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The term “I-form” is used in two ways—
they are either members of a particular cotangent space
1> M or else, analogous to a vector field, an assignment
of a covector in 17> M to each m € M.

Basic example: differential of a real-valued function.

(2: amap Q(m) : T, M xT,, M — R that as-
signs to each point m € M a skew-symmetric bilinear
form on the tangent space 1,,M to M at m.
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Differential Forms

A k- o (or k)
IS & map

a(m) : Tp,M x --- x T, M(k factors) — R,
which, for each m € M, is a skew-symmetric k-multi-

linear map on the tangent space 1,,M to M at m.

Without the skew-symmetry assumption, o would be
a (0, k)-
Amap a:V x---xV (V is a vector space and there

are k factors) — R is when it is linear
in each of its factors.

[t is is (or ) when it changes sign
whenever two of its arguments are interchanged
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Differential Forms

Why is skew-symmetry important? Some examples
where it is implicitly used

Determinants and integration: Jacobian determinants in the change
of variables theorem.
Cross products and the curl

Orientation or “handedness”
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Differential Forms

Let z!', ..., 2" denote coordinates on M, let
ler,...,e,y ={0/0z",...,0/0x"}
be the corresponding basis for 1;, M.

Let {et,...,e"} = {dz',..., dz"} be the dual basis
for T M.

At each m € M, we can write a 2-form as

O (v, w) = Qij(m)viwj,

o 0
() = Sk (axz" a:w) ’

Similarly for k-forms.

where
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If t is a (0, p)-tensor, define the
A acting on ¢ by

1
A(t)(vy, ..., v) = o > sgn(m)H(Vn(1), - - Vr(y)s

TES),
where sgn(m) is the of the permutation m,
san(rr) = { + i.f ™ i.s even ,
—1if 7 is odd ,
and S, is the group of all permutations of the set

{1,2,...,p}.

The operator A therefore p-
multilinear maps.
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Tensor and Wedge Products

If o is a k-form and (3 is an [-form on M, their
a A (B is the (k + [)-form on M defined by

k4 1)
oz/\ﬁ:( )A(a@)ﬁ).
k! [!
One has to be careful here as some authors use different

conventions.
if o and 3 are one-forms, then

(A B)(v1,v2) = afv1) B(v2) — aufv2) B(wn),

If v is a 2-form and (3 is a 1-form,

(a A B) (v, v9, 3)
= a(v1, 19)B(v3) — a(vy, v3)B(v9) + alvo, v3) B (V).
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Tensor and Wedge Products

(1) aN(BAy)=(anF) Ny

(acy + baw) A B =alag A B) + blas A ),
a A (cfy+dps) =claN B)+dlaA Ps).
(iii) a A B = (=13 A a, where
o is a k-form and 3 is an [-form.

Use dual basis dx*;

a k-form can be written
o= q;, ; dx’ N\ Ndx't,

where the sum is over all 7; satistying ¢; < - -+ < 7.
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Pull-Back and Push-Forward

w: M — N, asmooth map and a a k-form on V.
w*a of a by : the k-form on M
(@ ) m(v1, .o 0k) = ) (T - v1, -, T - vg).
(if ¢ is a diffeomorphism):
Px = (90_1)*-
The pull-back of a wedge product is the wedge product
of the pull-backs:

P aNB)=paN e
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Interior Products

Let o be a k-form on a manifold M and X a vector

field.

The iya (sometimes called the
of X and a and written, using the “hook”
notation, as X _|«) is defined by

(ixa)m(vo, ..., vr) = ap(X (M), v, ..., UL).

Let a be a k-form
and (3 a 1-form on a manifold M. Then

ix(aAB)=(ixa) A B+ (=) a A (ix3).
or, in the hook notation,
X (anB)=(X 1a)AB+ (=Dfan (X 10).
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Exterior Derivative

The da of a k-form « is the
(k + 1)-form determined by the following properties:

If = fisa 0-form, then df is the differential of f.

do is in a—tor all real numbers ¢y and ¢9,
d(cia] + o) = ciday + coday.
do satisfies the —
dlaApB)=dar B+ (—1)FaAdg,

where «v is a k-form and (3 is an [-form.

d? = 0, that is, d(da) = 0 for any k-form c.

disa - that is, da(m) depends only on « restricted
to any open neighborhood of m; that is, it U is open in M, then

d(a|U) = (da)|U.
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Exterior Derivative

If a is a k-form given in coordinates by
o= Ozil_“ikdaz“ A Adx (sum on i1 < « -+ < i),

then the coordinate expression for the exterior deriva-

tive 1S
S | |
da = —dy? Ada™ A -+ A dx'™
oxJ
with a sum over 7 and 13 < --- < 1

This formula is easy to remember from the properties.
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Exterior Derivative

Exterior differentiation commutes with pull-back, that is,

d(¢"a) = ¢*(da),
where « is a k-form on a manifold N and ¢ : M — N.
A k-form « is called if da = 0 and is if there is a
(k — 1)-form 3 such that o = dg3.
d’? = 0 = an exact form is closed (but the converse need not hold—
we recall the standard vector calculus example shortly)

A closed form is - that is, if
da = 0, there is a neighborhood about each point on which o« = d .
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(a) v’ = vldzr + v2dy + v®dz, the one-form corresponding to the
vector v = vlel + 0262 + 0363.
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Vector Calculus

(Using standard coordinates in R*)

(a) v = vldy + 02 dy + v3dz, the one-form corresponding to the
1e1 + ’0282 + ’0363.
(b) of = aje]+ases+ases, the vector corresponding to the one-form

a=ajdr+ ardy + asdz.

vector v = v

(a) x1 =dx ANdy ANdz.

(b) *dx = dy ANdz, xdy = —dx ANdz, *dz = dx A dy,
x(dy N dz) = dx, x(de N dz) = —dy, *(dx ANdy) = dz.

(¢) *(dx Ndy Ndz) = 1.

(a) v x w = [x(v” A ).
(b) (v-w)dz Ady Adz =" A *(w).
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Vector Calculus

V[ =grad f = (df)*.
V x F =curl F = [*(dF")]".
V. F =div F = xd(xF").
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Lie Derivative

Let o be a k-form and X be

a vector field with flow ;. The of o
along X 1s
Lxa=lm-{(gia) —a] = —pja .
Extend to non-zero values of ¢:
d * *
E%@ =, L ya.

vector fields

d

*

dtgat,s& — QO;SOEXO“
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Lie Derivative

The
f X 1s the
£xf = X[f]:=df - X. 1)
I dinat
n coordinates P 91
A
o,
X =X"—.
oz’
X[f]=df - X
The operator is a - that 1s, the product

rule holds.
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Lie Derivative

If Y is a vector field on a manifold /N and
w : M — N is a diffeomorphism, the 0*Y
is a vector field on M defined by

(*Y)(m) = (T~ oY 0 ¢) (m).

For a diffeomorphism ¢, the
is defined, as for forms, by ¢, = (¢~ 1)*.

Flows of X and ¢, X related by conjugation.



Lie Derivative

~ conjugation ﬂ
¢

¢ = integral
curve of X

© o ¢ =1ntegral
curve of @xX
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Jacobi—Lie Bracket

The Lie derivative on functions is a © CONN-
versely, derivations determine vector fields.

The commutator is a derivation

f= XA = YIXISf]] = X YL,
which determines the unique vector field [ X, Y] the

of X and Y.
£xY =X,Y], of Y along X.
The analog of the Lie derivative formula holds.
Coordinates:
. oY/ 00X/ . .
(£xY) = X'—=Y" = (X-V)Y'—(Y-V) X/,

ox’ oz’



Jacobi—Lie Bracket

The formula for | X, Y] = £xY can be remembered by
writing
o ... 0 Y7 O

. 0X" 0O
_X ox"’ r OxJ A ox' Oz’ v OxJ Ox'
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Algebraic Approach.

Extend the definition of the Lie derivative
from tunctions and vector fields to differential forms,
by requiring that the Lie derivative be a derivation

For a 1-form «,
£X<04,Y> — <£X()4,Y> <C¥ OEXY> ,
where X, Y are vector fields and (o, Y) = a(Y).

More generally, determine £ xa by
ij(CV(Yi, c. ,Yk))

k
— (OEX&)(E;---,Y]@)—|—ZCY(Y1,...,£XY;;,...,Y]€).
1=1
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Equivalence

The Lie derivative formalism holds for all tensors, not
just differential forms.

Very useful in all areas of mechanics: eg, the rate of
strain tensor in elasticity i1s a Lie derivative and the
vorticity advection equation in fluid dynamics are both
Lie derivative equations.
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For X a vector field
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In the “hook” notation,

£ya=d(X la)+ X Ida.
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For X a vector field
and « a k-form

£ya =diya + iyda,

In the “hook” notation,
Lxa=d(X Jla)+ X Ida.

If o : M — N is a diffeomorphism, then
90*053/6 — DEQO*YSO*ﬁ

for Y € X(N) and 3 € QF(M).

Many other useful identities, such as

dO(X,Y) = X[0(Y)] = Y[O(X)] - 6([X,Y]).
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Volume Forms and Divergence

An n-manifold M is if there is a nowhere-

vanishing n-form g on it; p is a

Two volume forms p; and po on M define the same
if w9 = fuq, where f > 0.

A basis {vq,...,v,} of T,,M is
relative to the volume form pu
on M if u(m)(vy,...,v,) > 0.

If 14 is a volume form, there is a func-
tion, called the of X relative to p and
denoted by div,(X) or simply div(X), such that

DEXILL — diVM(X),LL.
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Volume Forms and Divergence

Dynamic approach to Lie derivatives = div,(X) = 0
if and only if F*u = u, where F} is the flow of X (that

is, F} is )
It o : M — M, there is a function, called the
of ¢ and denoted by J,(¢) or simply J(¢), such

that
o= J, (o).

Consequence: ¢ 1s volume preserving if and only if
J.(p) = 1.
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Frobenius’ Theorem

A vector subbundle (a regular distribution) £ C TM
IS if for any two vector fields X,Y on M
with values in E, the Jacobi-Lie bracket | X, Y] is also
a vector field with values in E.

E is if for each m € M there is a local
submanifold of M containing m such that its tangent
bundle equals E restricted to this submanifold.

If F is integrable, the local integral manifolds can be
extended to a maximal integral manifold. The collec-
tion of these forms a

E 1s involutive if and only if
1t 1s integrable.
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(don’t count overlaps twice).

The change of variables formula guarantees that the
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Stokes’ Theorem

Integral of an n-form p on an oriented n-manifold
M: pick a covering by coordinate charts and sum up
the ordinary integrals of f(z',..., z") dz! - - - dx™, where

w=f(z' ..., 2")dzst A Adx"
(don’t count overlaps twice).

The change of variables formula guarantees that the
result, denoted by [, p, is well-defined.

the bound-
ary, OM , inherits a compatible orientation: generalizes
the relation between the orientation of a surface and its
boundary in the classical Stokes’ theorem in R”.



Stokes’ Theorem

T,0M



Stokes’ Theorem

Suppose that M is a compact,
oriented k—dimensional manifold with boundary oM.
Let a be a smooth ( )-form on M. Then

[ ],



Stokes’ Theorem

Suppose that M is a compact,
oriented k—dimensional manifold with boundary oM.
Let a be a smooth ( )-form on M. Then

[ ],

Special cases: The classical vector calculus theorems of
Green, Gauss and Stokes.



Stokes’ Theorem

(b) reglo QC]RQ
0Q OP B
// (%_8_?;>d$dy/ Pdx + Q) dy.
(c) reglo QC]R{3

///ddeV /] Ponaa



Stokes’ Theorem

(d) For a surface S C R?,

OR  0Q
/ﬁ(a—y‘a)d““
OP OR 50 OP

://n-curleA:/ Pdr+ Qdy+ Rdz,
S 05

where F = (P, Q, R).
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rems: if curlF =0, then F = Vf, and if div F = 0,
then F =V x G.
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Recall: if o is closed, then locally o 1s exact; that
18, if dao = 0, then locally o = d for some 3.



Stokes’ Theorem

generalizes vector calculus theo-
rems: if curlF =0, then F = Vf, and if div F = 0,
then F =V x G.
Recall: if o is closed, then locally o 1s exact; that
18, if da = 0, then locally oo = dB for some 3.

need not hold globally:

- xdy — ydx

242
is closed (or as a vector field, has zero curl) but is not
exact (not the gradient of any function on R? minus

the origin).




Change of Variables

M and N oriented n-manifolds; ¢ : M — N an
orientation-preserving diffeomorphism, v an n-form on
N (with, say, compact support), then

[ fo



Ildentities for Vector Fields and Forms

Vector fields on M with the bracket | X, Y] form a ; that
is, | X, Y] is real bilinear, skew-symmetric, and
holds:
(X, Y] Z]+ [[Z, X], Y]+ [[Y, 2], X] = 0.
Locally,
and on functions,
X, Yf] = XIY[f]] = YIXf]].
For diffeomorphisms ¢ and .
P X, Y] = s X, Y] and  (po1))eX = puthi X.

(aAB)AY =aA(BAY)and aA B = (—1)FB A« for k- and [-forms
a and (.

For maps ¢ and 1,
P (aNB) = aNe*8 and (poy) a =19 p a.



Ildentities for Vector Fields and Forms

d is a real linear map on forms, dda = 0, and
dlaAB)=daA B+ (=D aAndg
for o a k-form.

For av a k-form and X, ..., X vector fields,

k
(da)(Xp, ..., Xp) = > (=)' Xj[e(Xo, ..., X, .., Xp)]
1=0
+ Z <_1>Z+]&([Xi7X]]7XOa °7Xi7 y 7X]7 7X]{)7
0<i<y<k
where X@ means that X, is omitted. Locally,
k .
do(z)(vg, ..., vp) = Y (=1)'Da(z) - vi(vo, ..., 0. .., vg).
1=0

For a map ¢,



Ildentities for Vector Fields and Forms

Poincaré Lemma. If da = 0, then the k-form « is locally exact;
that is, there is a neighborhood U about each point on which o = d3.

This statement is global on contractible manifolds or more generally if
HE (M) = 0.

iy« is real bilinear in X, o, and for A : M — R,
1, ya = hiya = 1yha.
Also, iyiya =0 and
iv(aAfB) =iya B+ (=) aniyp
for o a k-form.

For a diffeomorphism ¢,
prixa) =igx(p a), ie, ¢ (X la)=(¢"X) (¢ a).
If f: M — N is amapping and Y is f-related to X, that is,
TfoX=Yof,



Ildentities for Vector Fields and Forms

then
iyffa=ffiya; ie, X _I(ffa)= Y Ja).

£y« is real bilinear in X, o and

Lx(aNpB)=ELxaNB+aNLxp.

Cartan’s Magic Formula:

JCXOz:diXOé—I—iXdoz:d(XJOé)—I—XJdOz.

For a diffeomorphism o,
QO*LICXOé = fj@*Xgp*Ck.
If f: M — N is amapping and Y is f-related to X, then
Ly ffa=f"Lya.



Ildentities for Vector Fields and Forms

(onz)(Xl, c. 7Xk) — X[Ck(Xl, “. 7Xk>]

k
—Za(Xl,...,[X,XZ-],...,Xk).
Locally,
(£xa)(x) - (vy,...,v) = (Dayg - X(x))(vy,...,vz)

k
+Za$(vl,...,DX$-vi,...,vk).
1=0

More identities:
Lixa=fLxa+df Nixo;
f[ij}Oé = f)(fyOé — fnyOé;
Iy yie = Lxlya — 1y £ xa;
£xda =dL xa;
£xixya =1ix L xa;



Ildentities for Vector Fields and Forms

fx<cv/\ﬁ>:£Xchﬁ+OéAfxﬁ.



Ildentities for Vector Fields and Forms

for X = X'0/0z!, and
o = ozil.__ikdwil ANCIRIRIA dxik,

where 11 < -+ - < g

0X' | | |
+ iy i, (@az“) dr" Ndzx” N --- Ndz"™ + . ...
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