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Background: Network Modeling
� In conjunction with network modeling of complex

physical systems, the idea of interconnections, first
proposed by G. Kron (1939), is a very useful tool that
enables us to treat an original system as a network of
an aggregation of torn apart subsystems or elements.
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Background: Network Modeling
� In conjunction with network modeling of complex

physical systems, the idea of interconnections, first
proposed by G. Kron (1939), is a very useful tool that
enables us to treat an original system as a network of
an aggregation of torn apart subsystems or elements.

�Especially, the interconnections play an essential role
in modeling physical systems interacting with vari-
ous energy fields such as electro-mechanical systems
(Kron,1963), bio-chemical reaction systems (Kachal-
sky, Oster and Perelson,1970), etc.
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What is Interconnection ?

4



What is Interconnection ?
�The interconnection represents how subsystems or el-

ements are energetically interacted with each other; in
other words, it plays a role in regulating energy flow
between subsystems and elements.

Interconnection 
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Subsystem

System
Element
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ample, in which we can literally see how system com-
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What is a Typical Example ?
�The interconnection in electric circuits is a typical ex-

ample, in which we can literally see how system com-
ponents are interconnected.

�The interconnection of L-C circuits was shown to be
represented by Dirac structures by van der Schaft
and Maschke (1995) and Bloch and Crouch (1997).
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�Courant and Weinstein (1989, 1991) developed a

notion of Dirac structures that include “symplectic
and Poisson structures”, inspiring from Dirac’s theory
of constraints.
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What is a Dirac Structure ?
�Courant and Weinstein (1989, 1991) developed a

notion of Dirac structures that include “symplectic
and Poisson structures”, inspiring from Dirac’s theory
of constraints.

�An almost Dirac structure on a manifold M is de-
fined by, for each x ∈ M ,

D(x) ⊂ TxM × T ∗
xM such that D(x) = D⊥(x),

where

D⊥(x) ={(v̄x, ᾱx) ∈ TxM × T ∗
xM |

〈αx, v̄x〉 + 〈ᾱx, vx〉 = 0,∀(vx, αx) ∈ D(x)}.
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�We call D a Dirac structure on M if

〈£X1
α2, X3〉 + 〈£X2

α3, X1〉 + 〈£X3
α1, X2〉 = 0

for all (X1, α1), (X2, α2), (X3, α3) ∈ D.
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�The bundle map Ω[ : TP → T ∗P associated to a
two-form Ω on P defines a Dirac structure on P as

DP = graph Ω[ ⊂ TP ⊕ T ∗P.
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�We call D a Dirac structure on M if

〈£X1
α2, X3〉 + 〈£X2

α3, X1〉 + 〈£X3
α1, X2〉 = 0

for all (X1, α1), (X2, α2), (X3, α3) ∈ D.

�The bundle map Ω[ : TP → T ∗P associated to a
two-form Ω on P defines a Dirac structure on P as

DP = graph Ω[ ⊂ TP ⊕ T ∗P.

�The bundle map B] : T ∗P → TP associated to a
Poisson structure B on P defines a Dirac structure
on P as

DP = graph B] ⊂ TP ⊕ T ∗P.
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Dirac Structures in Mechanics ?
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Dirac Structures in Mechanics ?
� van der Schaft and Maschke (1995) developed an im-
plicit Hamiltonian systems for the regular
cases and showed nonholonomic systems and L-C cir-
cuits in the context of implicit Hamiltonian systems

(X,dH) ∈ DP .
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Dirac Structures in Mechanics ?
� van der Schaft and Maschke (1995) developed an im-
plicit Hamiltonian systems for the regular
cases and showed nonholonomic systems and L-C cir-
cuits in the context of implicit Hamiltonian systems

(X,dH) ∈ DP .

In the case that P = T ∗Q, the coordinate expression
of the implicit Hamiltonian system is given by(

q̇i

ṗi

)
=

(
0 1
−1 0

)( ∂H
∂qi

∂H
∂pi

)
+

(
0

µa ωa
i (q)

)
,

0 = ωa
i (q)

∂H

∂pi
.
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How about the Lagrangian Side ?
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How about the Lagrangian Side ?
�Dirac structures have not been enough investigated

from the Lagrangian side, although Dirac’s theory of
constraints started from a degenerate Lagrangian. Re-
cently, a notion of implicit Lagrangian systems, has
been developed by Yoshimura and Marsden (2003).
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How about the Lagrangian Side ?
�Dirac structures have not been enough investigated

from the Lagrangian side, although Dirac’s theory of
constraints started from a degenerate Lagrangian. Re-
cently, a notion of implicit Lagrangian systems, has
been developed by Yoshimura and Marsden (2003).

�For degenerate cases, we need to do “slowly and
carefully” the Legendre transform. A generalized
Legendre transformation was developed by Tulczy-
jew (1974) and Maxwell-Vlasov equations were in-
vestigated by Euler-Poincaré equations in the con-
text of the generalized Legendre transform with sym-
metry by Cendra, Holm, Hoyle and Marsden (1998).
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What are Questions ?

10



What are Questions ?
�Can we construct an implicit Hamiltonian system from

a degenerate Lagrangian ? If so, how can we do the
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What are Questions ?
�Can we construct an implicit Hamiltonian system from

a degenerate Lagrangian ? If so, how can we do the
Ledendre transform ?

�What is the link between Dirac structures and Dirac’
constraint theory in the context of implicit Hamilto-
nian systems?

�What is the variational link with implicit Hamiltonian
systems ?

�Both implicit Lagrangian and Hamiltonian systems
are equivalent even in degenerate cases?

Our Goals are to Answer these Questions!
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Induced Dirac Structures
�Consider nonholonomic constraints which are given by

a regular distribution

∆Q ⊂ TQ.

Let πQ : T ∗Q → Q be the canonical projection and
its tangent map is given by

TπQ : TT ∗Q → TQ;

(q, p, δq, δp) 7→ (q, δq).

Lift up the distribution ∆Q on Q to T ∗Q such that

∆T ∗Q = (TπQ)−1 (∆Q) ⊂ TT ∗Q.
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Induced Dirac Structures
�Define a skew-symmetric bilinear form Ω∆Q

by

Ω∆Q
= Ω |∆T∗Q×∆T∗Q .

An induced Dirac structure D∆Q
on T ∗Q is

defined by, for each (q, p) ∈ T ∗Q ,

D∆Q
(q, p) = {(v, α) ∈ T(q,p)T

∗Q× T ∗
(q,p)T

∗Q |

v ∈ ∆T ∗Q(q, p), and α(w) = Ω∆Q
(v, w)

for all w ∈ ∆T ∗Q(q, p)}.
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Symplectomorphisms
�There are natural diffeomorphisms as

(1) κQ : TT ∗Q → T ∗TQ; (q, p, δq, δp) 7→ (q, δq, δp, p)

(2) Ω[ : TT ∗Q → T ∗T ∗Q; (q, p, δq, δp) 7→ (q, p,−δp, δq)

Then, define the diffeomorphism by

γQ = Ω[ ◦ (κQ)−1 : T ∗TQ → T ∗T ∗Q,

which is given in coordinates by

(q, δq, δp, p) 7→ (q, p,−δp, δq),

which preserves the symplectic form ΩTT ∗Q on TT ∗Q:

ΩTT ∗Q = dq ∧ dδp + dδq ∧ dp.
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Dirac Differential
�Let L : TQ → R be a Lagrangian (possibly degener-

ate) and dL : TQ → T ∗TQ is given by

dL =

(
q, v,

∂L

∂q
,
∂L

∂v

)
.

Define the Dirac differential of L by

DL = γQ ◦ dL : TQ → T ∗T ∗Q.

In coordinates,

DL =

(
q,

∂L

∂v
,−∂L

∂q
, v

)
,

where we have the Legendre transform p = ∂L/∂v.
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Implicit Lagrangian Systems
�An implicit Lagrangian system is a triple

(L, ∆Q, X) which satisfies, for each (q, v) ∈ ∆Q,

(X(q, p), DL(q, v)) ∈ D∆Q
(q, p),

where (q, p) = FL(q, v).
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Implicit Lagrangian Systems
�An implicit Lagrangian system is a triple

(L, ∆Q, X) which satisfies, for each (q, v) ∈ ∆Q,

(X(q, p), DL(q, v)) ∈ D∆Q
(q, p),

where (q, p) = FL(q, v).

� Since the canonical two-form Ω is locally given by

Ω ((q, p, u1, α1), (q, p, u2, α2)) = 〈α2, u1〉 − 〈α1, u2〉 ,

the Dirac structure is locally expressed by

D∆Q
(q, p) = {((q, p, q̇, ṗ), (q, p, α, w)) | q̇ ∈ ∆(q),

w = q̇, and α + ṗ ∈ ∆◦(q)} .
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Implicit Lagrangian Systems

� Since X(q, p) = (q, p, q̇, ṗ) and DL =
(
q, ∂L

∂v ,−
∂L
∂q , v

)
,

it reads from (X, DL) ∈ D∆Q
that, for each v ∈ ∆(q),〈

−∂L

∂q
, u

〉
+ 〈v, α〉 = 〈α, q̇〉 − 〈ṗ, u〉 ,

for all u ∈ ∆(q), all α and with p = ∂L/v.
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Implicit Lagrangian Systems

� Since X(q, p) = (q, p, q̇, ṗ) and DL =
(
q, ∂L

∂v ,−
∂L
∂q , v

)
,

it reads from (X, DL) ∈ D∆Q
that, for each v ∈ ∆(q),〈

−∂L

∂q
, u

〉
+ 〈v, α〉 = 〈α, q̇〉 − 〈ṗ, u〉 ,

for all u ∈ ∆(q), all α and with p = ∂L/v.

Thus, one can obtain the coordinate expression of
implicit Lagrangian systems:

ṗ−∂L

∂q
∈ ∆◦(q), q̇ = v, p =

∂L

∂v
, q̇ ∈ ∆(q).
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Hamilton-Pontryagin Principle
�Given a Lagrangian L : TQ → R (possibly degener-

ate). By regarding the second-order condition

q̇ = v

as a constraint, we define the action integral by

S(q, v, p) =

∫ t2

t1

{L(q(t), v(t)) + p(t) · (q̇(t)− v(t))} dt

=

∫ t2

t1

{p(t) · q̇(t)− E(q(t), v(t), p(t))} dt,

where E(q, v, p) = p · v − L(q, v) is the generalized
energy on TQ⊕ T ∗Q.
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�Keeping the endpoints of q(t) fixed, the stationary
condition for the action functional is

δ

∫ t2

t1

{L(q, v) + p (q̇ − v)} dt

=

∫ t2

t1

{(
−ṗ +

∂L

∂q

)
δq +

(
−p +

∂L

∂v

)
δv +

(
q̇ − v

)
δp

}
dt

= 0,

which is satisfied for all δq, δv and δp.
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�Keeping the endpoints of q(t) fixed, the stationary
condition for the action functional is

δ

∫ t2

t1

{L(q, v) + p (q̇ − v)} dt

=

∫ t2

t1

{(
−ṗ +

∂L

∂q

)
δq +

(
−p +

∂L

∂v

)
δv +

(
q̇ − v

)
δp

}
dt

= 0,

which is satisfied for all δq, δv and δp.

We obtain implicit Euler-Lagrange equations:

ṗ =
∂L

∂q
, p =

∂L

∂v
, q̇ = v.
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Lagrange-d’Alembert-Pontryagin Principle

�Let ∆Q ⊂ TQ be a distribution. The Lagrange-
d’Alembert-Pontryagin Principle is given by∫ t2

t1

{(
−ṗ +

∂L

∂q

)
δq +

(
−p +

∂L

∂v

)
δv

+
(
q̇ − v

)
δp
}

dt = 0

for all chosen δq ∈ ∆Q(q), δv, δp, and with v ∈ ∆Q(q).
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Lagrange-d’Alembert-Pontryagin Principle

�Let ∆Q ⊂ TQ be a distribution. The Lagrange-
d’Alembert-Pontryagin Principle is given by∫ t2

t1

{(
−ṗ +

∂L

∂q

)
δq +

(
−p +

∂L

∂v

)
δv

+
(
q̇ − v

)
δp
}

dt = 0

for all chosen δq ∈ ∆Q(q), δv, δp, and with v ∈ ∆Q(q).

Then, we obtain an implicit Lagrangian system as

ṗ−∂L

∂q
∈ ∆◦(q), q̇ = v, p =

∂L

∂v
, and q̇ ∈ ∆(q).
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Example: Point Vortices
�Consider a system with a degenerate Lagrangian:

L(q, v) = 〈αi(q), vi〉 − h(q),

which arises in point vortices and KdV equa-
tions (Marsden and Ratiu (1999)).
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Example: Point Vortices
�Consider a system with a degenerate Lagrangian:

L(q, v) = 〈αi(q), vi〉 − h(q),

which arises in point vortices and KdV equa-
tions (Marsden and Ratiu (1999)).

In the context of implicit Lagrangian systems, we have

q̇i = vi,

ṗi =
∂L

∂qi
=

∂αj(q)

∂qi
vj − ∂h(q)

∂qi
,

pi =
∂L

∂vi
= αi(q).

20



Example: L-C Circuits
�L-C Circuits

L

C1C2 C3

eC3

fC3fC2

eC2
eC1

fC1

fL

eL

charges: q = (qL, qC1
, qC2

, qC3
) ∈ W,

currents: f = (fL, fC1
, fC2

, fC3
) ∈ TqW,

voltages: e = (eL, eC1
, eC2

, eC3
) ∈ T ∗

q W.
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�The KCL constraint for currents is given by

∆q = {f ∈ TqW | 〈ωa, f〉 = 0, a = 1, 2},
where

ω1 = −dqL+dqC2
and ω2 = −dqC1

+dqC2
−dqC3

.

The lifted distribution on T ∗W is given by

∆T ∗W =
{
X(q,p) = (q, p, q̇, ṗ) | q ∈ U, q̇ ∈ ∆q

}
and an induced Dirac structure on T ∗W is defined as

D∆(q, p) = {((q, p, q̇, ṗ), (q, p, α, w)) | q̇ ∈ ∆q,

w = q̇, and α + ṗ ∈ ∆◦
q

}
.
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�The Lagrangian of the L-C circuit is given by

L(q, f) = Tq(f )− V (q)

=
1

2
L (fL)2 − 1

2

(qC1
)2

C1
− 1

2

(qC2
)2

C2
− 1

2

(qC3
)2

C3

and is apparently degenerate !
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�The Lagrangian of the L-C circuit is given by

L(q, f) = Tq(f )− V (q)

=
1

2
L (fL)2 − 1

2

(qC1
)2

C1
− 1

2

(qC2
)2

C2
− 1

2

(qC3
)2

C3

and is apparently degenerate !

The image of ∆, namely, P = FL(∆) ⊂ T ∗W indi-
cates the primary constraint set as

pL = L fL, pC1
= pC2

= pC3
= 0.

The Dirac differential of L is denoted by

DL(q, f) =

(
0,

qC1

C1
,
qC2

C2
,
qC3

C3
, fL, fC1

, fC2
, fC3

)
.
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�The L-C circuit satisfies the condition

(X, DL) ∈ D∆.

Thus, the L-C circuit can be represented by(
q̇i

ṗi

)
=

(
0 1
−1 0

)(
−∂L

∂qi

vi

)
+

(
0

µa ωa
i (q)

)
,

pi =
∂L
∂vi

,

0 = ωa
i (q) vi.
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Thus, the L-C circuit can be represented by(
q̇i

ṗi
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0
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�Q: How can we go to the Hamiltonian side in de-
generate cases ?
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�The L-C circuit satisfies the condition

(X, DL) ∈ D∆.

Thus, the L-C circuit can be represented by(
q̇i

ṗi

)
=

(
0 1
−1 0

)(
−∂L

∂qi

vi

)
+

(
0

µa ωa
i (q)

)
,

pi =
∂L
∂vi

,

0 = ωa
i (q) vi.

�Q: How can we go to the Hamiltonian side in de-
generate cases ?
A: We can go to the Hamitlonian side by incorpo-
rating primary constraints.
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Generalized Legendre Transform
�The constraint momentum space is defined by

P = FL(∆Q) ⊂ T ∗Q,

where we suppose that dim Pq = k ≤ n at each q ∈ Q
and Pq is given by the primary constraints as
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Generalized Legendre Transform
�The constraint momentum space is defined by

P = FL(∆Q) ⊂ T ∗Q,

where we suppose that dim Pq = k ≤ n at each q ∈ Q
and Pq is given by the primary constraints as

Pq =
{
p ∈ T ∗

q Q | φA(q, p) = 0, A = k + 1, ..., n
}

,

and let (pλ, pA) be coordinates for Pq defined by

pλ =
∂L

∂vλ
, pA =

∂L

∂vA
, λ = 1, ..., k, A = k + 1, ..., n,

where vi = (vλ, vA) are coordinates for ∆Q(q) ⊂ TqQ.
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Generalized Legendre Transform
�Notice that the rank of the Hessian is k as

det

[
∂2L

∂vλ∂vµ

]
6= 0; λ, µ = 1, ..., k ≤ n.

Define an generalized energy E on TQ⊕ T ∗Q by

E(qi, vi, pi) = pi v
i − L(qi, vi)

= pλ vλ + pA vA − L(qi, vλ, vA).

Then, a constrained Hamiltonian HP on P can
be defined by

HP (qi, pλ) = stat vi E(qi, vi, pi) |P.
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Generalized Hamiltonian
�One can do the partial Legendre transform

F(L|∆Q)
(
qi, vλ

)
=

(
qi, pλ =

∂L

∂vλ

) ∣∣∣∣
P

and the rest may result in primary constraints.

φA(qi, pi) = 0, A = k + 1, ..., n.
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Generalized Hamiltonian
�One can do the partial Legendre transform

F(L|∆Q)
(
qi, vλ

)
=

(
qi, pλ =

∂L

∂vλ

) ∣∣∣∣
P

and the rest may result in primary constraints.

φA(qi, pi) = 0, A = k + 1, ..., n.

Define the generalized Hamiltonian H on TQ⊕
T ∗Q such that H |P = HP , which is locally given by

H(qi, vA, pi) = HP (qi, pλ) + φA(qi, pi) vA,

where vA, A = k+1, ..., n can be regarded as Lagrange
multipliers for the primary constraints.
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Implicit Hamiltonian Systems
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Implicit Hamiltonian Systems
�Let H : TQ⊕T ∗Q → R be the generalized Hamilto-

nian and the differential of H is locally given by

dH =

(
qi, vA, pi,

∂H

∂qi
,
∂H

∂vA
,
∂H

∂pi

)
.

Because of the primary constraints, it reads

∂H

∂vA
= φA(qi, pi) = 0, A = k + 1, ..., n.
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Implicit Hamiltonian Systems
�Let H : TQ⊕T ∗Q → R be the generalized Hamilto-

nian and the differential of H is locally given by

dH =

(
qi, vA, pi,

∂H

∂qi
,
∂H

∂vA
,
∂H

∂pi

)
.

Because of the primary constraints, it reads

∂H

∂vA
= φA(qi, pi) = 0, A = k + 1, ..., n.

So, restrict dH : T (TQ⊕ T ∗Q) → R to TT ∗Q and

dH(q, v, p)|TT ∗Q =

(
∂H

∂qi
,
∂H

∂pi

)
.

28



�An implicit Hamiltonian system is defined by
(H, ∆Q, X), which satisfies, for each (q, p) ∈ T ∗Q,

(X(q, p),dH(q, v, p)|TT ∗Q) ∈ D∆Q
(q, p),

and with the primary constraints

φA(q, p) = 0.
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�An implicit Hamiltonian system is defined by
(H, ∆Q, X), which satisfies, for each (q, p) ∈ T ∗Q,

(X(q, p),dH(q, v, p)|TT ∗Q) ∈ D∆Q
(q, p),

and with the primary constraints

φA(q, p) = 0.

� In coordinates, we obtain

q̇ =
∂H

∂p
∈ ∆Q(q), ṗ+

∂H

∂q
∈ ∆◦

Q(q),
∂H

∂vA
= φA(q, p) = 0.

29



Variational Link ?
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Variational Link ?
�The Hamilton-d’Alembert-Pontryagin prin-
ciple is is given by

δ

∫ t2

t1

{
p(t) q̇(t)−H(q, vA, p)

}
dt

=

∫ t2

t1

{(
−ṗ− ∂H

∂q

)
δq +

(
q̇ − ∂H

∂p

)
δp− ∂H

∂vA
δvA

}
dt = 0

for all δq ∈ ∆(q), δvA and δp and with q̇ ∈ ∆(q).
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�The Hamilton-d’Alembert-Pontryagin prin-
ciple is is given by

δ

∫ t2

t1

{
p(t) q̇(t)−H(q, vA, p)

}
dt

=

∫ t2

t1

{(
−ṗ− ∂H

∂q

)
δq +

(
q̇ − ∂H

∂p

)
δp− ∂H

∂vA
δvA

}
dt = 0

for all δq ∈ ∆(q), δvA and δp and with q̇ ∈ ∆(q).

�Then, we have

q̇ =
∂H

∂p
∈ ∆Q(q), ṗ+

∂H

∂q
∈ ∆◦

Q(q),
∂H

∂vA
= φA(q, p) = 0.
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Example: Point Vortices
� Start with a degenerate Lagrangian given by

L(qi, vi) = 〈αi(q
j), vi〉 − h(qi).

By computions, we obtain the primary constraints

φi(q
j, pj) = pi −

∂L

∂vi

= pi − αi(q
j) = 0,

which form a submanifold P of T ∗Q, that is, a point
in T ∗Q.
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Example: Point Vortices
� Start with a degenerate Lagrangian given by

L(qi, vi) = 〈αi(q
j), vi〉 − h(qi).

By computions, we obtain the primary constraints

φi(q
j, pj) = pi −

∂L

∂vi

= pi − αi(q
j) = 0,

which form a submanifold P of T ∗Q, that is, a point
in T ∗Q.

�Define an generalized energy E by

E(qi, vi, pi) = pi v
ı − L(qi, vi)

= (pi − αi(q
j)) vi + h(qi)
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�The constrained Hamiltonian HP on P can be defined
by

HP (qi, pi) = stat vi E(qi, vi, pi) |P
= h(qi)

Hence, the generalized Hamiltonian H on TQ⊕ T ∗Q
can be defined by
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�The constrained Hamiltonian HP on P can be defined
by

HP (qi, pi) = stat vi E(qi, vi, pi) |P
= h(qi)

Hence, the generalized Hamiltonian H on TQ⊕ T ∗Q
can be defined by

H(qi, vi, pi) = HP (qi, pi) + φi(q
i, pi) vi

= h(qi) + (pi − αi(q
j)) vi

such that the following relation holds:

H |P = HP .
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�The Hamilton-Pontryagin principle in phase space is
given (in this case ∆Q = TQ) by

δ

∫ t2

t1

{
pi(t) q̇i(t)−H(qi, vA, pi)

}
dt

=

∫ t2

t1

{(
−ṗi − ∂H

∂qi

)
δqi +

(
q̇i − ∂H

∂pi

)
δpi −

∂H

∂vi
δvi

}
dt = 0

for all δqi(t), δvi(t) and δpi(t), which directly provides
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�The Hamilton-Pontryagin principle in phase space is
given (in this case ∆Q = TQ) by

δ

∫ t2

t1

{
pi(t) q̇i(t)−H(qi, vA, pi)

}
dt

=

∫ t2

t1

{(
−ṗi − ∂H

∂qi

)
δqi +

(
q̇i − ∂H

∂pi

)
δpi −

∂H

∂vi
δvi

}
dt = 0

for all δqi(t), δvi(t) and δpi(t), which directly provides

q̇i =
∂H

∂pi
= vi,

ṗi = −∂H

∂qi
=

∂αj(q)

∂qi
vj − ∂h(q)

∂qi
,

∂H

∂vi
= φi(q

j, pj) = pi − αi(q
j) = 0.
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Example: L-C Circuits
�The generalized energy E on TW ⊕T ∗W is given by

E(qi, f i, pi) = pi f
i − L(qi, f i)

= pL fL + pC1
fC1

+ pC2
fC2

+ pC3
fC3

− 1

2
L (fL)2 +

1

2

(qC1
)2

C1
+

1

2

(qC2
)2

C2
+

1

2

(qC3
)2

C3
.

L

C1C2 C3

eC3

fC3fC2

eC2
eC1

fC1

fL

eL
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Define the constrained Hamiltonian HP on P by

HP (qi, pλ) = stat f i E(qi, f i, pi) |P
= T (qi, pλ) + V (qi)

=
1

2
L−1 (pL)2 +

1

2

(qC1
)2

C1
+

1

2

(qC2
)2

C2
+

1

2

(qC3
)2

C3
,

where we use the partial Legendre transformation as

fL = L−1 pL.
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Define the constrained Hamiltonian HP on P by

HP (qi, pλ) = stat f i E(qi, f i, pi) |P
= T (qi, pλ) + V (qi)

=
1

2
L−1 (pL)2 +

1

2

(qC1
)2

C1
+

1

2

(qC2
)2

C2
+

1

2

(qC3
)2

C3
,

where we use the partial Legendre transformation as

fL = L−1 pL.

and the primary constraints

φA = 0, A = 2, 3, 4

are in fact given by

φ2 = pC1
= 0, φ3 = pC2

= 0, φ4 = pC3
= 0.
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Define the generalized Hamiltonian H on TW ⊕T ∗W
such that H |P = HP , which is locally represented by

H(qi, fA, pi) = HP (qi, pλ) + φA(qi, pi) fA

=
1

2
L−1 (pL)2 +

1

2

(qC1
)2

C1
+

1

2

(qC2
)2

C2
+

1

2

(qC3
)2

C3

+ pC1
fC1

+ pC2
fC2

+ pC3
fC3

,

where we incorporate primary constraints by employ-
ing fA, A = k + 1, ..., n as Lagrange multipliers.
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Define the generalized Hamiltonian H on TW ⊕T ∗W
such that H |P = HP , which is locally represented by

H(qi, fA, pi) = HP (qi, pλ) + φA(qi, pi) fA

=
1

2
L−1 (pL)2 +

1

2

(qC1
)2

C1
+

1

2

(qC2
)2

C2
+

1

2

(qC3
)2

C3

+ pC1
fC1

+ pC2
fC2

+ pC3
fC3

,

where we incorporate primary constraints by employ-
ing fA, A = k + 1, ..., n as Lagrange multipliers.

Recall the differential of H is locally given by

dH =

(
qi, fA, pi,

∂H

∂qi
,
∂H

∂fA
,
∂H

∂pi

)
.
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We can obtain the primary constraints as

∂H

∂fA
= φA(qi, pi) = pA = 0, A = 2, 3, 4.

The restriction of dH : T (TW ⊕ T ∗W ) → R to
TT ∗W is locally denoted by

dH(qi, vA, pi)|TT ∗W =

(
∂H

∂qi
,
∂H

∂pi

)
=

(
0,

qC1

C1
,
qC2

C2
,
qC3

C3
, pL, pC1

, pC2
, pC3

)
=

(
0,

qC1

C1
,
qC2

C2
,
qC3

C3
, pL, 0, 0, 0

)
.
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�The vector field X on T ∗W , defined at points in P ,
is locally represented by

X (qL, qC1
, qC2

, qC3
, pL, 0, 0, 0) = (q̇L, q̇C1

, q̇C2
, q̇C3

, ṗL, 0, 0, 0) ,

and the condition of an implicit Hamiltonian system
(H, ∆, X) is satisfied such that for each (q, p) ∈ T ∗W ,

(X(q, p),dH(q, v, p)|TT ∗W ) ∈ D∆(q, p).
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�The vector field X on T ∗W , defined at points in P ,
is locally represented by
X (qL, qC1

, qC2
, qC3

, pL, 0, 0, 0) = (q̇L, q̇C1
, q̇C2

, q̇C3
, ṗL, 0, 0, 0) ,

and the condition of an implicit Hamiltonian system
(H, ∆, X) is satisfied such that for each (q, p) ∈ T ∗W ,

(X(q, p),dH(q, v, p)|TT ∗W ) ∈ D∆(q, p).

In coordinates, we have(
q̇i

ṗi

)
=

(
0 1
−1 0

)( ∂H
∂qi

∂H
∂pi

)
+

(
0

µa ωa
i (q)

)
,

∂H

∂vA
= φA(qi, pi) = 0,

0 = ωa
i (q)

∂H

∂pi
.
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Implicit Lagrangian Systems Revisit
�Recall the generalized energy E : TQ⊕ T ∗Q → R is

defined by

E(q, v, p) = p · v − L(q, v)
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Implicit Lagrangian Systems Revisit
�Recall the generalized energy E : TQ⊕ T ∗Q → R is

defined by

E(q, v, p) = p · v − L(q, v)

and the differential of E is locally given by

dE =

(
qi, vi, pi,

∂E

∂qi
,
∂E

∂vi
,
∂E

∂pi

)
.
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Implicit Lagrangian Systems Revisit
�Recall the generalized energy E : TQ⊕ T ∗Q → R is

defined by

E(q, v, p) = p · v − L(q, v)

and the differential of E is locally given by

dE =

(
qi, vi, pi,

∂E

∂qi
,
∂E

∂vi
,
∂E

∂pi

)
.

Because of the Legendre transformation, it reads

∂E

∂vi
= pi −

∂L

∂vi
= 0, i = 1, ..., n.
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So, restrict dE : T (TQ⊕ T ∗Q) → R to TT ∗Q and

dE(q, v, p)|TT ∗Q =

(
∂E

∂qi
,
∂E

∂pi

)
=

(
−∂L

∂qi
, vi

)
.
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So, restrict dE : T (TQ⊕ T ∗Q) → R to TT ∗Q and

dE(q, v, p)|TT ∗Q =

(
∂E

∂qi
,
∂E

∂pi

)
=

(
−∂L

∂qi
, vi

)
.

�The implicit Lagrangian system (L, ∆Q, X) that sats-
fies the condition

(X, DL) ∈ D∆Q

can be restated by, for each (q, p) ∈ T ∗Q,

(X(q, p),dE(q, v, p)|TT ∗Q) ∈ D∆Q
(q, p).
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Passage from ILS to IHS
�An implicit Lagrangian systems (X, ∆Q, L) satisfies

(X,dE|TT ∗Q) ∈ D∆Q
,

which are represented, in coordinates, by
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Passage from ILS to IHS
�An implicit Lagrangian systems (X, ∆Q, L) satisfies

(X,dE|TT ∗Q) ∈ D∆Q
,

which are represented, in coordinates, by(
q̇i

ṗi

)
=

(
0 1
−1 0

)(
−∂L

∂qi

vi

)
+

(
0

µa ωa
i (q)

)
,

pi =
∂L
∂vi

,

0 = ωa
i (q) vi.
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Passage from ILS to IHS
�An implicit Lagrangian systems (X, ∆Q, L) satisfies

(X,dE|TT ∗Q) ∈ D∆Q
,

which are represented, in coordinates, by(
q̇i

ṗi

)
=

(
0 1
−1 0

)(
−∂L

∂qi

vi

)
+

(
0

µa ωa
i (q)

)
,

pi =
∂L
∂vi

,

0 = ωa
i (q) vi.

Let’s go to the Hamiltonian side!
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Passage from ILS to IHS
�An implicit Hamiltonian system (H, ∆Q, X) satisfies

(X,dH|TT ∗Q) ∈ D∆Q
.

It follows, in coordinates,(
q̇i

ṗi

)
=

(
0 1
−1 0

)( ∂H
∂qi

∂H
∂pi

)
+

(
0

µa ωa
i (q)

)
,

∂H

∂vA
= φA(qi, pi) = 0,

0 = ωa
i (q)

∂H

∂pi
.
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Passage from ILS to IHS
�An implicit Hamiltonian system (H, ∆Q, X) satisfies

(X,dH|TT ∗Q) ∈ D∆Q
.

It follows, in coordinates,(
q̇i

ṗi

)
=

(
0 1
−1 0

)( ∂H
∂qi

∂H
∂pi

)
+

(
0

µa ωa
i (q)

)
,

∂H

∂vA
= φA(qi, pi) = 0,

0 = ωa
i (q)

∂H

∂pi
.

But, unfortunately, you can never come back to
the Lagrangian side from the Hamiltonian side in
the degenerate cases! It’s a one way passage!
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Concluding Remarks
�We have showed the link between implicit Lagrangian

and Hamiltonian systems in the case that a given La-
grangian is degenerate.

�We have developed a generalized Legendre transform
for degenerate Lagrangians and also developed a gen-
eralized Hamiltonian on the Pontryagin bundle, by
which we can incorporates primary constraints into
the variational as well as into the Dirac context.

�We have developed implicit Hamiltonian systems for
degenerate cases in the context of Dirac structures
as well as in the context of the Hamilton-Lagrange-
Pontryagin principle together with some examples.
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