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Differential Forms
� Main idea: Generalize the basic operations of vector

calculus, div, grad, curl, and the integral theorems
of Green, Gauss, and Stokes to manifolds of
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Differential Forms
� Main idea: Generalize the basic operations of vector

calculus, div, grad, curl, and the integral theorems
of Green, Gauss, and Stokes to manifolds of
arbitrary dimension.

� 1-forms. The term “1-form” is used in two ways—
they are either members of a particular cotangent space
T ∗
mM or else, analogous to a vector field, an assignment

of a covector in T ∗
mM to each m ∈M .

� Basic example: differential of a real-valued function.

� 2-form Ω: a map Ω(m) : TmM×TmM → R that as-
signs to each point m ∈M a skew-symmetric bilinear
form on the tangent space TmM to M at m.
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Differential Forms
� A k-form α (or differential form of degree k)

is a map

α(m) : TmM × · · · × TmM(k factors) → R,
which, for each m ∈ M , is a skew-symmetric k-multi-
linear map on the tangent space TmM to M at m.
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Differential Forms
� A k-form α (or differential form of degree k)

is a map

α(m) : TmM × · · · × TmM(k factors) → R,
which, for each m ∈ M , is a skew-symmetric k-multi-
linear map on the tangent space TmM to M at m.

� Without the skew-symmetry assumption, α would be
a (0, k)-tensor .

� A map α : V × · · · ×V (V is a vector space and there
are k factors) → R is multilinear when it is linear
in each of its factors.

� It is is skew (or alternating) when it changes sign
whenever two of its arguments are interchanged
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where it is implicitly used
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Differential Forms
� Why is skew-symmetry important? Some examples

where it is implicitly used

◦ Determinants and integration: Jacobian determinants in the change
of variables theorem.

◦ Cross products and the curl

◦ Orientation or “handedness”
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Differential Forms

� Let x1, . . . , xn denote coordinates on M , let

{e1, . . . , en} = {∂/∂x1, . . . , ∂/∂xn}
be the corresponding basis for TmM .

5



Differential Forms

� Let x1, . . . , xn denote coordinates on M , let

{e1, . . . , en} = {∂/∂x1, . . . , ∂/∂xn}
be the corresponding basis for TmM .

� Let {e1, . . . , en} = {dx1, . . . , dxn} be the dual basis
for T ∗

mM .

5



Differential Forms

� Let x1, . . . , xn denote coordinates on M , let

{e1, . . . , en} = {∂/∂x1, . . . , ∂/∂xn}
be the corresponding basis for TmM .

� Let {e1, . . . , en} = {dx1, . . . , dxn} be the dual basis
for T ∗

mM .

� At each m ∈M , we can write a 2-form as

Ωm(v, w) = Ωij(m)viwj,

where

Ωij(m) = Ωm

(
∂

∂xi
,
∂

∂xj

)
,

5



Differential Forms

� Let x1, . . . , xn denote coordinates on M , let

{e1, . . . , en} = {∂/∂x1, . . . , ∂/∂xn}
be the corresponding basis for TmM .

� Let {e1, . . . , en} = {dx1, . . . , dxn} be the dual basis
for T ∗

mM .

� At each m ∈M , we can write a 2-form as

Ωm(v, w) = Ωij(m)viwj,

where

Ωij(m) = Ωm

(
∂

∂xi
,
∂

∂xj

)
,

� Similarly for k-forms.
5



Tensor and Wedge Products
� If α is a (0, k)-tensor on a manifold M and β is a (0, l)-

tensor, their tensor product (sometimes called the
outer product), α⊗ β is the (0, k+ l)-tensor on M
defined by

(α⊗ β)m(v1, . . . , vk+l)

= αm(v1, . . . , vk)βm(vk+1, . . . , vk+l)

at each point m ∈M .

6



Tensor and Wedge Products
� If α is a (0, k)-tensor on a manifold M and β is a (0, l)-

tensor, their tensor product (sometimes called the
outer product), α⊗ β is the (0, k+ l)-tensor on M
defined by

(α⊗ β)m(v1, . . . , vk+l)

= αm(v1, . . . , vk)βm(vk+1, . . . , vk+l)

at each point m ∈M .

� Outer product of two vectors is a matrix
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Tensor and Wedge Products
� If t is a (0, p)-tensor, define the alternation oper-

ator A acting on t by

A(t)(v1, . . . , vp) =
1

p!

∑
π∈Sp

sgn(π)t(vπ(1), . . . , vπ(p)),

where sgn(π) is the sign of the permutation π,

sgn(π) =

{
+1 if π is even ,
−1 if π is odd ,

and Sp is the group of all permutations of the set
{1, 2, . . . , p}.
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Tensor and Wedge Products
� If t is a (0, p)-tensor, define the alternation oper-

ator A acting on t by

A(t)(v1, . . . , vp) =
1

p!

∑
π∈Sp

sgn(π)t(vπ(1), . . . , vπ(p)),

where sgn(π) is the sign of the permutation π,

sgn(π) =

{
+1 if π is even ,
−1 if π is odd ,

and Sp is the group of all permutations of the set
{1, 2, . . . , p}.

� The operator A therefore skew-symmetrizes p-
multilinear maps.
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Tensor and Wedge Products
� If α is a k-form and β is an l-form on M , their wedge

product α ∧ β is the (k + l)-form on M defined by

α ∧ β =
(k + l)!

k! l!
A(α⊗ β).
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Tensor and Wedge Products
� If α is a k-form and β is an l-form on M , their wedge

product α ∧ β is the (k + l)-form on M defined by

α ∧ β =
(k + l)!

k! l!
A(α⊗ β).

� One has to be careful here as some authors use different
conventions.

� Examples: if α and β are one-forms, then

(α ∧ β)(v1, v2) = α(v1)β(v2)− α(v2)β(v1),

� If α is a 2-form and β is a 1-form,

(α ∧ β)(v1, v2, v3)

= α(v1, v2)β(v3)− α(v1, v3)β(v2) + α(v2, v3)β(v1).
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Tensor and Wedge Products
� Wedge product properties:

(i) Associative: α ∧ (β ∧ γ) = (α ∧ β) ∧ γ.

(ii) Bilinear:

(aα1 + bα2) ∧ β = a(α1 ∧ β) + b(α2 ∧ β),

α ∧ (cβ1 + dβ2) = c(α ∧ β1) + d(α ∧ β2).

(iii) Anticommutative: α ∧ β = (−1)klβ ∧ α, where
α is a k-form and β is an l-form.
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Tensor and Wedge Products
� Wedge product properties:

(i) Associative: α ∧ (β ∧ γ) = (α ∧ β) ∧ γ.

(ii) Bilinear:

(aα1 + bα2) ∧ β = a(α1 ∧ β) + b(α2 ∧ β),

α ∧ (cβ1 + dβ2) = c(α ∧ β1) + d(α ∧ β2).

(iii) Anticommutative: α ∧ β = (−1)klβ ∧ α, where
α is a k-form and β is an l-form.

� Coordinate Representation: Use dual basis dxi;
a k-form can be written

α = αi1...ikdx
i1 ∧ · · · ∧ dxik,

where the sum is over all ij satisfying i1 < · · · < ik.
9



Pull-Back and Push-Forward
�ϕ : M → N , a smooth map and α a k-form on N .
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Pull-Back and Push-Forward
�ϕ : M → N , a smooth map and α a k-form on N .

�Pull-back: ϕ∗α of α by ϕ: the k-form on M

(ϕ∗α)m(v1, . . . , vk) = αϕ(m)(Tmϕ · v1, . . . , Tmϕ · vk).

�Push-forward (if ϕ is a diffeomorphism):
ϕ∗ = (ϕ−1)∗.

� The pull-back of a wedge product is the wedge product
of the pull-backs:

ϕ∗(α ∧ β) = ϕ∗α ∧ ϕ∗β.
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Interior Products
� Let α be a k-form on a manifold M and X a vector

field.
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notation, as X α) is defined by
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Interior Products
� Let α be a k-form on a manifold M and X a vector

field.

� The interior product iXα (sometimes called the
contraction ofX and α and written, using the “hook”
notation, as X α) is defined by

(iXα)m(v2, . . . , vk) = αm(X(m), v2, . . . , vk).

� Product Rule-Like Property. Let α be a k-form
and β a 1-form on a manifold M . Then

iX(α ∧ β) = (iXα) ∧ β + (−1)kα ∧ (iXβ).

or, in the hook notation,

X (α ∧ β) = (X α) ∧ β + (−1)kα ∧ (X β).
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Exterior Derivative
� The exterior derivative dα of a k-form α is the

(k + 1)-form determined by the following properties:
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Exterior Derivative
� The exterior derivative dα of a k-form α is the

(k + 1)-form determined by the following properties:

◦ If α = f is a 0-form, then df is the differential of f .

◦ dα is linear in α—for all real numbers c1 and c2,

d(c1α1 + c2α2) = c1dα1 + c2dα2.

◦ dα satisfies the product rule—

d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ,

where α is a k-form and β is an l-form.

◦ d2 = 0, that is, d(dα) = 0 for any k-form α.

◦ d is a local operator , that is, dα(m) depends only on α restricted
to any open neighborhood of m; that is, if U is open in M , then

d(α|U) = (dα)|U.
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Exterior Derivative
� If α is a k-form given in coordinates by

α = αi1...ikdx
i1 ∧ · · · ∧ dxik (sum on i1 < · · · < ik),

then the coordinate expression for the exterior deriva-
tive is

dα =
∂αi1...ik
∂xj

dxj ∧ dxi1 ∧ · · · ∧ dxik.

with a sum over j and i1 < · · · < ik

13



Exterior Derivative
� If α is a k-form given in coordinates by

α = αi1...ikdx
i1 ∧ · · · ∧ dxik (sum on i1 < · · · < ik),

then the coordinate expression for the exterior deriva-
tive is

dα =
∂αi1...ik
∂xj

dxj ∧ dxi1 ∧ · · · ∧ dxik.

with a sum over j and i1 < · · · < ik

� This formula is easy to remember from the properties.
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Exterior Derivative
� Properties.

◦ Exterior differentiation commutes with pull-back, that is,

d(ϕ∗α) = ϕ∗(dα),

where α is a k-form on a manifold N and ϕ : M → N .
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Exterior Derivative
� Properties.

◦ Exterior differentiation commutes with pull-back, that is,

d(ϕ∗α) = ϕ∗(dα),

where α is a k-form on a manifold N and ϕ : M → N .

◦ A k-form α is called closed if dα = 0 and is exact if there is a
(k − 1)-form β such that α = dβ.

◦ d2 = 0 ⇒ an exact form is closed (but the converse need not hold—
we recall the standard vector calculus example shortly)

◦ Poincaré Lemma A closed form is locally exact ; that is, if
dα = 0, there is a neighborhood about each point on which α = dβ.
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Vector Calculus

� Sharp and Flat (Using standard coordinates in R3)

(a) v[ = v1 dx + v2 dy + v3 dz, the one-form corresponding to the
vector v = v1e1 + v2e2 + v3e3.

(b) α] = α1e1+α2e2+α3e3, the vector corresponding to the one-form
α = α1 dx + α2 dy + α3 dz.
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� Sharp and Flat (Using standard coordinates in R3)

(a) v[ = v1 dx + v2 dy + v3 dz, the one-form corresponding to the
vector v = v1e1 + v2e2 + v3e3.

(b) α] = α1e1+α2e2+α3e3, the vector corresponding to the one-form
α = α1 dx + α2 dy + α3 dz.

� Hodge Star Operator
(a) ∗1 = dx ∧ dy ∧ dz.
(b) ∗dx = dy ∧ dz, ∗dy = −dx ∧ dz, ∗dz = dx ∧ dy,
∗(dy ∧ dz) = dx, ∗(dx ∧ dz) = −dy, ∗(dx ∧ dy) = dz.

(c) ∗(dx ∧ dy ∧ dz) = 1.
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Vector Calculus

� Sharp and Flat (Using standard coordinates in R3)

(a) v[ = v1 dx + v2 dy + v3 dz, the one-form corresponding to the
vector v = v1e1 + v2e2 + v3e3.

(b) α] = α1e1+α2e2+α3e3, the vector corresponding to the one-form
α = α1 dx + α2 dy + α3 dz.

� Hodge Star Operator
(a) ∗1 = dx ∧ dy ∧ dz.
(b) ∗dx = dy ∧ dz, ∗dy = −dx ∧ dz, ∗dz = dx ∧ dy,
∗(dy ∧ dz) = dx, ∗(dx ∧ dz) = −dy, ∗(dx ∧ dy) = dz.

(c) ∗(dx ∧ dy ∧ dz) = 1.

� Cross Product and Dot Product
(a) v × w = [∗(v[ ∧ w[)]].
(b) (v · w)dx ∧ dy ∧ dz = v[ ∧ ∗(w[).
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Vector Calculus

� Gradient ∇f = grad f = (df )].
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Vector Calculus

� Gradient ∇f = grad f = (df )].

� Curl ∇× F = curlF = [∗(dF [)]].

� Divergence ∇ · F = div F = ∗d(∗F [).
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Lie Derivative
� Dynamic definition: Let α be a k-form and X be

a vector field with flow ϕt. The Lie derivative of α
along X is

£Xα = lim
t→0

1

t
[(ϕ∗tα)− α] =

d

dt
ϕ∗tα

∣∣∣∣
t=0

.
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Lie Derivative
� Dynamic definition: Let α be a k-form and X be

a vector field with flow ϕt. The Lie derivative of α
along X is

£Xα = lim
t→0

1

t
[(ϕ∗tα)− α] =

d

dt
ϕ∗tα

∣∣∣∣
t=0

.

� Extend to non-zero values of t:
d

dt
ϕ∗tα = ϕ∗t£Xα.

� Time-dependent vector fields

d

dt
ϕ∗t,sα = ϕ∗t,s£Xα.
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Lie Derivative
� Real Valued Functions. The Lie derivative

of f along X is the directional derivative

£Xf = X [f ] := df ·X. (1)
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Lie Derivative
� Real Valued Functions. The Lie derivative

of f along X is the directional derivative

£Xf = X [f ] := df ·X. (1)

� In coordinates

£Xf = X i ∂f

∂xi
.

� Useful Notation.

X = X i ∂

∂xi
.

� Operator notation: X [f ] = df ·X
� The operator is a derivation ; that is, the product

rule holds.
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Lie Derivative
� Pull-back. If Y is a vector field on a manifold N and
ϕ : M → N is a diffeomorphism, the pull-back ϕ∗Y
is a vector field on M defined by

(ϕ∗Y )(m) =
(
Tmϕ

−1 ◦ Y ◦ ϕ
)

(m).
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Lie Derivative
� Pull-back. If Y is a vector field on a manifold N and
ϕ : M → N is a diffeomorphism, the pull-back ϕ∗Y
is a vector field on M defined by

(ϕ∗Y )(m) =
(
Tmϕ

−1 ◦ Y ◦ ϕ
)

(m).

� Push-forward. For a diffeomorphism ϕ, the push-
forward is defined, as for forms, by ϕ∗ = (ϕ−1)∗.

� Flows of X and ϕ∗X related by conjugation.
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Lie Derivative

M N

conjugation

c = integral 

curve of X
        = integral 

curve of ϕ∗X

ϕ∗X
X

ϕ

Ft

ϕ ◦ c

ϕ ◦ Ft ◦ ϕ−1

20



Jacobi–Lie Bracket
� The Lie derivative on functions is a derivation ; con-

versely, derivations determine vector fields.
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Jacobi–Lie Bracket
� The Lie derivative on functions is a derivation ; con-

versely, derivations determine vector fields.

� The commutator is a derivation

f 7→ X [Y [f ]]− Y [X [f ]] = [X, Y ][f ],

which determines the unique vector field [X, Y ] the
Jacobi–Lie bracket of X and Y .

� £XY = [X, Y ], Lie derivative of Y along X .

� The analog of the Lie derivative formula holds.

� Coordinates:

(£XY )j = X i∂Y
j

∂xi
−Y i∂X

j

∂xi
= (X ·∇)Y j−(Y ·∇)Xj,
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Jacobi–Lie Bracket
� The formula for [X, Y ] = £XY can be remembered by

writing[
X i ∂

∂xi
, Y j ∂

∂xj

]
= X i∂Y

j

∂xi
∂

∂xj
− Y j∂X

i

∂xj
∂

∂xi
.
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Algebraic Approach.
� Program: Extend the definition of the Lie derivative

from functions and vector fields to differential forms,
by requiring that the Lie derivative be a derivation
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Algebraic Approach.
� Program: Extend the definition of the Lie derivative

from functions and vector fields to differential forms,
by requiring that the Lie derivative be a derivation

� Example. For a 1-form α,

£X〈α, Y 〉 = 〈£Xα, Y 〉 + 〈α,£XY 〉 ,
where X, Y are vector fields and 〈α, Y 〉 = α(Y ).

� More generally, determine £Xα by

£X(α(Y1, . . . , Yk))

= (£Xα)(Y1, . . . , Yk) +

k∑
i=1

α(Y1, . . . ,£XYi, . . . , Yk).
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Equivalence
�The dynamic and algebraic definitions of

the Lie derivative of a differential k-form
are equivalent.

24



Equivalence
�The dynamic and algebraic definitions of

the Lie derivative of a differential k-form
are equivalent.

� The Lie derivative formalism holds for all tensors, not
just differential forms.

24



Equivalence
�The dynamic and algebraic definitions of

the Lie derivative of a differential k-form
are equivalent.

� The Lie derivative formalism holds for all tensors, not
just differential forms.

� Very useful in all areas of mechanics: eg, the rate of
strain tensor in elasticity is a Lie derivative and the
vorticity advection equation in fluid dynamics are both
Lie derivative equations.
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Properties
� Cartan’s Magic Formula. For X a vector field

and α a k-form

£Xα = diXα + iXdα,
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Properties
� Cartan’s Magic Formula. For X a vector field

and α a k-form

£Xα = diXα + iXdα,

� In the “hook” notation,

£Xα = d(X α) +X dα.

� If ϕ : M → N is a diffeomorphism, then

ϕ∗£Y β = £ϕ∗Yϕ
∗β

for Y ∈ X(N) and β ∈ Ωk(M).

� Many other useful identities, such as

dΘ(X, Y ) = X [Θ(Y )]− Y [Θ(X)]− Θ([X, Y ]).
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Volume Forms and Divergence.
� An n-manifold M is orientable if there is a nowhere-

vanishing n-form µ on it; µ is a volume form
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Volume Forms and Divergence.
� An n-manifold M is orientable if there is a nowhere-

vanishing n-form µ on it; µ is a volume form

� Two volume forms µ1 and µ2 on M define the same
orientation if µ2 = fµ1, where f > 0.

� Oriented Basis. A basis {v1, . . . , vn} of TmM is
positively oriented relative to the volume form µ
on M if µ(m)(v1, . . . , vn) > 0.

� Divergence. If µ is a volume form, there is a func-
tion, called the divergence of X relative to µ and
denoted by divµ(X) or simply div(X), such that

£Xµ = divµ(X)µ.
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Volume Forms and Divergence.
� Dynamic approach to Lie derivatives ⇒ divµ(X) = 0

if and only if F ∗
t µ = µ, where Ft is the flow of X (that

is, Ft is volume preserving .)
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Volume Forms and Divergence.
� Dynamic approach to Lie derivatives ⇒ divµ(X) = 0

if and only if F ∗
t µ = µ, where Ft is the flow of X (that

is, Ft is volume preserving .)

� If ϕ : M → M , there is a function, called the Jaco-
bian of ϕ and denoted by Jµ(ϕ) or simply J(ϕ), such
that

ϕ∗µ = Jµ(ϕ)µ.

� Consequence: ϕ is volume preserving if and only if
Jµ(ϕ) = 1.
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Frobenius’ Theorem
� A vector subbundle (a regular distribution) E ⊂ TM

is involutive if for any two vector fields X, Y on M
with values in E, the Jacobi–Lie bracket [X, Y ] is also
a vector field with values in E.
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Frobenius’ Theorem
� A vector subbundle (a regular distribution) E ⊂ TM

is involutive if for any two vector fields X, Y on M
with values in E, the Jacobi–Lie bracket [X, Y ] is also
a vector field with values in E.

�E is integrable if for each m ∈ M there is a local
submanifold of M containing m such that its tangent
bundle equals E restricted to this submanifold.

� If E is integrable, the local integral manifolds can be
extended to a maximal integral manifold. The collec-
tion of these forms a foliation .

� Frobenius theorem: E is involutive if and only if
it is integrable.
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Stokes’ Theorem
� Idea: Integral of an n-form µ on an oriented n-manifold
M : pick a covering by coordinate charts and sum up
the ordinary integrals of f (x1, . . . , xn) dx1 · · · dxn, where

µ = f (x1, . . . , xn) dx1 ∧ · · · ∧ dxn

(don’t count overlaps twice).
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M µ, is well-defined.
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Stokes’ Theorem
� Idea: Integral of an n-form µ on an oriented n-manifold
M : pick a covering by coordinate charts and sum up
the ordinary integrals of f (x1, . . . , xn) dx1 · · · dxn, where

µ = f (x1, . . . , xn) dx1 ∧ · · · ∧ dxn

(don’t count overlaps twice).

� The change of variables formula guarantees that the
result, denoted by

∫
M µ, is well-defined.

� Oriented manifold with boundary: the bound-
ary, ∂M , inherits a compatible orientation: generalizes
the relation between the orientation of a surface and its
boundary in the classical Stokes’ theorem in R3.
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Stokes’ Theorem

∂M

M

y

Ty∂M

x

TxM
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Stokes’ Theorem
� Stokes’ Theorem Suppose that M is a compact,

oriented k-dimensional manifold with boundary ∂M .
Let α be a smooth (k − 1)-form on M . Then∫

M

dα =

∫
∂M

α.
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Stokes’ Theorem
� Stokes’ Theorem Suppose that M is a compact,

oriented k-dimensional manifold with boundary ∂M .
Let α be a smooth (k − 1)-form on M . Then∫

M

dα =

∫
∂M

α.

� Special cases: The classical vector calculus theorems of
Green, Gauss and Stokes.
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Stokes’ Theorem
(a) Fundamental Theorem of Calculus.∫ b

a
f ′(x) dx = f (b)− f (a).

(b) Green’s Theorem. For a region Ω ⊂ R2,∫ ∫
Ω

(
∂Q

∂x
− ∂P

∂y

)
dx dy =

∫
∂Ω
P dx +Qdy.

(c) Divergence Theorem. For a region Ω ⊂ R3,∫ ∫ ∫
Ω

div F dV =

∫ ∫
∂Ω

F · n dA.
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Stokes’ Theorem
(d) Classical Stokes’ Theorem. For a surface S ⊂ R3,∫ ∫

S

{(
∂R

∂y
− ∂Q

∂z

)
dy ∧ dz

+

(
∂P

∂z
− ∂R

∂x

)
dz ∧ dx +

(
∂Q

∂x
− ∂P

∂y

)
dx ∧ dy

}
=

∫ ∫
S
n · curl F dA =

∫
∂S
P dx +Qdy +Rdz,

where F = (P,Q,R).
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Stokes’ Theorem
� Poincaré lemma: generalizes vector calculus theo-

rems: if curlF = 0, then F = ∇f , and if div F = 0,
then F = ∇×G.
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Stokes’ Theorem
� Poincaré lemma: generalizes vector calculus theo-

rems: if curlF = 0, then F = ∇f , and if div F = 0,
then F = ∇×G.

� Recall: if α is closed, then locally α is exact; that
is, if dα = 0, then locally α = dβ for some β.

� Calculus Examples: need not hold globally:

α =
xdy − ydx

x2 + y2

is closed (or as a vector field, has zero curl) but is not
exact (not the gradient of any function on R2 minus
the origin).
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Change of Variables
�M and N oriented n-manifolds; ϕ : M → N an

orientation-preserving diffeomorphism, α an n-form on
N (with, say, compact support), then∫

M

ϕ∗α =

∫
N

α.
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Identities for Vector Fields and Forms

◦ Vector fields on M with the bracket [X, Y ] form a Lie algebra ; that
is, [X, Y ] is real bilinear, skew-symmetric, and Jacobi’s identity
holds:

[[X, Y ], Z] + [[Z,X ], Y ] + [[Y, Z], X ] = 0.

Locally,
[X, Y ] = (X · ∇)Y − (Y · ∇)X,

and on functions,

[X, Y ][f ] = X [Y [f ]]− Y [X [f ]].

◦ For diffeomorphisms ϕ and ψ,

ϕ∗[X, Y ] = [ϕ∗X,ϕ∗Y ] and (ϕ ◦ ψ)∗X = ϕ∗ψ∗X.

◦ (α∧β)∧γ = α∧ (β ∧γ) and α∧β = (−1)klβ ∧α for k- and l-forms
α and β.

◦ For maps ϕ and ψ,

ϕ∗(α ∧ β) = ϕ∗α ∧ ϕ∗β and (ϕ ◦ ψ)∗α = ψ∗ϕ∗α.
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Identities for Vector Fields and Forms

◦ d is a real linear map on forms, ddα = 0, and

d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ

for α a k-form.

◦ For α a k-form and X0, . . . , Xk vector fields,

(dα)(X0, . . . , Xk) =

k∑
i=0

(−1)iXi[α(X0, . . . , X̂i, . . . , Xk)]

+
∑

0≤i<j≤k
(−1)i+jα([Xi, Xj], X0, . . . , X̂i, . . . , X̂j, . . . , Xk),

where X̂i means that Xi is omitted. Locally,

dα(x)(v0, . . . , vk) =

k∑
i=0

(−1)iDα(x) · vi(v0, . . . , v̂i, . . . , vk).

◦ For a map ϕ,
ϕ∗dα = dϕ∗α.
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Identities for Vector Fields and Forms

◦ Poincaré Lemma. If dα = 0, then the k-form α is locally exact;
that is, there is a neighborhood U about each point on which α = dβ.
This statement is global on contractible manifolds or more generally if
Hk(M) = 0.

◦ iXα is real bilinear in X , α, and for h : M → R,

ihXα = hiXα = iXhα.

Also, iXiXα = 0 and

iX(α ∧ β) = iXα ∧ β + (−1)kα ∧ iXβ

for α a k-form.

◦ For a diffeomorphism ϕ,

ϕ∗(iXα) = iϕ∗X(ϕ∗α), i.e., ϕ∗(X α) = (ϕ∗X) (ϕ∗α).

◦ If f : M → N is a mapping and Y is f -related to X , that is,

Tf ◦X = Y ◦ f,
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Identities for Vector Fields and Forms

then
iXf

∗α = f∗iY α; i.e., X (f∗α) = f∗(Y α).

◦ £Xα is real bilinear in X , α and

£X(α ∧ β) = £Xα ∧ β + α ∧£Xβ.

◦Cartan’s Magic Formula:

£Xα = diXα + iXdα = d(X α) +X dα.

◦ For a diffeomorphism ϕ,

ϕ∗£Xα = £ϕ∗Xϕ
∗α.

If f : M → N is a mapping and Y is f -related to X , then

£Y f
∗α = f∗£Xα.
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Identities for Vector Fields and Forms

◦ (£Xα)(X1, . . . , Xk) = X [α(X1, . . . , Xk)]

−
k∑
i=0

α(X1, . . . , [X,Xi], . . . , Xk).

Locally,

(£Xα)(x) · (v1, . . . , vk) = (Dαx ·X(x))(v1, . . . , vk)

+

k∑
i=0

αx(v1, . . . ,DXx · vi, . . . , vk).

◦ More identities:

•£fXα = f£Xα + df ∧ iXα;

•£[X,Y ]α = £X£Yα−£Y£Xα;

• i[X,Y ]α = £XiYα− iY£Xα;

•£Xdα = d£Xα;

•£XiXα = iX£Xα;
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Identities for Vector Fields and Forms

•£X(α ∧ β) = £Xα ∧ β + α ∧£Xβ.
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Identities for Vector Fields and Forms

◦Coordinate formulas: for X = X l∂/∂xl, and

α = αi1...ikdx
i1 ∧ · · · ∧ dxik,

where i1 < · · · < ik:

•
dα =

(
∂αi1...ik
∂xl

)
dxl ∧ dxi1 ∧ · · · ∧ dxik,

•
iXα = X lαli2...ikdx

i2 ∧ · · · ∧ dxik,
•

£Xα = X l

(
∂αi1...ik
∂xl

)
dxi1 ∧ · · · ∧ dxik

+ αli2...ik

(
∂X l

∂xi1

)
dxi1 ∧ dxi2 ∧ · · · ∧ dxik + . . . .
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