf{d}\alpha = 0$ and is *exact* if there is a (k-1)-form β such that $\alpha = \mathbf{d}\beta$.
- $\mathbf{d}^2 = 0 \Rightarrow$ an exact form is closed (but the converse need not hold we recall the standard vector calculus example shortly)
- **Poincaré Lemma** A closed form is *locally exact*; that is, if $\mathbf{d}\alpha = 0$, there is a neighborhood about each point on which $\alpha = \mathbf{d}\beta$.

Sharp and Flat (Using standard coordinates in ℝ³)
(a) v^b = v¹ dx + v² dy + v³ dz, the one-form corresponding to the vector v = v¹e₁ + v²e₂ + v³e₃.
(b) α[‡] = α₁e₁ + α₂e₂ + α₃e₃, the vector corresponding to the one-form α = α₁ dx + α₂ dy + α₃ dz.

Sharp and Flat (Using standard coordinates in ℝ³)
(a) v^b = v¹ dx + v² dy + v³ dz, the one-form corresponding to the vector v = v¹e₁ + v²e₂ + v³e₃.
(b) α[‡] = α₁e₁ + α₂e₂ + α₃e₃, the vector corresponding to the one-form α = α₁ dx + α₂ dy + α₃ dz.

Hodge Star Operator

(a)
$$*1 = dx \wedge dy \wedge dz$$
.
(b) $*dx = dy \wedge dz$, $*dy = -dx \wedge dz$, $*dz = dx \wedge dy$,
 $*(dy \wedge dz) = dx$, $*(dx \wedge dz) = -dy$, $*(dx \wedge dy) = dz$.
(c) $*(dx \wedge dy \wedge dz) = 1$.

□ Sharp and Flat (Using standard coordinates in ℝ³)
(a) v^b = v¹ dx + v² dy + v³ dz, the one-form corresponding to the vector v = v¹e₁ + v²e₂ + v³e₃.
(b) α[‡] = α₁e₁ + α₂e₂ + α₃e₃, the vector corresponding to the one-form α = α₁ dx + α₂ dy + α₃ dz.

Hodge Star Operator

(a)
$$*1 = dx \wedge dy \wedge dz$$
.
(b) $*dx = dy \wedge dz$, $*dy = -dx \wedge dz$, $*dz = dx \wedge dy$,
 $*(dy \wedge dz) = dx$, $*(dx \wedge dz) = -dy$, $*(dx \wedge dy) = dz$.
(c) $*(dx \wedge dy \wedge dz) = 1$.

□ Cross Product and Dot Product (a) $v \times w = [*(v^{\flat} \wedge w^{\flat})]^{\ddagger}$. (b) $(v \cdot w)dx \wedge dy \wedge dz = v^{\flat} \wedge *(w^{\flat})$.

$\Box \text{ Gradient} \qquad \nabla f = \operatorname{grad} f = (\mathbf{d}f)^{\sharp}.$

 $\Box \operatorname{\mathbf{Gradient}} \quad \nabla f = \operatorname{grad} f = (\mathbf{d}f)^{\sharp}.$ $\Box \operatorname{\mathbf{Curl}} \quad \nabla \times F = \operatorname{curl} F = [*(\mathbf{d}F^{\flat})]^{\sharp}.$

 $\Box \operatorname{\mathbf{Gradient}} \quad \nabla f = \operatorname{grad} f = (\mathbf{d}f)^{\sharp}.$ $\Box \operatorname{\mathbf{Curl}} \quad \nabla \times F = \operatorname{curl} F = [*(\mathbf{d}F^{\flat})]^{\sharp}.$ $\Box \operatorname{\mathbf{Divergence}} \quad \nabla \cdot F = \operatorname{div} F = *\mathbf{d}(*F^{\flat}).$

Dynamic definition: Let α be a k-form and X be a vector field with flow φ_t . The *Lie derivative* of α along X is

$$\pounds_X \alpha = \lim_{t \to 0} \frac{1}{t} [(\varphi_t^* \alpha) - \alpha] = \frac{d}{dt} \varphi_t^* \alpha \Big|_{t=0}$$

Dynamic definition: Let α be a k-form and X be a vector field with flow φ_t . The *Lie derivative* of α along X is

$$\pounds_X \alpha = \lim_{t \to 0} \frac{1}{t} [(\varphi_t^* \alpha) - \alpha] = \frac{d}{dt} \varphi_t^* \alpha \Big|_{t=0}$$

 \Box Extend to non-zero values of t:

$$\frac{d}{dt}\varphi_t^*\alpha = \varphi_t^*\pounds_X\alpha.$$

Dynamic definition: Let α be a k-form and X be a vector field with flow φ_t . The *Lie derivative* of α along X is

$$\pounds_X \alpha = \lim_{t \to 0} \frac{1}{t} [(\varphi_t^* \alpha) - \alpha] = \frac{d}{dt} \varphi_t^* \alpha \Big|_{t=0}$$

 \Box Extend to non-zero values of t:

$$\frac{d}{dt}\varphi_t^*\alpha = \varphi_t^*\pounds_X\alpha.$$

Time-dependent vector fields

$$\frac{d}{dt}\varphi_{t,s}^*\alpha = \varphi_{t,s}^*\pounds_X\alpha.$$

 $\square \text{ Real Valued Functions. The } Lie \ derivative \\ of \ f \ along \ X \text{ is the } directional \ derivative \\ \end{matrix}$

$$\pounds_X f = X[f] := \mathbf{d}f \cdot X. \tag{1}$$

 $\square \text{ Real Valued Functions. The } Lie \ derivative \\ of \ f \ along \ X \text{ is the } directional \ derivative \\ \end{matrix}$

$$\pounds_X f = X[f] := \mathbf{d}f \cdot X. \tag{1}$$

 \Box In coordinates

$$\pounds_X f = X^i \frac{\partial f}{\partial x^i}.$$

 $\square \text{ Real Valued Functions. The } Lie \ derivative of f \ along X \text{ is the } directional \ derivative}$

$$\pounds_X f = X[f] := \mathbf{d}f \cdot X. \tag{1}$$

 \Box In coordinates

$$\pounds_X f = X^i \frac{\partial f}{\partial x^i}.$$

Useful Notation.

$$X = X^i \frac{\partial}{\partial x^i}.$$

 $\square \text{ Real Valued Functions. The } Lie \ derivative \\ of \ f \ along \ X \text{ is the } directional \ derivative \\ \end{matrix}$

$$\pounds_X f = X[f] := \mathbf{d}f \cdot X. \tag{1}$$

 \Box In coordinates

$$\pounds_X f = X^i \frac{\partial f}{\partial x^i}.$$

Useful Notation.

$$X = X^i \frac{\partial}{\partial x^i}.$$

 \Box **Operator notation:** $X[f] = \mathbf{d}f \cdot X$

 $\square \text{ Real Valued Functions. The } Lie \ derivative \\ of \ f \ along \ X \text{ is the } directional \ derivative \\ \end{matrix}$

$$\pounds_X f = X[f] := \mathbf{d}f \cdot X. \tag{1}$$

 \Box In coordinates

$$\pounds_X f = X^i \frac{\partial f}{\partial x^i}.$$

Useful Notation.

$$X = X^i \frac{\partial}{\partial x^i}.$$

 $\Box \text{ Operator notation: } X[f] = \mathbf{d}f \cdot X$

 \Box The operator is a *derivation*; that is, the product rule holds.

□ **Pull-back.** If Y is a vector field on a manifold N and $\varphi : M \to N$ is a diffeomorphism, the **pull-back** $\varphi^* Y$ is a vector field on M defined by

$$(\varphi^*Y)(m) = (T_m\varphi^{-1} \circ Y \circ \varphi)(m).$$

□ **Pull-back.** If Y is a vector field on a manifold N and $\varphi: M \to N$ is a diffeomorphism, the **pull-back** φ^*Y is a vector field on M defined by

$$(\varphi^*Y)(m) = (T_m\varphi^{-1} \circ Y \circ \varphi)(m).$$

□ Push-forward. For a diffeomorphism φ , the *push-forward* is defined, as for forms, by $\varphi_* = (\varphi^{-1})^*$.

□ **Pull-back.** If Y is a vector field on a manifold N and $\varphi: M \to N$ is a diffeomorphism, the **pull-back** φ^*Y is a vector field on M defined by

$$(\varphi^*Y)(m) = (T_m\varphi^{-1} \circ Y \circ \varphi)(m).$$

Push-forward. For a diffeomorphism φ, the *push-forward* is defined, as for forms, by φ_{*} = (φ⁻¹)*.
 Flows of X and φ_{*}X related by conjugation.

□ The Lie derivative on functions is a *derivation*; conversely, derivations determine vector fields.

- □ The Lie derivative on functions is a *derivation*; conversely, derivations determine vector fields.
- \Box The commutator is a derivation

$$f \mapsto X[Y[f]] - Y[X[f]] = [X, Y][f],$$

which determines the unique vector field [X, Y] the **Jacobi-Lie bracket** of X and Y.

- □ The Lie derivative on functions is a *derivation*; conversely, derivations determine vector fields.
- \Box The commutator is a derivation

$$f \mapsto X[Y[f]] - Y[X[f]] = [X, Y][f],$$

which determines the unique vector field [X, Y] the **Jacobi-Lie bracket** of X and Y.

 $\Box \pounds_X Y = [X, Y], \quad Lie \ derivative \ of Y \ along X.$

- □ The Lie derivative on functions is a *derivation*; conversely, derivations determine vector fields.
- \Box The commutator is a derivation

$$f \mapsto X[Y[f]] - Y[X[f]] = [X, Y][f],$$

which determines the unique vector field [X, Y] the **Jacobi-Lie bracket** of X and Y.

- $\Box \pounds_X Y = [X, Y], \quad Lie \ derivative \ of Y \ along X.$
- □ The analog of the Lie derivative formula holds.

- □ The Lie derivative on functions is a *derivation*; conversely, derivations determine vector fields.
- \Box The commutator is a derivation

 $f \mapsto X[Y[f]] - Y[X[f]] = [X, Y][f],$

- which determines the unique vector field [X, Y] the **Jacobi-Lie bracket** of X and Y.
- $\Box \pounds_X Y = [X, Y], \quad Lie \ derivative \ of Y \ along X.$
- \Box The analog of the Lie derivative formula holds.

Coordinates:

$$(\pounds_X Y)^j = X^i \frac{\partial Y^j}{\partial x^i} - Y^i \frac{\partial X^j}{\partial x^i} = (X \cdot \nabla) Y^j - (Y \cdot \nabla) X^j,$$

 \Box The formula for $[X, Y] = \pounds_X Y$ can be remembered by writing

$$\left[X^i \frac{\partial}{\partial x^i}, Y^j \frac{\partial}{\partial x^j}\right] = X^i \frac{\partial Y^j}{\partial x^i} \frac{\partial}{\partial x^j} - Y^j \frac{\partial X^i}{\partial x^j} \frac{\partial}{\partial x^i}.$$

Algebraic Approach.

Program: Extend the definition of the Lie derivative from functions and vector fields to differential forms, by requiring that the Lie derivative be a derivation

Algebraic Approach.

Program: Extend the definition of the Lie derivative from functions and vector fields to differential forms, by requiring that the Lie derivative be a derivation
 Example. For a 1-form α,

$$\pounds_X \langle \alpha, Y \rangle = \langle \pounds_X \alpha, Y \rangle + \langle \alpha, \pounds_X Y \rangle,$$

where X, Y are vector fields and $\langle \alpha, Y \rangle = \alpha(Y)$.

Algebraic Approach.

Program: Extend the definition of the Lie derivative from functions and vector fields to differential forms, by requiring that the Lie derivative be a derivation

 \Box Example. For a 1-form α ,

$$\pounds_X \langle \alpha, Y \rangle = \langle \pounds_X \alpha, Y \rangle + \langle \alpha, \pounds_X Y \rangle,$$

where X, Y are vector fields and $\langle \alpha, Y \rangle = \alpha(Y)$. \Box More generally, determine $\pounds_X \alpha$ by

$$\pounds_X(\alpha(Y_1,\ldots,Y_k))$$

= $(\pounds_X\alpha)(Y_1,\ldots,Y_k) + \sum_{i=1}^k \alpha(Y_1,\ldots,\pounds_XY_i,\ldots,Y_k).$

Equivalence

□ The dynamic and algebraic definitions of the Lie derivative of a differential k-form are equivalent.

Equivalence

□ The dynamic and algebraic definitions of the Lie derivative of a differential k-form are equivalent.

□ The Lie derivative formalism holds for all tensors, not just differential forms.

Equivalence

□ The dynamic and algebraic definitions of the Lie derivative of a differential k-form are equivalent.

- □ The Lie derivative formalism holds for all tensors, not just differential forms.
- □ Very useful in all areas of mechanics: eg, the rate of strain tensor in elasticity is a Lie derivative and the vorticity advection equation in fluid dynamics are both Lie derivative equations.

\Box Cartan's Magic Formula. For X a vector field and α a $k\text{-}\mathrm{form}$

$$\pounds_X \alpha = \mathbf{d} \mathbf{i}_X \alpha + \mathbf{i}_X \mathbf{d} \alpha,$$

Cartan's Magic Formula. For X a vector field and α a k-form

$$\pounds_X \alpha = \mathbf{d} \mathbf{i}_X \alpha + \mathbf{i}_X \mathbf{d} \alpha,$$

 \Box In the "hook" notation,

$$\pounds_X \alpha = \mathbf{d}(X \, \sqcup \, \alpha) + X \, \sqcup \, \mathbf{d}\alpha.$$

Cartan's Magic Formula. For X a vector field and α a k-form

$$\pounds_X \alpha = \mathbf{d} \mathbf{i}_X \alpha + \mathbf{i}_X \mathbf{d} \alpha,$$

 \Box In the "hook" notation,

$$\pounds_X \alpha = \mathbf{d}(X \, \lrcorner \, \alpha) + X \, \lrcorner \, \mathbf{d}\alpha.$$

 \Box If $\varphi: M \to N$ is a diffeomorphism, then

$$\varphi^* \pounds_Y \beta = \pounds_{\varphi^* Y} \varphi^* \beta$$

for $Y \in \mathfrak{X}(N)$ and $\beta \in \Omega^k(M)$.

Cartan's Magic Formula. For X a vector field and α a k-form

$$\pounds_X \alpha = \mathbf{d} \mathbf{i}_X \alpha + \mathbf{i}_X \mathbf{d} \alpha,$$

 \Box In the "hook" notation,

$$\pounds_X \alpha = \mathbf{d}(X \, \lrcorner \, \alpha) + X \, \lrcorner \, \mathbf{d}\alpha.$$

 $\Box \text{ If } \varphi : M \to N \text{ is a diffeomorphism, then}$ $\varphi^* \pounds_Y \beta = \pounds_{\varphi^* Y} \varphi^* \beta$ for $Y \in \mathfrak{X}(N)$ and $\beta \in \Omega^k(M)$. $\Box \text{ Many other useful identities, such as}$ $\mathbf{d} \Theta(X, Y) = X[\Theta(Y)] - Y[\Theta(X)] - \Theta([X, Y]).$

An *n*-manifold M is **orientable** if there is a nowherevanishing *n*-form μ on it; μ is a **volume form**

- An *n*-manifold M is **orientable** if there is a nowherevanishing *n*-form μ on it; μ is a **volume form**
- Two volume forms μ_1 and μ_2 on M define the same **orientation** if $\mu_2 = f\mu_1$, where f > 0.

- An *n*-manifold M is **orientable** if there is a nowherevanishing *n*-form μ on it; μ is a **volume form**
- Two volume forms μ_1 and μ_2 on M define the same **orientation** if $\mu_2 = f\mu_1$, where f > 0.
- **Oriented Basis.** A basis $\{v_1, \ldots, v_n\}$ of $T_m M$ is **positively oriented** relative to the volume form μ on M if $\mu(m)(v_1, \ldots, v_n) > 0$.

- □ An *n*-manifold M is **orientable** if there is a nowherevanishing *n*-form μ on it; μ is a **volume form**
- Two volume forms μ_1 and μ_2 on M define the same **orientation** if $\mu_2 = f\mu_1$, where f > 0.
- **Oriented Basis.** A basis $\{v_1, \ldots, v_n\}$ of $T_m M$ is *positively oriented* relative to the volume form μ on M if $\mu(m)(v_1, \ldots, v_n) > 0$.
- **Divergence.** If μ is a volume form, there is a function, called the *divergence* of X relative to μ and denoted by $\operatorname{div}_{\mu}(X)$ or simply $\operatorname{div}(X)$, such that

$$\pounds_X \mu = \operatorname{div}_\mu(X)\mu.$$

Dynamic approach to Lie derivatives $\Rightarrow \operatorname{div}_{\mu}(X) = 0$ if and only if $F_t^*\mu = \mu$, where F_t is the flow of X (that is, F_t is **volume preserving**.)

Dynamic approach to Lie derivatives $\Rightarrow \operatorname{div}_{\mu}(X) = 0$ if and only if $F_t^* \mu = \mu$, where F_t is the flow of X (that is, F_t is **volume preserving**.)

□ If $\varphi : M \to M$, there is a function, called the **Jacobian** of φ and denoted by $J_{\mu}(\varphi)$ or simply $J(\varphi)$, such that

$$arphi^*\mu=J_\mu(arphi)\mu.$$

- Dynamic approach to Lie derivatives $\Rightarrow \operatorname{div}_{\mu}(X) = 0$ if and only if $F_t^* \mu = \mu$, where F_t is the flow of X (that is, F_t is **volume preserving**.)
- □ If $\varphi : M \to M$, there is a function, called the **Jacobian** of φ and denoted by $J_{\mu}(\varphi)$ or simply $J(\varphi)$, such that

$$\varphi^*\mu = J_\mu(\varphi)\mu.$$

 $\square \text{ Consequence: } \varphi \text{ is volume preserving if and only if} \\ J_{\mu}(\varphi) = 1.$

□ A vector subbundle (a regular distribution) $E \subset TM$ is *involutive* if for any two vector fields X, Y on Mwith values in E, the Jacobi–Lie bracket [X, Y] is also a vector field with values in E.

□ A vector subbundle (a regular distribution) $E \subset TM$ is *involutive* if for any two vector fields X, Y on Mwith values in E, the Jacobi–Lie bracket [X, Y] is also a vector field with values in E.

 $\Box E$ is *integrable* if for each $m \in M$ there is a local submanifold of M containing m such that its tangent bundle equals E restricted to this submanifold.

- □ A vector subbundle (a regular distribution) $E \subset TM$ is *involutive* if for any two vector fields X, Y on Mwith values in E, the Jacobi–Lie bracket [X, Y] is also a vector field with values in E.
- $\Box E$ is *integrable* if for each $m \in M$ there is a local submanifold of M containing m such that its tangent bundle equals E restricted to this submanifold.
- \Box If E is integrable, the local integral manifolds can be extended to a maximal integral manifold. The collection of these forms a *foliation*.

- □ A vector subbundle (a regular distribution) $E \subset TM$ is *involutive* if for any two vector fields X, Y on Mwith values in E, the Jacobi–Lie bracket [X, Y] is also a vector field with values in E.
- $\Box E$ is *integrable* if for each $m \in M$ there is a local submanifold of M containing m such that its tangent bundle equals E restricted to this submanifold.
- \Box If E is integrable, the local integral manifolds can be extended to a maximal integral manifold. The collection of these forms a *foliation*.
- \Box Frobenius theorem: E is involutive if and only if it is integrable.

Idea: Integral of an *n*-form μ on an oriented *n*-manifold M: pick a covering by coordinate charts and sum up the ordinary integrals of $f(x^1, \ldots, x^n) dx^1 \cdots dx^n$, where

$$\mu = f(x^1, \dots, x^n) \, dx^1 \wedge \dots \wedge dx^n$$

(don't count overlaps twice).

Idea: Integral of an *n*-form μ on an oriented *n*-manifold M: pick a covering by coordinate charts and sum up the ordinary integrals of $f(x^1, \ldots, x^n) dx^1 \cdots dx^n$, where

$$\mu = f(x^1, \dots, x^n) \, dx^1 \wedge \dots \wedge dx^n$$

(don't count overlaps twice).

□ The change of variables formula guarantees that the result, denoted by $\int_M \mu$, is well-defined.

Idea: Integral of an *n*-form μ on an oriented *n*-manifold M: pick a covering by coordinate charts and sum up the ordinary integrals of $f(x^1, \ldots, x^n) dx^1 \cdots dx^n$, where

$$\mu = f(x^1, \dots, x^n) \, dx^1 \wedge \dots \wedge dx^n$$

(don't count overlaps twice).

- □ The change of variables formula guarantees that the result, denoted by $\int_M \mu$, is well-defined.
- □ Oriented manifold with boundary: the boundary, ∂M , inherits a compatible orientation: generalizes the relation between the orientation of a surface and its boundary in the classical Stokes' theorem in \mathbb{R}^3 .

Stokes' Theorem Suppose that M is a compact, oriented k-dimensional manifold with boundary ∂M . Let α be a smooth (k-1)-form on M. Then

$$\int_M \mathbf{d}\alpha = \int_{\partial M} \alpha.$$

Stokes' Theorem Suppose that M is a compact, oriented k-dimensional manifold with boundary ∂M . Let α be a smooth (k-1)-form on M. Then

$$\int_M \mathbf{d}\alpha = \int_{\partial M} \alpha.$$

□ Special cases: The classical vector calculus theorems of Green, Gauss and Stokes.

(a) Fundamental Theorem of Calculus.

$$\int_a^b f'(x) \, dx = f(b) - f(a).$$

(b) Green's Theorem. For a region $\Omega \subset \mathbb{R}^2$,

$$\iint_{\Omega} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx \, dy = \int_{\partial \Omega} P \, dx + Q \, dy.$$

(c) Divergence Theorem. For a region $\Omega \subset \mathbb{R}^3$,

$$\iiint_{\Omega} \operatorname{div} \mathbf{F} \, dV = \iint_{\partial \Omega} \mathbf{F} \cdot n \, dA$$

(d) Classical Stokes' Theorem. For a surface $S \subset \mathbb{R}^3$,

$$\begin{split} \iint_{S} \left\{ \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) dy \wedge dz \\ &+ \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) dz \wedge dx + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx \wedge dy \right\} \\ &= \iint_{S} \mathbf{n} \cdot \operatorname{curl} \mathbf{F} dA = \int_{\partial S} P \, dx + Q \, dy + R \, dz, \end{split}$$

where $\mathbf{F} = (P, Q, R)$.

Poincaré lemma: generalizes vector calculus theorems: if curl $\mathbf{F} = 0$, then $\mathbf{F} = \nabla f$, and if div $\mathbf{F} = 0$, then $\mathbf{F} = \nabla \times \mathbf{G}$.

Poincaré lemma: generalizes vector calculus theorems: if curl $\mathbf{F} = 0$, then $\mathbf{F} = \nabla f$, and if div $\mathbf{F} = 0$, then $\mathbf{F} = \nabla \times \mathbf{G}$.

□ Recall: if α is closed, then locally α is exact; that is, if $\mathbf{d}\alpha = 0$, then locally $\alpha = \mathbf{d}\beta$ for some β .

Poincaré lemma: generalizes vector calculus theorems: if curl $\mathbf{F} = 0$, then $\mathbf{F} = \nabla f$, and if div $\mathbf{F} = 0$, then $\mathbf{F} = \nabla \times \mathbf{G}$.

 $\square \text{ Recall: if } \alpha \text{ is closed, then locally } \alpha \text{ is exact; that} \\ \text{ is, if } \mathbf{d}\alpha = 0, \text{ then locally } \alpha = \mathbf{d}\beta \text{ for some } \beta.$

Calculus Examples: need not hold globally:

$$\alpha = \frac{xdy - ydx}{x^2 + y^2}$$

is closed (or as a vector field, has zero curl) but is not exact (not the gradient of any function on \mathbb{R}^2 minus the origin).

Change of Variables

 $\Box M$ and N oriented n-manifolds; $\varphi : M \to N$ an orientation-preserving diffeomorphism, α an n-form on N (with, say, compact support), then

$$\int_M \varphi^* \alpha = \int_N \alpha.$$

• Vector fields on M with the bracket [X, Y] form a *Lie algebra*; that is, [X, Y] is real bilinear, skew-symmetric, and *Jacobi's identity* holds:

$$[[X, Y], Z] + [[Z, X], Y] + [[Y, Z], X] = 0.$$

Locally,

$$[X,Y] = (X \cdot \nabla)Y - (Y \cdot \nabla)X,$$

and on functions,

$$[X, Y][f] = X[Y[f]] - Y[X[f]].$$

• For diffeomorphisms φ and ψ ,

$$\varphi_*[X,Y] = [\varphi_*X,\varphi_*Y]$$
 and $(\varphi \circ \psi)_*X = \varphi_*\psi_*X.$

• $(\alpha \wedge \beta) \wedge \gamma = \alpha \wedge (\beta \wedge \gamma)$ and $\alpha \wedge \beta = (-1)^{kl} \beta \wedge \alpha$ for k- and l-forms α and β .

• For maps φ and ψ ,

$$\varphi^*(\alpha \wedge \beta) = \varphi^* \alpha \wedge \varphi^* \beta$$
 and $(\varphi \circ \psi)^* \alpha = \psi^* \varphi^* \alpha$

• **d** is a real linear map on forms, $\mathbf{dd}\alpha = 0$, and $\mathbf{d}(\alpha \wedge \beta) = \mathbf{d}\alpha \wedge \beta + (-1)^k \alpha \wedge \mathbf{d}\beta$

for α a k-form.

• For α a k-form and X_0, \ldots, X_k vector fields,

$$(\mathbf{d}\alpha)(X_0, \dots, X_k) = \sum_{i=0}^k (-1)^i X_i[\alpha(X_0, \dots, \hat{X}_i, \dots, X_k)] + \sum_{0 \le i < j \le k} (-1)^{i+j} \alpha([X_i, X_j], X_0, \dots, \hat{X}_i, \dots, \hat{X}_j, \dots, X_k),$$

where \hat{X}_i means that X_i is omitted. Locally,

$$\mathbf{d}\alpha(x)(v_0,\ldots,v_k) = \sum_{i=0}^k (-1)^i \mathbf{D}\alpha(x) \cdot v_i(v_0,\ldots,\hat{v}_i,\ldots,v_k).$$

• For a map φ ,

$$\varphi^* \mathbf{d}\alpha = \mathbf{d}\varphi^* \alpha.$$

- **Poincaré Lemma.** If $\mathbf{d}\alpha = 0$, then the k-form α is locally exact; that is, there is a neighborhood U about each point on which $\alpha = \mathbf{d}\beta$. This statement is global on contractible manifolds or more generally if $H^k(M) = 0$.
- $\mathbf{i}_X \alpha$ is real bilinear in X, α , and for $h : M \to \mathbb{R}$,

$$\mathbf{i}_{hX}\alpha = h\mathbf{i}_X\alpha = \mathbf{i}_Xh\alpha.$$

Also,
$$\mathbf{i}_X \mathbf{i}_X \alpha = 0$$
 and
 $\mathbf{i}_X (\alpha \wedge \beta) = \mathbf{i}_X \alpha \wedge \beta + (-1)^k \alpha \wedge \mathbf{i}_X \beta$

for α a k-form.

• For a diffeomorphism φ ,

• If $f: M \to N$ is a mapping and Y is f-related to X, that is,

$$Tf \circ X = Y \circ f,$$

then

$$\mathbf{i}_X f^* \alpha = f^* \mathbf{i}_Y \alpha; \quad \text{i.e.}, \quad X ot (f^* \alpha) = f^* (Y ot \alpha).$$

• $\pounds_X \alpha$ is real bilinear in X, α and

$$\pounds_X(\alpha \wedge \beta) = \pounds_X \alpha \wedge \beta + \alpha \wedge \pounds_X \beta.$$

• Cartan's Magic Formula:

$$\pounds_X \alpha = \mathbf{d} \mathbf{i}_X \alpha + \mathbf{i}_X \mathbf{d} \alpha = \mathbf{d} (X \, \square \, \alpha) + X \, \square \, \mathbf{d} \alpha.$$

• For a diffeomorphism φ ,

$$\varphi^* \pounds_X \alpha = \pounds_{\varphi^* X} \varphi^* \alpha.$$

If $f: M \to N$ is a mapping and Y is f-related to X, then $\pounds_Y f^* \alpha = f^* \pounds_X \alpha.$

•
$$(\pounds_X \alpha)(X_1, \dots, X_k) = X[\alpha(X_1, \dots, X_k)]$$

 $-\sum_{i=0}^k \alpha(X_1, \dots, [X, X_i], \dots, X_k).$

Locally,

$$(\pounds_X \alpha)(x) \cdot (v_1, \dots, v_k) = (\mathbf{D}\alpha_x \cdot X(x))(v_1, \dots, v_k) + \sum_{i=0}^k \alpha_x(v_1, \dots, \mathbf{D}X_x \cdot v_i, \dots, v_k).$$

• More identities:

•
$$\pounds_{fX}\alpha = f\pounds_X\alpha + \mathbf{d}f \wedge \mathbf{i}_X\alpha;$$

•
$$\pounds_{[X,Y]}\alpha = \pounds_X \pounds_Y \alpha - \pounds_Y \pounds_X \alpha;$$

•
$$\mathbf{i}_{[X,Y]}\alpha = \pounds_X \mathbf{i}_Y \alpha - \mathbf{i}_Y \pounds_X \alpha$$

•
$$\pounds_X \mathbf{d}\alpha = \mathbf{d}\pounds_X \alpha;$$

•
$$\pounds_X \mathbf{i}_X \alpha = \mathbf{i}_X \pounds_X \alpha;$$

• $\pounds_X(\alpha \wedge \beta) = \pounds_X \alpha \wedge \beta + \alpha \wedge \pounds_X \beta$.

• Coordinate formulas: for $X = X^{l}\partial/\partial x^{l}$, and $\alpha = \alpha_{i_{1}...i_{k}}dx^{i_{1}}\wedge\cdots\wedge dx^{i_{k}}$, where $i_{1} < \cdots < i_{k}$:

> $\mathbf{d}lpha = \left(rac{\partial lpha_{i_1...i_k}}{\partial x^l}
> ight) dx^l \wedge dx^{i_1} \wedge \dots \wedge dx^{i_k},$ $\mathbf{i}_X lpha = X^l lpha_{li_2...i_k} dx^{i_2} \wedge \dots \wedge dx^{i_k},$

$$\mathcal{L}_X \alpha = X^l \left(\frac{\partial \alpha_{i_1 \dots i_k}}{\partial x^l} \right) dx^{i_1} \wedge \dots \wedge dx^{i_k}$$

+ $\alpha_{li_2 \dots i_k} \left(\frac{\partial X^l}{\partial x^{i_1}} \right) dx^{i_1} \wedge dx^{i_2} \wedge \dots \wedge dx^{i_k} + \dots$