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Background: Network Modeling

In conjunction with network modeling of complex

physical systems, the idea of interconnections, first
proposed by G. Kron (1959), is a very useful tool that
enables us to treat an original system as a network of
an ageregation of torn apart subsystems or elements.



In conjunction with network modeling of complex
physical systems, the idea of interconnections, first
proposed by G. Kron (1959), is a very useful tool that
enables us to treat an original system as a network of
an ageregation of torn apart subsystems or elements.

Especially, the interconnections play an essential role
in modeling physical systems interacting with vari-
ous energy fields such as electro-mechanical systems
(Kron, 1963 ), bio-chemical reaction systems ( Kachal-
sky, Oster and Perelson,1970), etc.



What is Interconnection ?



What is Interconnection ?

The interconnection represents how subsystems or el-
ements are energetically interacted with each other; in
other words, it plays a role in regulating energy flow
between subsystems and elements.

Energy
Interaction
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The interconnection in electric circuits is a typical ex-
ample, in which we can literally see how system com-
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The interconnection of L-C circuits was shown to be

represented by Dirac structures by van der Schaft
and Maschke (1995) and Bloch and Crouch (1997).
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What is a Dirac Structure 7

Courant and Weinstein (1989, 1991) developed a
notion of Dirac structures that include “symplectic
and Poisson structures”, inspiring from Dirac’s theory
of constraints.

An almost Dirac structure on a manifold M is de-

fined by, for each x € M,
D(z) C T,M x TM such that D(x) = D-(z),

where
D+(z) ={(v,,0,) € T,M x T*M |
Oz, Ug) + (A, V) = 0,V (v, ) € D(x)}.



We call D a Dirac structure on M it
(£x,00, X3) + (£ x,03, X1) + (£x,00, Xo) =0
for all (Xl, 041), (XQ, 042), (Xg, &3) cD.
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The bundle map €’ : TP — T*P associated to a
two-form €2 on P defines a Dirac structure on P as

Dp = graph Q" c TP & T*P.




We call D a Dirac structure on M it
(£x,00, X3) + (£ x,03, X1) + (£x,00, Xo) =0

for all (Xl, 041), (XQ, 042), (Xg, &3) cD.

The bundle map €’ : TP — T*P associated to a
two-form €2 on P defines a Dirac structure on P as

Dp = graph Q" c TP & T*P.

The bundle map B* : T*P — TP associated to a
Poisson structure B on P defines a Dirac structure
on P as

Dp =graph B*c TP @ T*P.



Dirac Structures in Mechanics ?



van der Schaft and Maschke (1995) developed an #m-
plicit Hamailtonian systems for the regular
cases and showed nonholonomic systems and L-C cir-
cuits in the context of implicit Hamiltonian systems

(X,dH) € Dp.



van der Schaft and Maschke (1995) developed an tm-
plicit Hamailtonian systems for the regular
cases and showed nonholonomic systems and L-C cir-
cuits in the context of implicit Hamiltonian systems

(X, dH) c Dp.

In the case that P = T7*(), the coordinate expression
of the implicit Hamiltonian system is given by
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Dirac structures have not been enough investigated

from the Lagrangian side, although Dirac’s theory of
constraints started from a degenerate Lagrangian. Re-

cently, a notion of tmplicit Lagrangian systems, has
been developed by Yoshimura and Marsden (2003).



How about the Lagrangian Side ?

Dirac structures have not been enough investigated
from the Lagrangian side, although Dirac’s theory of
constraints started from a degenerate Lagrangian. Re-

cently, a notion of tmplicit Lagrangian systems, has
been developed by Yoshimura and Marsden (2003).

For degenerate cases, we need to do “slowly and

carefully” the Legendre transform. A generalized
Legendre transformation was developed by Tulczy-
jew (1974 ) and Mazxwell-Viasov equations were in-
vestigated by Fuler-Poincaré equations in the con-

text of the generalized Legendre transform with sym-
metry by Cendra, Holm, Hoyle and Marsden (1998).
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Can we construct an implicit Hamiltonian system from
a degenerate Lagrangian 7 If so, how can we do the
Ledendre transform 7

What is the link between Dirac structures and Dirac’
constraint theory in the context of implicit Hamilto-
nian systems?

What is the variational link with implicit Hamiltonian
systems 7

Both implicit Lagrangian and Hamiltonian systems
are equivalent even in degenerate cases?

Our Goals are to Answer these Questions!



Consider nonholonomic constraints which are given by
a regular distribution

AQ CT0Q).

Let mg : T7Q) — () be the canonical projection and
1ts tangent map 1s given by

Trg :TT"Q — TQ;
(¢, p,0¢,0p) — (g, 09).
Lift up the distribution Ag on ) to T such that

Arq = (Tmg)" (Ag) C TT™Q.



Induced Dirac Structures

Define a skew-symmetric |

bilinear form {25, by

On, = O

AT*Q X AT*Q .

An wnduced Dirac structure Dy, on T7(Q) is
defined by, for each (q,p) € T*Q ,

Daglg,p) = (v, @) € Tiyp) T°Q X T(Z,p)T*Q |

v € Ariglq,p), and a(w) = O, (v, w)

for all w e Arglq,p)}.



There are natural diffeomorphisms as
(1) ko :TT*Q —T"TQ; (q,p,06q,0p) — (g,0q,p,p)

(2) @ :TT*Q — T*T*Q; (q,p,dq,6p) — (q,p, —p,q)

Then, define the diffeomorphism by
o= o (ko) TTQ — T*T*Q,
which is given in coordinates by

(q,9q,0p,p) — (q,p, —0p, dq),
which preserves the symplectic form Qpr« on T77Q):

Qrreg = dg N dop + dog N dp.



Let L : T(Q)Q — R be a Lagrangian (possibly degener-
ate) and dL : TQ) — T*T(Q is given by

OL OL
L = .
d <Q7 v? 8q7 8?})

Define the Dirac differential of L by
DL =vg0dL:TQ — T7TQ.

In coordinates,

@L:< oL 0L )7

Q7 av ) aq ) (%
where we have the Legendre transform p = 0L /0v.



Implicit Lagrangian Systems

An tmplicit Lagrangian system is a triple
(L, Ag, X) which satisfies, for each (q,v) € Ao,

(X(q,p),DL(g,v)) € Day(q,p),
where (q,p) = FL(q,v).



Implicit Lagrangian Systems

An tmplicit Lagrangian system is a triple

(L, Ag, X) which satisfies, for each (q,v) € Ao,

(X(q,p),DL(q,v)) € Da,(g¢; ),
where (q,p) = FL(q,v).

Since the canonical two-form (2 is locally given by

() ((Q7p7 uy, 041), (Q7p7 Uz, 052)) — <OZQ,U1> o <a17u2> 9

the Dirac structure 1s locally expressed by

Day(q,p) = {((q,p,4,D), (¢, p, a,w)) | ¢ € Alqg),
w=¢, and a+p € A°q)}.



Since X (q,p) = (¢,p,¢,p) and DL = (q, T % v),
it reads from (X, D L) € Dy, that, for each v € A(q),

<_g_§u> +(v,0) = (0,q) — (),

for all w € A(q), all a« and with p = 0L /v.



Since X (q,p) = (¢,p,¢,p) and DL = (q, T % v),
it reads from (X, D L) € Dy, that, for each v € A(q),

<_g_’;u> +(v,0) = (0,q) — (),

for all w € A(q), all a« and with p = 0L /v.

Thus, one can obtain the coordinate expression of
implicit Lagrangian systems:
OL . OL

_Z~ c A° — = — g€ Alg).
p c AN°(q), q¢=w, 50 1€ (q)



Given a Lagrangian L : T'(QQ — R (possibly degener-

ate). By regarding the second-order condition

g ="
as a constraint, we define the action integral by
to
S(q,v,p) = [ {Llq(t),v(t) +p(L) - (q(t) — v(t))} di

— | ? {p(t) - q(t) — E(q(t),v(t),p(t))} dt,

where F(q,v,p) = p-v — L(q,v) is the generalized
energy on 1'C) @ T*().



Keeping the endpoints of ¢(t) fixed, the stationary
condition for the action functional is

6[2{L<q,v>+p<q—v>} it

" 0L 0L ,
—/t1 {(—p+a—q>5q+(—p+%>5v+(q—v)5p} dt

= 0,

which is satisfied for all 0g, ov and op.



Keeping the endpoints of g(t) fixed, the stationary
condition for the action functional is

5/t2{L<q,v>+p<q_v>} it

" 0L 0L ,
—/t1 {(—p+a—q>5q+(—p+%>5v+(q—v)5p} dt

= 0,

which is satisfied for all 0g, ov and op.
We obtain tmplicit Euler-Lagrange equations:

L L
p_aq7 p_ava Q—U.



Let Ag C T'Q be a distribution. The Lagrange-
d’Alembert- Pontryagin Principle is given by

& . 0L OL
/tl {( P aq) da-+ (=p+ 5, )00
+((j — v) 5p} dt =0
for all chosen dg € Ap(q), 0v, dp, and with v € Ag(q).




Let Ag C T'Q be a distribution. The Lagrange-
d’Alembert- Pontryagin Principle is given by

/CQ{( p =2§)6q+—(—p4—%§)&v

+((j — v) 5p} dt =0
for all chosen dg € Ap(q), 0v, dp, and with v € Ag(q).

Then, we obtain an implicit Lagrangian system as

oL ... . oL |
p_a_qEA (Q>7 q—=71v, P= ava and QEA(Q)



Example: Point Vortices

Consider a system with a degenerate Lagrangian:

L(g,v) = (a(q), v') — h(q),

which arises in pownt vortices and KdV equa-
ttons (Marsden and Ratiu (1999)).



Consider a system with a degenerate Lagrangian:
L(g,v) = (ai(q), v') — h(q),

which arises in pownt vortices and KdV equa-
ttons (Marsden and Ratiu (1999)).

In the context of implicit Lagrangian systems, we have

=

. 0L 0()4]( )vj Oh(q)

pZ aq aqz aq@ )
0L

= a;(q)

Pi = o



[-C Circuits

€L
*- 700 . 4 1 A
L n
€Cy €4 €Cy
__ (O C: Cy
ch2 fcll fcgi
Y

ChangSI qd — (QL7 qdcy, 4C;;, QC:),) c W7

currents: f — (fLa fCU fcza fC:),) S TqW7
voltages: e = (er, ey, ecy, ec,) € Ty W.



The KCL constraint for currents is given by
Ag={feT,W | W ) =0, a=1,2}
where
w' = —dqr+dge, and w* = —dqe,+dqe,—dqc,.
The lifted distribution on T*W is given by
Aray = {X(q,p) =(¢,p,¢,p) |q €U, g€ Aq}

and an induced Dirac structure on T*W is defined as

Da(g,p) ={((¢,p: ¢, D), (¢, p, v, w)) | ¢ € A,
w = ¢, and oz+pEA2}.



The Lagrangian of the L-C circuit is given by

Lig, f) = Ty(f) — V()
1, 1) 1ge)?  lge)?
=L =5 "¢, "y G

and is apparently degenerate !




The Lagrangian of the L-C circuit is given by

L(g, ) =T,(f) = V(g)
1 1 > 1 2 1] :
_ 7 (fL)2 _(QC1) _(QCQ) _(QCP))
2 2 4 2 () 2 (C5
and is apparently degenerate !
The image of A, namely, P = FL(A) C T*W indi-

cates the primary constraint set as

pr =L fr, pc, =pc, =pc, = 0.
The Dirac differential of £ is denoted by

qdc, 40, 40,
Q’C(Q7f) < 7017027037vafClaf027f03)




The L-C circuit satisfies the condition
(X : @L) c DAn.
Thus, the L-C circuit can be represented by

(Z) ) (—Ol (1)> (g_ﬁ) ’ <ua£3<q>> |

oL

0 = wi(g)v".




The L-C circuit satisfies the condition
(X : @E) c DAn.
Thus, the L-C circuit can be represented by

(i) ) (—01 (1)> (g_ﬁ) ’ <uac3?((J)> |

L oL
pZ T a?}i, |
0 = wi(g)v".

(): How can we go to the Hamiltonian side in de-
generate cases ¢



The L-C circuit satisfies the condition
(X : @E) c DAn.
Thus, the L-C circuit can be represented by

(i) ) (—Ol (1)> (g_ﬁ) ’ (uac«?@%q)) |

L oL
pZ T a?}i, |
0 = wi(g)v".

(): How can we go to the Hamiltonian side in de-
generate cases ¢

A: We can go to the Hamitlonian side by incorpo-
rating primary constraints.
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The constraint momentum space is defined by
P=FL(Ag) C T Q,

where we suppose that dim P, =k < n at each g € ¢)
and P, 1s given by the primary constraints as

Pq:{pETq*Q|¢A<Q7p):Ov A:k+177n}7

and let (py, p4) be coordinates for P, defined by

oL oL

:—, :—, )\:17...7ij:]€'+1,..., ]
Px=5"% PA= 55 n

where v’ = (v, v4) are coordinates for Ag(q) C T,Q.



Notice that the rank of the Hessian is k as

- 2L
det Foaur <0, N, pu=1,..k<n.

Define an generalized energy F on T'CQ) & 1T7() by

E(q',v',pi) = piv' — L(g',v)
= pav” +pav” — L(g', M, 0,

Then, a constrained Hamailtonian Hp on P can
be defined by

HP(qi7p)\> — Statvi E<qZ7 viapi> | P.



One can do the partial Legendre transform

- - oL
F(L|Ag) (¢, v*) = (ql’ o ﬁ>
v
and the rest may result in primary constraints.

¢A(qzap2) — 07 A=k -+ 17 ey T




One can do the partial Legendre transform

- - oL
F(L|Ag) (¢, v*) = (qz’ o ﬁ)
v
and the rest may result in primary constraints.

¢A(qzap2) — 07 A=k -+ 17 ey T

Define the generalized Hamailtonian H on T'Q) &
T such that H | P = Hp, which is locally given by

H(qla UAvpi) — HP(Qiap)\) + ¢A(qzapl) UA)
where v, A = k+1, ..., n can be regarded as Lagrange
multipliers for the primary constraints.



Implicit Hamiltonian Systems



Let H : T(Q ®T*() — R be the generalized Hamilto-
nian and the differential of H is locally given by

dH_( 4 OH 0H 6’H>

(% ) Y )
0P 5g 90 op,
Because of the primary constraints, it reads

0H -
W:¢A(qz,p@'>:0, A:]f—|—1,,”fl



Let H : T(Q ®T*() — R be the generalized Hamilto-
nian and the differential of H is locally given by

. (qi . OH 0H 5’H>.

U ' :
) 7pl7 aqz7avA7 8}?2

Because of the primary constraints, it reads

0H Z.
W:¢A(Q7pl>:()7 A:k_l_la)n
So, restrict dH - T(T'Q & T*Q) — R to TT*() and

OH (9H>

dH(Qavap)‘TT*Q — <aqza ap



An tmplicit Hamiltonian system is defined by
(H,Ag, X), which satisfies, for each (q,p) € T*Q,

(X(Q7 p)7 dH(Q7 v, p) |TT*Q> - DA@(Q) p)a

and with the primary constraints

da(q,p) = 0.



An tmplicit Hamiltonian system is defined by
(H,Ag, X), which satisfies, for each (q,p) € T*Q,

(X(Q7 p)7 dH(Q7 v, p) |TT*Q> - DA@(Q) p)a

and with the primary constraints

¢4(q,p) = 0.
In coordinates, we obtain
OH GH OH
' A A =
1=, € 0(q), P @qé o\9): 55 = 9ala,p) =0.



Variational Link 7



The Hamilton-d’Alembert- Pontryagin prin-
ciple is 1s given by

5 [ tpterit) ~ Hig. o' )} a

P OH OH 0H _ ,
— —p— — p— - dt = 0
/tl {< P 5’Q>5Q+(q 3p>5p avA5U }

for all 6¢ € A(q), 6v” and dp and with ¢ € A(q).



The Hamilton-d’Alembert- Pontryagin prin-
ciple is 1s given by

5 [ tpterit) ~ Hig. o' )} a

e . OH . OH aH

for all 6¢ € A(q), 6v” and dp and with ¢ € A(q).

Then, we have

OH OH OH

apéﬁd)zﬁ——éﬁamw—~=¢@p)(l

1= 0q OvA



Start with a degenerate Lagrangian given by
L¢',v") = {cu(d’), v') = h(q").

By computions, we obtain the primary constraints

- 0L
(od ) —
=p;, — a;(q’) =0,

which form a submanifold P of T™(), that is, a point
in 77Q).



Start with a degenerate Lagrangian given by
L¢',v") = {cu(d’), v') = h(q").

By computions, we obtain the primary constraints

- OL
. ] . : .
= pi — ai(¢’) =0,

which form a submanifold P of T*(), that is, a point
in 17Q).
Define an generalized energy E by
E(q',v', pi) = piv' — L(q",v")
= (pi — ai(¢’)) v' + h(q)



The constrained Hamiltonian Hp on P can be defined
by
Hp(q',pi) = stat » E(q",v", p;) | P
= h(q')
Hence, the generalized Hamiltonian H on T'CQ) & T*()
can be defined by



The constrained Hamiltonian Hp on P can be defined
by
Hp(q',pi) = stat » E(q",v", p;) | P
= h(q')
Hence, the generalized Hamiltonian H on T'CQ) & T*()
can be defined by

H(q',v',pi) = HP(qiapz') + ¢z‘(qi>.pz') ?’i
= h(q') + (pi — ci(q’)) v*
such that the following relation holds:

H|P=Hp.



The Hamilton-Pontryagin principle in phase space is
given (in this case Ag = T'Q) by

{p@t H(q', v p)} dt

rh ;o _oH . OH OH

for all dq'(t), 51}75(15) and dp;(t), which directly provides




The Hamilton-Pontryagin principle in phase space is
given (in this case AQ =TQ) by

{pzt H(q', v p;)} dt

rt y 5’H . OH aH

for all 0¢'(t), 0v'(t) and dp;(t), which directly provides

g, OH
q = I, — U,
5 — _0H Oaj(q) . Oh(q)
0q' 0q' 0qt
OH

O = ¢i(¢’, pj) = pi — il¢’) = 0.



The generalized energy £/ on TW & T*W 1s given by

= pr, fr + o, fo, + pc, fo, + pey fo,

_ EL (fL)2 4 E(QCH)Z | E(QC’Q)Q | E(QC;),)Q
> 20, 2.0, 20
1l fﬁm\ 1 I
€Cy Jr €Cy €C;
I O Ci Cs
Jc. Jou fo,
| | |




Define the constrained Hamiltonian Hp on P by
Hp(q',pa) = stat i E(q', f',p;) | P
=T(q",p\) +V(q')
_ lL—l (pL>2 | }(QCH)Q | E(QCb)Q | E(QCg)Q
2 2 Cl 2 02 2 03 7

where we use the partial Legendre transformation as
fo=L""ps




Define the constrained Hamiltonian Hp on P by
HP(qzap)\> — Statfi E(qz7 fzapi) ‘ P
=T(q",p\) +V(q')

1 1 2 1 2 1 2
_ 71 (pL)2 | _(QC1) | _(QCQ) | _(QCg) |
2 ¢, 20, 20y

where we use the partial Legendre transformation as
fuo=L""ps

and the primary constraints
o4=0 A=234

are in fact given by

QSQ:pCl:O? ¢3:p02:07 ¢4:p0320



Define the generalized Hamiltonian H on TW ®&T*W
such that H | P = Hp, which is locally represented by

H(q', f4,p) = Hp(q', px) + dald’, pi) [
1 1(gcy)”  1(gey)®  1(gey)
—— 1 2 | = 1 = 2 = 3
L (L) + 3 c,. 30, T3,

+ pe, fo, + po, fo, + pe, fo,

where we incorporate primary constraints by employ-
ing f4, A=k+1,....,n as Lagrange multipliers.



Define the generalized Hamiltonian H on TW ®&T*W
such that H | P = Hp, which is locally represented by

H(q', f4p) = Hp(q',p\) + oald',pi) [
R 1(ge,)”  1ge,)”  1lgey)’
=l ety et o

+ pe, fo, + po, fo, + pe, fo,

where we incorporate primary constraints by employ-
ing f4, A=k+1,....,n as Lagrange multipliers.
Recall the differential of H is locally given by

(9H OH OH
i (g4, 20,21 001




We can obtain the primary constraints as

OH

dfA
The restriction of dH : T(TW & T*W) — R to
T T*W is locally denoted by

- OH OH
dH (¢, v, p)|rrw = .
(q , U 7p>‘TTW <aqza ap@)

_ O QCl QCQ QC3
) 017 027 CB

qdc, 4c, 4o,
=0, —=,—=,—=, p,0,0,0 ] .
< . Cy h >

— ¢A(qzvp’t) — PA — 07 A= 27 37 4.

y PL, PC,» PCy» ng)




The vector field X on T*W, defined at points in P,
18 locally represented by

X (QIA qc,,40,,49Csy PL, 07 Oa O) — (QLa QC17 QC27 QC37 p[n 07 O? O) 3

and the condition of an implicit Hamiltonian system
(H, A, X)) is satisfied such that for each (¢, p) € T*W,

(X(q,p),dH(q,v,p)|rTw) € Dalq,p).



The vector field X on T*W, defined at points in P,
18 locally represented by

X (q[n qc,, 40,,49Csy PL, 07 Oa O) — (q.La QCN qCQ? QCg),a pLa 07 07 O) 3

and the condition of an implicit Hamiltonian system
(H, A, X) is satisfied such that for each (¢, p) € T*W,

(X(q,p),dH(q, v, p)|rr-w) € Dalg,p).
In coordinates, we have

(g)—<%é>(%)+<wimﬂ’

o0H »
oA o', pi) =0,
OH
0 =wi(q) 5




Implicit Lagrangian Systems Reuvisit

Recall the generalized energy E : T'Q) @& T*() — R is

defined by
E(q,v,p) =p-v— L(q,v)



Recall the generalized energy F : T'Q) & T*() — R is
defined by

E(q,v,p) =p-v—L(g,v)
and the differential of £ is locally given by

- OF OF OF
dE = <C] v’ y Pis 9 7’782}7’78}?)




Recall the generalized energy F : T'Q) & T*() — R is
defined by

E(q,v,p) =p-v—L(g,v)
and the differential of £ is locally given by

- OF OF OF
dE = <C] v’ pu@ 2782}178}?)

Because of the Legendre transformation, it reads

Js | OL
o’ — b o’




So, restrict dE : T(T'Q & T*Q) — R to TT*() and

OF OF OL .
dE(q,v,p)|rr0 = (aqi’ap) = (—aqi,?/) -




So, restrict dE : T(TQ & T*Q) — R to TT*() and

oF OF oL .
dE(C],U,p)‘TT*Q — (6@27 ap> — (_aq@'??ﬂ) ’

The implicit Lagrangian system (L, Ag, X') that sats-
fies the condition

(X, @L) - DAQ
can be restated by, for each (g,p) € T*Q,

(X(q,p),dE(q,v,p)|r1-Q) € Day(q. D)



Passage from ILS to IHS

An implicit Lagrangian systems (X, Ag, L) satisfies
(X, dE‘TT*Q) ~ DAQ;

which are represented, in coordinates, by



Passage from ILS to IHS

An implicit Lagrangian systems (X, Ag, L) satisfies
(X, dE‘TT*Q) - DAQ;

which are represented, in coordinates, by

<§> ) (—01 (1>> (_gﬁ) ’ (uac2@<q>> |

oL

0 = wilg)v"




Passage from ILS to IHS

An implicit Lagrangian systems (X, Ag, L) satisfies
(X, dE|TT*Q) ~ DAQ;

which are represented, in coordinates, by

(§> ) (—01 (1>> (_gﬁ) ’ <uac2@<q>> |

L oL
pZ T (3’?)i7 |
0 = wilg)v"

Let’s go to the Hamaltonian side!



Passage from ILS to IHS

An implicit Hamiltonian system (H, Ag, X ) satisfies
(X, dH|TT*Q) - DAQ‘

It follows, in coordinates,

(zq?> B (—01 é) (%Zg) " <uau??(Q)>’

OH -
5q=¢4¢m0—Q
0 ., OH
= W -,




Passage from ILS to IHS

An implicit Hamiltonian system (H, Ag, X) satisfies
(X, dH|TT*Q) ~ DAQ-

It follows, in coordinates,

(g) B (—01 é) (%Zg) " <uacz@(Q)>’

OH

DA dA(q',pi) =0,
0 = Wi )5’[-]

But, unfortunately, you can never come back to
the Lagrangian side from the Hamiltonian side in
the degenerate cases! It’s a one way passage!



We have showed the link between tmplicit Lagrangian
and Hamiltonian systems in the case that a given La-
erangian 1s degenerate.

We have developed a generalized Legendre transform
for degenerate Lagrangians and also developed a gen-
eralized Hamiltonian on the Pontryagin bundle, by
which we can incorporates primary constraints into
the variational as well as into the Dirac context.

We have developed implicit Hamiltonian systems for
degenerate cases in the context of Dirac structures
as well as in the context of the Hamailton-Lagrange-
Pontryagin principle together with some examples.



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

