Dirac Structures and the Legendre Transformation for Implicit Lagrangian and Hamiltonian Systems

Hiroaki Yoshimura

Mechanical Engineering, Waseda University

Tokyo, Japan

Joint Work with Jerrold E. Marsden
Control and Dynamical Systems, Caltech

Contents of Presentation

\square Background
\square Dirac Structures and Implicit Lagrangian Systems
\square The Generalized Legendre Transform
\square Implicit Hamiltonian Systems for Degenerate Cases
\square Examples
\square Concluding Remarks

Background: Network Modeling

\square In conjunction with network modeling of complex physical systems, the idea of interconnections, first proposed by G. Kron (1939), is a very useful tool that enables us to treat an original system as a network of an aggregation of torn apart subsystems or elements.

Background: Network Modeling

\square In conjunction with network modeling of complex physical systems, the idea of interconnections, first proposed by G. Kron (1939), is a very useful tool that enables us to treat an original system as a network of an aggregation of torn apart subsystems or elements.
\square Especially, the interconnections play an essential role in modeling physical systems interacting with various energy fields such as electro-mechanical systems (Kron, 1963), bio-chemical reaction systems (Kachalsky, Oster and Perelson, 1970), etc.

What is Interconnection?

What is Interconnection ?

\square The interconnection represents how subsystems or elements are energetically interacted with each other; in other words, it plays a role in regulating energy flow between subsystems and elements.

What is a Typical Example ?

What is a Typical Example ?

\square The interconnection in electric circuits is a typical example, in which we can literally see how system components are interconnected.

What is a Typical Example ?

\square The interconnection in electric circuits is a typical example, in which we can literally see how system components are interconnected.

What is a Typical Example?

\square The interconnection in electric circuits is a typical example, in which we can literally see how system components are interconnected.

\square The interconnection of L-C circuits was shown to be represented by Dirac structures by van der Schaft and Maschke (1995) and Bloch and Crouch (1997).

What is a Dirac Structure ?

What is a Dirac Structure ?
\square Courant and Weinstein (1989, 1991) developed a notion of Dirac structures that include "symplectic and Poisson structures", inspiring from Dirac's theory of constraints.

What is a Dirac Structure ?

\square Courant and Weinstein $(1989,1991)$ developed a notion of Dirac structures that include "symplectic and Poisson structures", inspiring from Dirac's theory of constraints.
\square An almost Dirac structure on a manifold M is defined by, for each $x \in M$,

$$
D(x) \subset T_{x} M \times T_{x}^{*} M \text { such that } D(x)=D^{\perp}(x)
$$

where

$$
\begin{aligned}
D^{\perp}(x)=\{ & \left(\bar{v}_{x}, \bar{\alpha}_{x}\right) \in T_{x} M \times T_{x}^{*} M \mid \\
& \left.\left\langle\alpha_{x}, \bar{v}_{x}\right\rangle+\left\langle\bar{\alpha}_{x}, v_{x}\right\rangle=0, \forall\left(v_{x}, \alpha_{x}\right) \in D(x)\right\} .
\end{aligned}
$$

\square We call D a Dirac structure on M if

$$
\left\langle £_{X_{1}} \alpha_{2}, X_{3}\right\rangle+\left\langle £_{X_{2}} \alpha_{3}, X_{1}\right\rangle+\left\langle £_{X_{3}} \alpha_{1}, X_{2}\right\rangle=0
$$ for all $\left(X_{1}, \alpha_{1}\right),\left(X_{2}, \alpha_{2}\right),\left(X_{3}, \alpha_{3}\right) \in D$.

\square We call D a Dirac structure on M if

$$
\left\langle £_{X_{1}} \alpha_{2}, X_{3}\right\rangle+\left\langle £_{X_{2}} \alpha_{3}, X_{1}\right\rangle+\left\langle £_{X_{3}} \alpha_{1}, X_{2}\right\rangle=0
$$

for all $\left(X_{1}, \alpha_{1}\right),\left(X_{2}, \alpha_{2}\right),\left(X_{3}, \alpha_{3}\right) \in D$.
\square The bundle map $\Omega^{b}: T P \rightarrow T^{*} P$ associated to a two-form Ω on P defines a Dirac structure on P as

$$
D_{P}=\operatorname{graph} \Omega^{b} \subset T P \oplus T^{*} P
$$

\square We call D a Dirac structure on M if

$$
\left\langle £_{X_{1}} \alpha_{2}, X_{3}\right\rangle+\left\langle £_{X_{2}} \alpha_{3}, X_{1}\right\rangle+\left\langle £_{X_{3}} \alpha_{1}, X_{2}\right\rangle=0
$$

for all $\left(X_{1}, \alpha_{1}\right),\left(X_{2}, \alpha_{2}\right),\left(X_{3}, \alpha_{3}\right) \in D$.
\square The bundle map $\Omega^{b}: T P \rightarrow T^{*} P$ associated to a two-form Ω on P defines a Dirac structure on P as

$$
D_{P}=\operatorname{graph} \Omega^{b} \subset T P \oplus T^{*} P
$$

\square The bundle map $B^{\sharp}: T^{*} P \rightarrow T P$ associated to a Poisson structure B on P defines a Dirac structure on P as

$$
D_{P}=\operatorname{graph} B^{\sharp} \subset T P \oplus T^{*} P
$$

Dirac Structures in Mechanics ?

Dirac Structures in Mechanics ?

\square van der Schaft and Maschke (1995) developed an implicit Hamiltonian systems for the regular cases and showed nonholonomic systems and L-C circuits in the context of implicit Hamiltonian systems

$$
(X, \mathbf{d} H) \in D_{P}
$$

Dirac Structures in Mechanics ?

\square van der Schaft and Maschke (1995) developed an implicit Hamiltonian systems for the regular cases and showed nonholonomic systems and L-C circuits in the context of implicit Hamiltonian systems

$$
(X, \mathbf{d} H) \in D_{P} .
$$

In the case that $P=T^{*} Q$, the coordinate expression of the implicit Hamiltonian system is given by

$$
\begin{aligned}
\binom{\dot{q}^{i}}{\dot{p}_{i}} & =\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\binom{\frac{\partial H}{\partial q^{i}}}{\frac{\partial H}{\partial p^{i}}}+\binom{0}{\mu_{a} \omega_{i}^{a}(q)}, \\
0 & =\omega_{i}^{a}(q) \frac{\partial H}{\partial p^{i}} .
\end{aligned}
$$

How about the Lagrangian Side ?

How about the Lagrangian Side ?

\square Dirac structures have not been enough investigated from the Lagrangian side, although Dirac's theory of constraints started from a degenerate Lagrangian. Recently, a notion of implicit Lagrangian systems, has been developed by Yoshimura and Marsden (2003).

How about the Lagrangian Side ?

\square Dirac structures have not been enough investigated from the Lagrangian side, although Dirac's theory of constraints started from a degenerate Lagrangian. Recently, a notion of implicit Lagrangian systems, has been developed by Yoshimura and Marsden (2003).
\square For degenerate cases, we need to do "slowly and carefully" the Legendre transform. A generalized Legendre transformation was developed by Tulczyjew (1974) and Maxwell-Vlasov equations were investigated by Euler-Poincaré equations in the context of the generalized Legendre transform with symmetry by Cendra, Holm, Hoyle and Marsden (1998).

What are Questions?

What are Questions ?

\square Can we construct an implicit Hamiltonian system from a degenerate Lagrangian ? If so, how can we do the Ledendre transform?

What are Questions?

\square Can we construct an implicit Hamiltonian system from a degenerate Lagrangian ? If so, how can we do the Ledendre transform?
\square What is the link between Dirac structures and Dirac' constraint theory in the context of implicit Hamiltonian systems?

What are Questions ?

\square Can we construct an implicit Hamiltonian system from a degenerate Lagrangian ? If so, how can we do the Ledendre transform?
\square What is the link between Dirac structures and Dirac' constraint theory in the context of implicit Hamiltonian systems?
\square What is the variational link with implicit Hamiltonian systems?

What are Questions ?

\square Can we construct an implicit Hamiltonian system from a degenerate Lagrangian ? If so, how can we do the Ledendre transform?
\square What is the link between Dirac structures and Dirac' constraint theory in the context of implicit Hamiltonian systems?
\square What is the variational link with implicit Hamiltonian systems?
\square Both implicit Lagrangian and Hamiltonian systems are equivalent even in degenerate cases?

What are Questions ?

\square Can we construct an implicit Hamiltonian system from a degenerate Lagrangian ? If so, how can we do the Ledendre transform?
\square What is the link between Dirac structures and Dirac' constraint theory in the context of implicit Hamiltonian systems?
\square What is the variational link with implicit Hamiltonian systems?
\square Both implicit Lagrangian and Hamiltonian systems are equivalent even in degenerate cases?

Our Goals are to Answer these Questions!

Induced Dirac Structures

\square Consider nonholonomic constraints which are given by a regular distribution

$$
\Delta_{Q} \subset T Q
$$

Let $\pi_{Q}: T^{*} Q \rightarrow Q$ be the canonical projection and its tangent map is given by

$$
\begin{aligned}
& T \pi_{Q}: T T^{*} Q \rightarrow T Q \\
& (q, p, \delta q, \delta p) \mapsto(q, \delta q) .
\end{aligned}
$$

Lift up the distribution Δ_{Q} on Q to $T^{*} Q$ such that

$$
\Delta_{T^{*} Q}=\left(T \pi_{Q}\right)^{-1}\left(\Delta_{Q}\right) \subset T T^{*} Q .
$$

Induced Dirac Structures

\square Define a skew-symmetric bilinear form $\Omega_{\Delta_{Q}}$ by

$$
\Omega_{\Delta_{Q}}=\left.\Omega\right|_{\Delta_{T^{*} Q} \times \Delta_{T^{*} Q}} .
$$

An induced Dirac structure $D_{\Delta_{Q}}$ on $T^{*} Q$ is defined by, for each $(q, p) \in T^{*} Q$,

$$
\begin{gathered}
D_{\Delta_{Q}}(q, p)=\left\{(v, \alpha) \in T_{(q, p)} T^{*} Q \times T_{(q, p)}^{*} T^{*} Q\right. \\
v \in \Delta_{T^{*} Q}(q, p), \quad \text { and } \alpha(w)=\Omega_{\Delta_{Q}}(v, w)
\end{gathered}
$$

$$
\text { for all } \left.\quad w \in \Delta_{T^{*} Q}(q, p)\right\} .
$$

Symplectomorphisms

\square There are natural diffeomorphisms as
(1) $\kappa_{Q}: T T^{*} Q \rightarrow T^{*} T Q ;(q, p, \delta q, \delta p) \mapsto(q, \delta q, \delta p, p)$
(2) $\Omega^{b}: T T^{*} Q \rightarrow T^{*} T^{*} Q ;(q, p, \delta q, \delta p) \mapsto(q, p,-\delta p, \delta q)$

Then, define the diffeomorphism by

$$
\gamma_{Q}=\Omega^{b} \circ\left(\kappa_{Q}\right)^{-1}: T^{*} T Q \rightarrow T^{*} T^{*} Q,
$$

which is given in coordinates by

$$
(q, \delta q, \delta p, p) \mapsto(q, p,-\delta p, \delta q)
$$

which preserves the symplectic form $\Omega_{T T^{*} Q}$ on $T T^{*} Q$:

$$
\Omega_{T T^{*} Q}=d q \wedge d \delta p+d \delta q \wedge d p
$$

Dirac Differential

\square Let $L: T Q \rightarrow \mathbb{R}$ be a Lagrangian (possibly degenerate) and $\mathbf{d} L: T Q \rightarrow T^{*} T Q$ is given by

$$
\mathbf{d} L=\left(q, v, \frac{\partial L}{\partial q}, \frac{\partial L}{\partial v}\right) .
$$

Define the Dirac differential of L by

$$
\mathfrak{D} L=\gamma_{Q} \circ \mathbf{d} L: T Q \rightarrow T^{*} T^{*} Q
$$

In coordinates,

$$
\mathfrak{D} L=\left(q, \frac{\partial L}{\partial v},-\frac{\partial L}{\partial q}, v\right),
$$

where we have the Legendre transform $p=\partial L / \partial v$.

Implicit Lagrangian Systems
\square An implicit Lagrangian system is a triple $\left(L, \Delta_{Q}, X\right)$ which satisfies, for each $(q, v) \in \Delta_{Q}$,

$$
(X(q, p), \mathfrak{D} L(q, v)) \in D_{\Delta_{Q}}(q, p)
$$

where $(q, p)=\mathbb{F} L(q, v)$.

Implicit Lagrangian Systems

\square An implicit Lagrangian system is a triple $\left(L, \Delta_{Q}, X\right)$ which satisfies, for each $(q, v) \in \Delta_{Q}$,

$$
(X(q, p), \mathfrak{D} L(q, v)) \in D_{\Delta_{Q}}(q, p)
$$

where $(q, p)=\mathbb{F} L(q, v)$.
\square Since the canonical two-form Ω is locally given by

$$
\Omega\left(\left(q, p, u_{1}, \alpha_{1}\right),\left(q, p, u_{2}, \alpha_{2}\right)\right)=\left\langle\alpha_{2}, u_{1}\right\rangle-\left\langle\alpha_{1}, u_{2}\right\rangle,
$$

the Dirac structure is locally expressed by

$$
\begin{array}{r}
D_{\Delta_{Q}}(q, p)=\{((q, p, \dot{q}, \dot{p}),(q, p, \alpha, w)) \mid \dot{q} \in \Delta(q), \\
\left.w=\dot{q}, \text { and } \alpha+\dot{p} \in \Delta^{\circ}(q)\right\} .
\end{array}
$$

Implicit Lagrangian Systems

\square Since $X(q, p)=(q, p, \dot{q}, \dot{p})$ and $\mathfrak{D} L=\left(q, \frac{\partial L}{\partial v},-\frac{\partial L}{\partial q}, v\right)$, it reads from $(X, \mathfrak{D} L) \in D_{\Delta_{Q}}$ that, for each $v \in \Delta(q)$,

$$
\left\langle-\frac{\partial L}{\partial q}, u\right\rangle+\langle v, \alpha\rangle=\langle\alpha, \dot{q}\rangle-\langle\dot{p}, u\rangle
$$

for all $u \in \Delta(q)$, all α and with $p=\partial L / v$.

Implicit Lagrangian Systems

\square Since $X(q, p)=(q, p, \dot{q}, \dot{p})$ and $\mathfrak{D} L=\left(q, \frac{\partial L}{\partial v},-\frac{\partial L}{\partial q}, v\right)$, it reads from $(X, \mathfrak{D} L) \in D_{\Delta_{Q}}$ that, for each $v \in \Delta(q)$,

$$
\left\langle-\frac{\partial L}{\partial q}, u\right\rangle+\langle v, \alpha\rangle=\langle\alpha, \dot{q}\rangle-\langle\dot{p}, u\rangle,
$$

for all $u \in \Delta(q)$, all α and with $p=\partial L / v$.
Thus, one can obtain the coordinate expression of implicit Lagrangian systems:

$$
\dot{p}-\frac{\partial L}{\partial q} \in \Delta^{\circ}(q), \quad \dot{q}=v, \quad p=\frac{\partial L}{\partial v}, \quad \dot{q} \in \Delta(q) .
$$

Hamilton-Pontryagin Principle

 Given a Lagrangian $L: T Q \rightarrow \mathbb{R}$ (possibly degenerate). By regarding the second-order condition$$
\dot{q}=v
$$

as a constraint, we define the action integral by

$$
\begin{aligned}
\mathfrak{S}(q, v, p) & =\int_{t_{1}}^{t_{2}}\{L(q(t), v(t))+p(t) \cdot(\dot{q}(t)-v(t))\} d t \\
& =\int_{t_{1}}^{t_{2}}\{p(t) \cdot \dot{q}(t)-E(q(t), v(t), p(t))\} d t,
\end{aligned}
$$

where $E(q, v, p)=p \cdot v-L(q, v)$ is the generalized energy on $T Q \oplus T^{*} Q$.
\square Keeping the endpoints of $q(t)$ fixed, the stationary condition for the action functional is
$\delta \int_{t_{1}}^{t_{2}}\{L(q, v)+p(\dot{q}-v)\} d t$
$=\int_{t_{1}}^{t_{2}}\left\{\left(-\dot{p}+\frac{\partial L}{\partial q}\right) \delta q+\left(-p+\frac{\partial L}{\partial v}\right) \delta v+(\dot{q}-v) \delta p\right\} d t$
$=0$,
which is satisfied for all $\delta q, \delta v$ and δp.
\square Keeping the endpoints of $q(t)$ fixed, the stationary condition for the action functional is
$\delta \int_{t_{1}}^{t_{2}}\{L(q, v)+p(\dot{q}-v)\} d t$
$=\int_{t_{1}}^{t_{2}}\left\{\left(-\dot{p}+\frac{\partial L}{\partial q}\right) \delta q+\left(-p+\frac{\partial L}{\partial v}\right) \delta v+(\dot{q}-v) \delta p\right\} d t$
$=0$,
which is satisfied for all $\delta q, \delta v$ and δp.
We obtain implicit Euler-Lagrange equations:

$$
\dot{p}=\frac{\partial L}{\partial q}, \quad p=\frac{\partial L}{\partial v}, \quad \dot{q}=v .
$$

Lagrange-d'Alembert-Pontryagin Principle

\square Let $\Delta_{Q} \subset T Q$ be a distribution. The Lagrange-d'Alembert-Pontryagin Principle is given by

$$
\begin{aligned}
& \int_{t_{1}}^{t_{2}}\left\{\left(-\dot{p}+\frac{\partial L}{\partial q}\right) \delta q+\left(-p+\frac{\partial L}{\partial v}\right) \delta v\right. \\
&+(\dot{q}-v) \delta p\} d t=0
\end{aligned}
$$

for all chosen $\delta q \in \Delta_{Q}(q), \delta v, \delta p$, and with $v \in \Delta_{Q}(q)$.

Lagrange-d'Alembert-Pontryagin Principle

\square Let $\Delta_{Q} \subset T Q$ be a distribution. The Lagrange-d'Alembert-Pontryagin Principle is given by

$$
\begin{aligned}
& \int_{t_{1}}^{t_{2}}\left\{\left(-\dot{p}+\frac{\partial L}{\partial q}\right) \delta q+\left(-p+\frac{\partial L}{\partial v}\right) \delta v\right. \\
&+(\dot{q}-v) \delta p\} d t=0
\end{aligned}
$$

for all chosen $\delta q \in \Delta_{Q}(q), \delta v, \delta p$, and with $v \in \Delta_{Q}(q)$.
Then, we obtain an implicit Lagrangian system as

$$
\dot{p}-\frac{\partial L}{\partial q} \in \Delta^{\circ}(q), \quad \dot{q}=v, \quad p=\frac{\partial L}{\partial v}, \quad \text { and } \dot{q} \in \Delta(q) .
$$

Example: Point Vortices

\square Consider a system with a degenerate Lagrangian:

$$
L(q, v)=\left\langle\alpha_{i}(q), v^{i}\right\rangle-h(q),
$$

which arises in point vortices and $K d V$ equations (Marsden and Ratiu (1999)).

Example: Point Vortices

\square Consider a system with a degenerate Lagrangian:

$$
L(q, v)=\left\langle\alpha_{i}(q), v^{i}\right\rangle-h(q),
$$

which arises in point vortices and $K d V$ equations (Marsden and Ratiu (1999)).
In the context of implicit Lagrangian systems, we have

$$
\begin{aligned}
& \dot{q}^{i}=v^{i}, \\
& \dot{p}_{i}=\frac{\partial L}{\partial q^{i}}=\frac{\partial \alpha_{j}(q)}{\partial q^{i}} v^{j}-\frac{\partial h(q)}{\partial q^{i}}, \\
& p_{i}=\frac{\partial L}{\partial v^{i}}=\alpha_{i}(q) .
\end{aligned}
$$

Example: L-C Circuits

\square L-C Circuits

charges: $q=\left(q_{L}, q_{C_{1}}, q_{C_{2}}, q_{C_{3}}\right) \in W$, currents: $f=\left(f_{L}, f_{C_{1}}, f_{C_{2}}, f_{C_{3}}\right) \in T_{q} W$,
voltages: $e=\left(e_{L}, e_{C_{1}}, e_{C_{2}}, e_{C_{3}}\right) \in T_{q}^{*} W$.
\square The KCL constraint for currents is given by

$$
\Delta_{q}=\left\{f \in T_{q} W \mid\left\langle\omega^{a}, f\right\rangle=0, \quad a=1,2\right\},
$$

where

$$
\omega^{1}=-d q_{L}+d q_{C_{2}} \text { and } \omega^{2}=-d q_{C_{1}}+d q_{C_{2}}-d q_{C_{3}} .
$$

The lifted distribution on $T^{*} W$ is given by

$$
\Delta_{T^{*} W}=\left\{X_{(q, p)}=(q, p, \dot{q}, \dot{p}) \mid q \in U, \dot{q} \in \Delta_{q}\right\}
$$

and an induced Dirac structure on $T^{*} W$ is defined as

$$
\begin{array}{r}
D_{\Delta}(q, p)=\left\{((q, p, \dot{q}, \dot{p}),(q, p, \alpha, w)) \mid \dot{q} \in \Delta_{q}\right. \\
\left.w=\dot{q}, \quad \text { and } \alpha+\dot{p} \in \Delta_{q}^{\circ}\right\}
\end{array}
$$

\square The Lagrangian of the L-C circuit is given by

$$
\begin{aligned}
\mathcal{L}(q, f) & =T_{q}(f)-V(q) \\
& =\frac{1}{2} L\left(f_{L}\right)^{2}-\frac{1}{2} \frac{\left(q_{C_{1}}\right)^{2}}{C_{1}}-\frac{1}{2} \frac{\left(q_{C_{2}}\right)^{2}}{C_{2}}-\frac{1}{2} \frac{\left(q_{C_{3}}\right)^{2}}{C_{3}}
\end{aligned}
$$

and is apparently degenerate !
\square The Lagrangian of the L-C circuit is given by

$$
\begin{aligned}
\mathcal{L}(q, f) & =T_{q}(f)-V(q) \\
& =\frac{1}{2} L\left(f_{L}\right)^{2}-\frac{1}{2} \frac{\left(q_{C_{1}}\right)^{2}}{C_{1}}-\frac{1}{2} \frac{\left(q_{C_{2}}\right)^{2}}{C_{2}}-\frac{1}{2} \frac{\left(q_{C_{3}}\right)^{2}}{C_{3}}
\end{aligned}
$$

and is apparently degenerate !
The image of Δ, namely, $P=\mathbb{F} L(\Delta) \subset T^{*} W$ indicates the primary constraint set as

$$
p_{L}=L f_{L}, \quad p_{C_{1}}=p_{C_{2}}=p_{C_{3}}=0
$$

The Dirac differential of \mathcal{L} is denoted by

$$
\mathfrak{D} \mathcal{L}(q, f)=\left(0, \frac{q_{C_{1}}}{C_{1}}, \frac{q_{C_{2}}}{C_{2}}, \frac{q_{C_{3}}}{C_{3}}, f_{L}, f_{C_{1}}, f_{C_{2}}, f_{C_{3}}\right) .
$$

\square The L-C circuit satisfies the condition

$$
(X, \mathfrak{D L}) \in D_{\Delta} .
$$

Thus, the L-C circuit can be represented by

$$
\begin{aligned}
\binom{\dot{q}^{i}}{\dot{p}_{i}} & =\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\binom{-\frac{\partial \mathcal{L}}{\partial q^{i}}}{v^{i}}+\binom{0}{\mu_{a} \omega_{i}^{a}(q)}, \\
p_{i} & =\frac{\partial \mathcal{L}}{\partial v^{i}} \\
0 & =\omega_{i}^{a}(q) v^{i} .
\end{aligned}
$$

\square The L-C circuit satisfies the condition

$$
(X, \mathfrak{D L}) \in D_{\Delta} .
$$

Thus, the L-C circuit can be represented by

$$
\begin{aligned}
\binom{\dot{q}^{i}}{\dot{p}_{i}} & =\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\binom{-\frac{\partial \mathcal{L}}{\partial q^{i}}}{v^{i}}+\binom{0}{\mu_{a} \omega_{i}^{a}(q)}, \\
p_{i} & =\frac{\partial \mathcal{L}}{\partial v^{i}}, \\
0 & =\omega_{i}^{a}(q) v^{i} .
\end{aligned}
$$

$\square Q$: How can we go to the Hamiltonian side in degenerate cases?
\square The L-C circuit satisfies the condition

$$
(X, \mathfrak{D L}) \in D_{\Delta} .
$$

Thus, the L-C circuit can be represented by

$$
\begin{aligned}
\binom{\dot{q}^{i}}{\dot{p}_{i}} & =\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\binom{-\frac{\partial \mathcal{L}}{\partial q^{i}}}{v^{i}}+\binom{0}{\mu_{a} \omega_{i}^{a}(q)}, \\
p_{i} & =\frac{\partial \mathcal{L}}{\partial v^{i}} \\
0 & =\omega_{i}^{a}(q) v^{i} .
\end{aligned}
$$

$\square Q$: How can we go to the Hamiltonian side in degenerate cases ?
A: We can go to the Hamitlonian side by incorporating primary constraints.

Generalized Legendre Transform

\square The constraint momentum space is defined by

$$
P=\mathbb{F} L\left(\Delta_{Q}\right) \subset T^{*} Q,
$$

where we suppose that $\operatorname{dim} P_{q}=k \leq n$ at each $q \in Q$ and P_{q} is given by the primary constraints as

Generalized Legendre Transform

\square The constraint momentum space is defined by

$$
P=\mathbb{F} L\left(\Delta_{Q}\right) \subset T^{*} Q,
$$

where we suppose that $\operatorname{dim} P_{q}=k \leq n$ at each $q \in Q$ and P_{q} is given by the primary constraints as

$$
P_{q}=\left\{p \in T_{q}^{*} Q \mid \phi_{A}(q, p)=0, A=k+1, \ldots, n\right\},
$$

and let $\left(p_{\lambda}, p_{A}\right)$ be coordinates for P_{q} defined by

Generalized Legendre Transform

\square The constraint momentum space is defined by

$$
P=\mathbb{F} L\left(\Delta_{Q}\right) \subset T^{*} Q,
$$

where we suppose that $\operatorname{dim} P_{q}=k \leq n$ at each $q \in Q$ and P_{q} is given by the primary constraints as

$$
P_{q}=\left\{p \in T_{q}^{*} Q \mid \phi_{A}(q, p)=0, A=k+1, \ldots, n\right\},
$$

and let $\left(p_{\lambda}, p_{A}\right)$ be coordinates for P_{q} defined by

$$
p_{\lambda}=\frac{\partial L}{\partial v^{\lambda}}, \quad p_{A}=\frac{\partial L}{\partial v^{A}}, \quad \lambda=1, \ldots, k, A=k+1, \ldots, n,
$$

where $v^{i}=\left(v^{\lambda}, v^{A}\right)$ are coordinates for $\Delta_{Q}(q) \subset T_{q} Q$.

Generalized Legendre Transform

\square Notice that the rank of the Hessian is k as

$$
\operatorname{det}\left[\frac{\partial^{2} L}{\partial v^{\lambda} \partial v^{\mu}}\right] \neq 0 ; \quad \lambda, \mu=1, \ldots, k \leq n .
$$

Define an generalized energy E on $T Q \oplus T^{*} Q$ by

$$
\begin{aligned}
E\left(q^{i}, v^{i}, p_{i}\right) & =p_{i} v^{i}-L\left(q^{i}, v^{i}\right) \\
& =p_{\lambda} v^{\lambda}+p_{A} v^{A}-L\left(q^{i}, v^{\lambda}, v^{A}\right) .
\end{aligned}
$$

Then, a constrained Hamiltonian H_{P} on P can be defined by

$$
H_{P}\left(q^{i}, p_{\lambda}\right)=\operatorname{stat}_{v^{i}} E\left(q^{i}, v^{i}, p_{i}\right) \mid P .
$$

Generalized Hamiltonian

\square One can do the partial Legendre transform

$$
\mathbb{F}\left(L \mid \Delta_{Q}\right)\left(q^{i}, v^{\lambda}\right)=\left.\left(q^{i}, p_{\lambda}=\frac{\partial L}{\partial v^{\lambda}}\right)\right|_{P}
$$

and the rest may result in primary constraints.

$$
\phi_{A}\left(q^{i}, p_{i}\right)=0, A=k+1, \ldots, n .
$$

Generalized Hamiltonian

\square One can do the partial Legendre transform

$$
\mathbb{F}\left(L \mid \Delta_{Q}\right)\left(q^{i}, v^{\lambda}\right)=\left.\left(q^{i}, p_{\lambda}=\frac{\partial L}{\partial v^{\lambda}}\right)\right|_{P}
$$

and the rest may result in primary constraints.

$$
\phi_{A}\left(q^{i}, p_{i}\right)=0, A=k+1, \ldots, n .
$$

Define the generalized Hamiltonian H on $T Q \oplus$ $T^{*} Q$ such that $H \mid P=H_{P}$, which is locally given by

$$
H\left(q^{i}, v^{A}, p_{i}\right)=H_{P}\left(q^{i}, p_{\lambda}\right)+\phi_{A}\left(q^{i}, p_{i}\right) v^{A}
$$

where $v_{A}, A=k+1, \ldots, n$ can be regarded as Lagrange multipliers for the primary constraints.

Implicit Hamiltonian Systems

Implicit Hamiltonian Systems

\square Let $H: T Q \oplus T^{*} Q \rightarrow \mathbb{R}$ be the generalized Hamiltonian and the differential of H is locally given by

$$
\mathbf{d} H=\left(q^{i}, v^{A}, p_{i}, \frac{\partial H}{\partial q^{i}}, \frac{\partial H}{\partial v^{A}}, \frac{\partial H}{\partial p_{i}}\right) .
$$

Because of the primary constraints, it reads

$$
\frac{\partial H}{\partial v^{A}}=\phi_{A}\left(q^{i}, p_{i}\right)=0, \quad A=k+1, \ldots, n .
$$

Implicit Hamiltonian Systems

\square Let $H: T Q \oplus T^{*} Q \rightarrow \mathbb{R}$ be the generalized Hamiltonian and the differential of H is locally given by

$$
\mathbf{d} H=\left(q^{i}, v^{A}, p_{i}, \frac{\partial H}{\partial q^{i}}, \frac{\partial H}{\partial v^{A}}, \frac{\partial H}{\partial p_{i}}\right) .
$$

Because of the primary constraints, it reads

$$
\frac{\partial H}{\partial v^{A}}=\phi_{A}\left(q^{i}, p_{i}\right)=0, \quad A=k+1, \ldots, n .
$$

So, restrict $\mathbf{d} H: T\left(T Q \oplus T^{*} Q\right) \rightarrow \mathbb{R}$ to $T T^{*} Q$ and

$$
\left.\mathbf{d} H(q, v, p)\right|_{T T^{*} Q}=\left(\frac{\partial H}{\partial q^{i}}, \frac{\partial H}{\partial p_{i}}\right) .
$$

\square An implicit Hamiltonian system is defined by $\left(H, \Delta_{Q}, X\right)$, which satisfies, for each $(q, p) \in T^{*} Q$,

$$
\left(X(q, p),\left.\mathbf{d} H(q, v, p)\right|_{T T^{*} Q}\right) \in D_{\Delta_{Q}}(q, p),
$$

and with the primary constraints

$$
\phi_{A}(q, p)=0 .
$$

\square An implicit Hamiltonian system is defined by $\left(H, \Delta_{Q}, X\right)$, which satisfies, for each $(q, p) \in T^{*} Q$,

$$
\left(X(q, p),\left.\mathbf{d} H(q, v, p)\right|_{T T^{*} Q}\right) \in D_{\Delta_{Q}}(q, p),
$$

and with the primary constraints

$$
\phi_{A}(q, p)=0 .
$$

\square In coordinates, we obtain

$$
\dot{q}=\frac{\partial H}{\partial p} \in \Delta_{Q}(q), \dot{p}+\frac{\partial H}{\partial q} \in \Delta_{Q}^{\circ}(q), \frac{\partial H}{\partial v^{A}}=\phi_{A}(q, p)=0 .
$$

Variational Link ?

Variational Link ?

\square The Hamilton-d'Alembert-Pontryagin principle is is given by

$$
\begin{aligned}
& \delta \int_{t_{1}}^{t_{2}}\left\{p(t) \dot{q}(t)-H\left(q, v^{A}, p\right)\right\} d t \\
& =\int_{t_{1}}^{t_{2}}\left\{\left(-\dot{p}-\frac{\partial H}{\partial q}\right) \delta q+\left(\dot{q}-\frac{\partial H}{\partial p}\right) \delta p-\frac{\partial H}{\partial v^{A}} \delta v^{A}\right\} d t=0
\end{aligned}
$$

for all $\delta q \in \Delta(q), \delta v^{A}$ and δp and with $\dot{q} \in \Delta(q)$.

Variational Link ?

\square The Hamilton-d'Alembert-Pontryagin principle is is given by

$$
\begin{aligned}
& \delta \int_{t_{1}}^{t_{2}}\left\{p(t) \dot{q}(t)-H\left(q, v^{A}, p\right)\right\} d t \\
& =\int_{t_{1}}^{t_{2}}\left\{\left(-\dot{p}-\frac{\partial H}{\partial q}\right) \delta q+\left(\dot{q}-\frac{\partial H}{\partial p}\right) \delta p-\frac{\partial H}{\partial v^{A}} \delta v^{A}\right\} d t=0
\end{aligned}
$$

for all $\delta q \in \Delta(q), \delta v^{A}$ and δp and with $\dot{q} \in \Delta(q)$.
\square Then, we have

$$
\dot{q}=\frac{\partial H}{\partial p} \in \Delta_{Q}(q), \dot{p}+\frac{\partial H}{\partial q} \in \Delta_{Q}^{\circ}(q), \frac{\partial H}{\partial v^{A}}=\phi_{A}(q, p)=0 .
$$

Example: Point Vortices

\square Start with a degenerate Lagrangian given by

$$
L\left(q^{i}, v^{i}\right)=\left\langle\alpha_{i}\left(q^{j}\right), v^{i}\right\rangle-h\left(q^{i}\right) .
$$

By computions, we obtain the primary constraints

$$
\begin{aligned}
\phi_{i}\left(q^{j}, p_{j}\right) & =p_{i}-\frac{\partial L}{\partial v^{i}} \\
& =p_{i}-\alpha_{i}\left(q^{j}\right)=0,
\end{aligned}
$$

which form a submanifold P of $T^{*} Q$, that is, a point in $T^{*} Q$.

Example: Point Vortices

\square Start with a degenerate Lagrangian given by

$$
L\left(q^{i}, v^{i}\right)=\left\langle\alpha_{i}\left(q^{j}\right), v^{i}\right\rangle-h\left(q^{i}\right)
$$

By computions, we obtain the primary constraints

$$
\begin{aligned}
\phi_{i}\left(q^{j}, p_{j}\right) & =p_{i}-\frac{\partial L}{\partial v^{i}} \\
& =p_{i}-\alpha_{i}\left(q^{j}\right)=0
\end{aligned}
$$

which form a submanifold P of $T^{*} Q$, that is, a point in $T^{*} Q$.
\square Define an generalized energy E by

$$
\begin{aligned}
E\left(q^{i}, v^{i}, p_{i}\right) & =p_{i} v^{1}-L\left(q^{i}, v^{i}\right) \\
& =\left(p_{i}-\alpha_{i}\left(q^{j}\right)\right) v^{i}+h\left(q^{i}\right)
\end{aligned}
$$

\square The constrained Hamiltonian H_{P} on P can be defined by

$$
\begin{aligned}
H_{P}\left(q^{i}, p_{i}\right) & =\operatorname{stat}_{v^{i}} E\left(q^{i}, v^{i}, p_{i}\right) \mid P \\
& =h\left(q^{i}\right)
\end{aligned}
$$

Hence, the generalized Hamiltonian H on $T Q \oplus T^{*} Q$ can be defined by
\square The constrained Hamiltonian H_{P} on P can be defined by

$$
\begin{aligned}
H_{P}\left(q^{i}, p_{i}\right) & =\operatorname{stat}_{v^{i}} E\left(q^{i}, v^{i}, p_{i}\right) \mid P \\
& =h\left(q^{i}\right)
\end{aligned}
$$

Hence, the generalized Hamiltonian H on $T Q \oplus T^{*} Q$ can be defined by

$$
\begin{aligned}
H\left(q^{i}, v^{i}, p_{i}\right) & =H_{P}\left(q^{i}, p_{i}\right)+\phi_{i}\left(q^{i}, p_{i}\right) v^{i} \\
& =h\left(q^{i}\right)+\left(p_{i}-\alpha_{i}\left(q^{j}\right)\right) v^{i}
\end{aligned}
$$

such that the following relation holds:

$$
H \mid P=H_{P}
$$

\square The Hamilton-Pontryagin principle in phase space is given (in this case $\Delta_{Q}=T Q$) by

$$
\begin{aligned}
& \delta \int_{t_{1}}^{t_{2}}\left\{p_{i}(t) \dot{q}^{i}(t)-H\left(q^{i}, v^{A}, p_{i}\right)\right\} d t \\
& =\int_{t_{1}}^{t_{2}}\left\{\left(-\dot{p}^{i}-\frac{\partial H}{\partial q^{i}}\right) \delta q^{i}+\left(\dot{q}^{i}-\frac{\partial H}{\partial p_{i}}\right) \delta p_{i}-\frac{\partial H}{\partial v^{i}} \delta v^{i}\right\} d t=0
\end{aligned}
$$

for all $\delta q^{i}(t), \delta v^{i}(t)$ and $\delta p_{i}(t)$, which directly provides
\square The Hamilton-Pontryagin principle in phase space is given (in this case $\Delta_{Q}=T Q$) by

$$
\begin{aligned}
& \delta \int_{t_{1}}^{t_{2}}\left\{p_{i}(t) \dot{q}^{i}(t)-H\left(q^{i}, v^{A}, p_{i}\right)\right\} d t \\
& =\int_{t_{1}}^{t_{2}}\left\{\left(-\dot{p}^{i}-\frac{\partial H}{\partial q^{i}}\right) \delta q^{i}+\left(\dot{q}^{i}-\frac{\partial H}{\partial p_{i}}\right) \delta p_{i}-\frac{\partial H}{\partial v^{i}} \delta v^{i}\right\} d t=0
\end{aligned}
$$

for all $\delta q^{i}(t), \delta v^{i}(t)$ and $\delta p_{i}(t)$, which directly provides

$$
\begin{aligned}
\dot{q}^{i} & =\frac{\partial H}{\partial p_{i}}=v^{i} \\
\dot{p}^{i} & =-\frac{\partial H}{\partial q^{i}}=\frac{\partial \alpha_{j}(q)}{\partial q^{i}} v^{j}-\frac{\partial h(q)}{\partial q^{i}}, \\
\frac{\partial H}{\partial v^{i}} & =\phi_{i}\left(q^{j}, p_{j}\right)=p_{i}-\alpha_{i}\left(q^{j}\right)=0 .
\end{aligned}
$$

Example: L-C Circuits

\square The generalized energy E on $T W \oplus T^{*} W$ is given by

$$
\begin{aligned}
& E\left(q^{i}, f^{i}, p_{i}\right)=p_{i} f^{i}-\mathcal{L}\left(q^{i}, f^{i}\right) \\
& =p_{L} f_{L}+p_{C_{1}} f_{C_{1}}+p_{C_{2}} f_{C_{2}}+p_{C_{3}} f_{C_{3}} \\
& -\frac{1}{2} L\left(f_{L}\right)^{2}+\frac{1}{2} \frac{\left(q_{C_{1}}\right)^{2}}{C_{1}}+\frac{1}{2} \frac{\left(q_{C_{2}}\right)^{2}}{C_{2}}+\frac{1}{2} \frac{\left(q_{C_{3}}\right)^{2}}{C_{3}} .
\end{aligned}
$$

Define the constrained Hamiltonian H_{P} on P by

$$
\begin{aligned}
H_{P}\left(q^{i}, p_{\lambda}\right) & =\operatorname{stat}_{f^{i}} E\left(q^{i}, f^{i}, p_{i}\right) \mid P \\
& =T\left(q^{i}, p_{\lambda}\right)+V\left(q^{i}\right) \\
& =\frac{1}{2} L^{-1}\left(p_{L}\right)^{2}+\frac{1}{2} \frac{\left(q_{C_{1}}\right)^{2}}{C_{1}}+\frac{1}{2} \frac{\left(q_{C_{2}}\right)^{2}}{C_{2}}+\frac{1}{2} \frac{\left(q_{C_{3}}\right)^{2}}{C_{3}},
\end{aligned}
$$

where we use the partial Legendre transformation as

$$
f_{L}=L^{-1} p_{L}
$$

Define the constrained Hamiltonian H_{P} on P by

$$
\begin{aligned}
H_{P}\left(q^{i}, p_{\lambda}\right) & =\operatorname{stat}_{f^{i}} E\left(q^{i}, f^{i}, p_{i}\right) \mid P \\
& =T\left(q^{i}, p_{\lambda}\right)+V\left(q^{i}\right) \\
& =\frac{1}{2} L^{-1}\left(p_{L}\right)^{2}+\frac{1}{2} \frac{\left(q_{C_{1}}\right)^{2}}{C_{1}}+\frac{1}{2} \frac{\left(q_{C_{2}}\right)^{2}}{C_{2}}+\frac{1}{2} \frac{\left(q_{C_{3}}\right)^{2}}{C_{3}}
\end{aligned}
$$

where we use the partial Legendre transformation as

$$
f_{L}=L^{-1} p_{L} .
$$

and the primary constraints

$$
\phi_{A}=0, \quad A=2,3,4
$$

are in fact given by

$$
\phi_{2}=p_{C_{1}}=0, \phi_{3}=p_{C_{2}}=0, \phi_{4}=p_{C_{3}}=0
$$

Define the generalized Hamiltonian H on $T W \oplus T^{*} W$ such that $H \mid P=H_{P}$, which is locally represented by

$$
\begin{aligned}
H\left(q^{i}, f^{A}, p_{i}\right)= & H_{P}\left(q^{i}, p_{\lambda}\right)+\phi_{A}\left(q^{i}, p_{i}\right) f^{A} \\
= & \frac{1}{2} L^{-1}\left(p_{L}\right)^{2}+\frac{1}{2} \frac{\left(q_{C_{1}}\right)^{2}}{C_{1}}+\frac{1}{2} \frac{\left(q_{C_{2}}\right)^{2}}{C_{2}}+\frac{1}{2} \frac{\left(q_{C_{3}}\right)^{2}}{C_{3}} \\
& \quad+p_{C_{1}} f_{C_{1}}+p_{C_{2}} f_{C_{2}}+p_{C_{3}} f_{C_{3}},
\end{aligned}
$$

where we incorporate primary constraints by employing $f^{A}, A=k+1, \ldots, n$ as Lagrange multipliers.

Define the generalized Hamiltonian H on $T W \oplus T^{*} W$ such that $H \mid P=H_{P}$, which is locally represented by

$$
\begin{aligned}
H\left(q^{i}, f^{A}, p_{i}\right)= & H_{P}\left(q^{i}, p_{\lambda}\right)+\phi_{A}\left(q^{i}, p_{i}\right) f^{A} \\
= & \frac{1}{2} L^{-1}\left(p_{L}\right)^{2}+\frac{1}{2} \frac{\left(q_{C_{1}}\right)^{2}}{C_{1}}+\frac{1}{2} \frac{\left(q_{C_{2}}\right)^{2}}{C_{2}}+\frac{1}{2} \frac{\left(q_{C_{3}}\right)^{2}}{C_{3}} \\
& \quad+p_{C_{1}} f_{C_{1}}+p_{C_{2}} f_{C_{2}}+p_{C_{3}} f_{C_{3}},
\end{aligned}
$$

where we incorporate primary constraints by employing $f^{A}, A=k+1, \ldots, n$ as Lagrange multipliers.

Recall the differential of H is locally given by

$$
\mathbf{d} H=\left(q^{i}, f^{A}, p_{i}, \frac{\partial H}{\partial q^{i}}, \frac{\partial H}{\partial f^{A}}, \frac{\partial H}{\partial p_{i}}\right) .
$$

We can obtain the primary constraints as

$$
\frac{\partial H}{\partial f^{A}}=\phi_{A}\left(q^{i}, p_{i}\right)=p_{A}=0, \quad A=2,3,4 .
$$

The restriction of $\mathbf{d} H: T\left(T W \oplus T^{*} W\right) \rightarrow \mathbb{R}$ to $T T^{*} W$ is locally denoted by

$$
\begin{aligned}
\left.\mathbf{d} H\left(q^{i}, v^{A}, p_{i}\right)\right|_{T T^{*} W} & =\left(\frac{\partial H}{\partial q^{i}}, \frac{\partial H}{\partial p_{i}}\right) \\
& =\left(0, \frac{q_{C_{1}}}{C_{1}}, \frac{q_{C_{2}}}{C_{2}}, \frac{q_{C_{3}}}{C_{3}}, p_{L}, p_{C_{1}}, p_{C_{2}}, p_{C_{3}}\right) \\
& =\left(0, \frac{q_{C_{1}}}{C_{1}}, \frac{q_{C_{2}}}{C_{2}}, \frac{q_{C_{3}}}{C_{3}}, p_{L}, 0,0,0\right) .
\end{aligned}
$$

\square The vector field X on $T^{*} W$, defined at points in P, is locally represented by
$X\left(q_{L}, q_{C_{1}}, q_{C_{2}}, q_{C_{3}}, p_{L}, 0,0,0\right)=\left(\dot{q}_{L}, \dot{q}_{C_{1}}, \dot{q}_{C_{2}}, \dot{q}_{C_{3}}, \dot{p}_{L}, 0,0,0\right)$, and the condition of an implicit Hamiltonian system (H, Δ, X) is satisfied such that for each $(q, p) \in T^{*} W$,

$$
\left(X(q, p),\left.\mathbf{d} H(q, v, p)\right|_{T T^{*} W}\right) \in D_{\Delta}(q, p) .
$$

\square The vector field X on $T^{*} W$, defined at points in P, is locally represented by
$X\left(q_{L}, q_{C_{1}}, q_{C_{2}}, q_{C_{3}}, p_{L}, 0,0,0\right)=\left(\dot{q}_{L}, \dot{q}_{C_{1}}, \dot{q}_{C_{2}}, \dot{q}_{C_{3}}, \dot{p}_{L}, 0,0,0\right)$, and the condition of an implicit Hamiltonian system (H, Δ, X) is satisfied such that for each $(q, p) \in T^{*} W$,

$$
\left(X(q, p),\left.\mathbf{d} H(q, v, p)\right|_{T T^{*} W}\right) \in D_{\Delta}(q, p) .
$$

In coordinates, we have

$$
\begin{aligned}
\binom{\dot{q}^{i}}{\dot{p}_{i}} & =\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\binom{\frac{\partial H}{\partial i^{i}}}{\frac{\partial H}{\partial p^{i}}}+\binom{0}{\mu_{a} \omega_{i}^{a}(q)}, \\
\frac{\partial H}{\partial v^{A}} & =\phi_{A}\left(q^{i}, p_{i}\right)=0, \\
0 & =\omega_{i}^{a}(q) \frac{\partial H}{\partial p^{i}} .
\end{aligned}
$$

Implicit Lagrangian Systems Revisit

\square Recall the generalized energy $E: T Q \oplus T^{*} Q \rightarrow \mathbb{R}$ is defined by

$$
E(q, v, p)=p \cdot v-L(q, v)
$$

Implicit Lagrangian Systems Revisit

\square Recall the generalized energy $E: T Q \oplus T^{*} Q \rightarrow \mathbb{R}$ is defined by

$$
E(q, v, p)=p \cdot v-L(q, v)
$$

and the differential of E is locally given by

$$
\mathbf{d} E=\left(q^{i}, v^{i}, p_{i}, \frac{\partial E}{\partial q^{i}}, \frac{\partial E}{\partial v^{i}}, \frac{\partial E}{\partial p_{i}}\right) .
$$

Implicit Lagrangian Systems Revisit

\square Recall the generalized energy $E: T Q \oplus T^{*} Q \rightarrow \mathbb{R}$ is defined by

$$
E(q, v, p)=p \cdot v-L(q, v)
$$

and the differential of E is locally given by

$$
\mathbf{d} E=\left(q^{i}, v^{i}, p_{i}, \frac{\partial E}{\partial q^{i}}, \frac{\partial E}{\partial v^{i}}, \frac{\partial E}{\partial p_{i}}\right) .
$$

Because of the Legendre transformation, it reads

$$
\frac{\partial E}{\partial v^{i}}=p_{i}-\frac{\partial L}{\partial v^{i}}=0, \quad i=1, \ldots, n .
$$

So, restrict $\mathbf{d} E: T\left(T Q \oplus T^{*} Q\right) \rightarrow \mathbb{R}$ to $T T^{*} Q$ and

$$
\left.\mathrm{d} E(q, v, p)\right|_{T T^{*} Q}=\left(\frac{\partial E}{\partial q^{i}}, \frac{\partial E}{\partial p_{i}}\right)=\left(-\frac{\partial L}{\partial q^{i}}, v^{i}\right) .
$$

So, restrict $\mathbf{d} E: T\left(T Q \oplus T^{*} Q\right) \rightarrow \mathbb{R}$ to $T T^{*} Q$ and

$$
\left.\mathbf{d} E(q, v, p)\right|_{T T^{*} Q}=\left(\frac{\partial E}{\partial q^{i}}, \frac{\partial E}{\partial p_{i}}\right)=\left(-\frac{\partial L}{\partial q^{i}}, v^{i}\right) .
$$

\square The implicit Lagrangian system $\left(L, \Delta_{Q}, X\right)$ that satsfies the condition

$$
(X, \mathfrak{D} L) \in D_{\Delta_{Q}}
$$

can be restated by, for each $(q, p) \in T^{*} Q$,

$$
\left(X(q, p),\left.\mathbf{d} E(q, v, p)\right|_{T T^{*} Q}\right) \in D_{\Delta_{Q}}(q, p) .
$$

Passage from ILS to IHS

\square An implicit Lagrangian systems $\left(X, \Delta_{Q}, L\right)$ satisfies

$$
\left(X,\left.\mathrm{~d} E\right|_{T T^{*} Q}\right) \in D_{\Delta_{Q}},
$$

which are represented, in coordinates, by

Passage from ILS to IHS

\square An implicit Lagrangian systems $\left(X, \Delta_{Q}, L\right)$ satisfies

$$
\left(X,\left.\mathrm{~d} E\right|_{T T^{*} Q}\right) \in D_{\Delta_{Q}},
$$

which are represented, in coordinates, by

$$
\begin{aligned}
\binom{\dot{q}^{i}}{\dot{p}_{i}} & =\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\binom{-\frac{\partial \mathcal{L}}{\partial q^{i}}}{v^{i}}+\binom{0}{\mu_{a} \omega_{i}^{a}(q)}, \\
p_{i} & =\frac{\partial \mathcal{L}}{\partial v^{i}}, \\
0 & =\omega_{i}^{a}(q) v^{i} .
\end{aligned}
$$

Passage from ILS to IHS

\square An implicit Lagrangian systems $\left(X, \Delta_{Q}, L\right)$ satisfies

$$
\left(X,\left.\mathrm{~d} E\right|_{T T^{*} Q}\right) \in D_{\Delta_{Q}},
$$

which are represented, in coordinates, by

$$
\begin{aligned}
\binom{\dot{q}^{i}}{\dot{p}_{i}} & =\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\binom{-\frac{\partial \mathcal{L}}{\partial q^{i}}}{v^{i}}+\binom{0}{\mu_{a} \omega_{i}^{a}(q)}, \\
p_{i} & =\frac{\partial \mathcal{L}}{\partial v^{i}}, \\
0 & =\omega_{i}^{a}(q) v^{i} .
\end{aligned}
$$

Let's go to the Hamiltonian side!

Passage from ILS to IHS

\square An implicit Hamiltonian system $\left(H, \Delta_{Q}, X\right)$ satisfies

$$
\left(X,\left.\mathbf{d} H\right|_{T T^{*} Q}\right) \in D_{\Delta_{Q}} .
$$

It follows, in coordinates,

$$
\begin{aligned}
\binom{\dot{q}^{i}}{\dot{p}_{i}} & =\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\binom{\frac{\partial H}{\partial q^{i}}}{\frac{\partial H}{\partial p^{i}}}+\binom{0}{\mu_{a} \omega_{i}^{a}(q)}, \\
\frac{\partial H}{\partial v^{A}} & =\phi_{A}\left(q^{i}, p_{i}\right)=0 \\
0 & =\omega_{i}^{a}(q) \frac{\partial H}{\partial p^{i}}
\end{aligned}
$$

Passage from ILS to IHS

\square An implicit Hamiltonian system $\left(H, \Delta_{Q}, X\right)$ satisfies

$$
\left(X,\left.\mathbf{d} H\right|_{T T^{*} Q}\right) \in D_{\Delta_{Q}}
$$

It follows, in coordinates,

$$
\begin{aligned}
\binom{\dot{q}^{i}}{\dot{p}_{i}} & =\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\binom{\frac{\partial H}{\partial q^{i}}}{\frac{\partial H}{\partial p^{i}}}+\binom{0}{\mu_{a} \omega_{i}^{a}(q)}, \\
\frac{\partial H}{\partial v^{A}} & =\phi_{A}\left(q^{i}, p_{i}\right)=0 \\
0 & =\omega_{i}^{a}(q) \frac{\partial H}{\partial p^{i}}
\end{aligned}
$$

But, unfortunately, you can never come back to the Lagrangian side from the Hamiltonian side in the degenerate cases! It's a one way passage!

Concluding Remarks

\square We have showed the link between implicit Lagrangian and Hamiltonian systems in the case that a given Lagrangian is degenerate.
\square We have developed a generalized Legendre transform for degenerate Lagrangians and also developed a generalized Hamiltonian on the Pontryagin bundle, by which we can incorporates primary constraints into the variational as well as into the Dirac context.
\square We have developed implicit Hamiltonian systems for degenerate cases in the context of Dirac structures as well as in the context of the Hamilton-LagrangePontryagin principle together with some examples.

