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1.- Basic examples

• φ(x, ẋ) = 0, general form of an implicit

differential equation (IDE).

• φ : TM → F, M manifold, F vector space.

• φ belongs to a certain class of functions, for

instance, smooth, analytic, etc.

• Nonholonomic systems

δ

∫

L(x, ẋ)dt = 0, ϕ(x, δx) = 0

ϕ(x, ẋ) = 0.

• (x, ẋ) = (x, v) then the previous system of

equations becomes an IDE, ψ(x, v, ẋ, v̇) = 0.

• Reduced versions of nonholonomic systems

also lead to IDE, sometimes easier. Question:

find a good systematic way of writing an

equivalent ODE, at least for a certain class of

nonholonomic systems.

• Singular Lagrangian systems

• δ
∫

L(x, ẋ)dt = 0, no restriction on δx, with

the same substitution (x, ẋ) = (x, v) leads to

Euler-Lagrange equation, which are IDE

∂2L

∂vi∂vj
v̇j +Bi(x, v) = 0.
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• Hamilton-Poincaré equations.

δ

∫

(pq̇ − (pv − L(q, v))) dt = 0,

gives the equations

ω(q, v, p) ((q̇, v̇, ṗ), ) = dH(q, v, p),

where H(q, v, p) = pv − L(q, v) and

ω = dq ∧ dp is a presymplectic form.

• More generally, an equation similar to this on

a given presymplectic manifold, say

ω(x)(ẋ, ) = α, where α is a 1-form (even in

infinite dimensions) is the starting point of

the theory of Gotay-Nester, which generalizes

the Dirac-Bergman theory of constraints.

• An even more general class of examples:

instead of a presymplectic structure one can

write equations in terms of a given Dirac

structure,which in general also lead to IDE.

• Control systems of the type

ẋ = f(x, y)

0 = g(x, y)

are obviously another source of examples of

IDE
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2.- The algorithm

• M manifold of dimension d, (a, f) given IDE

with domain M and range F. The algorithm

is designed to transform this IDE into an

equivalent IDE, say

ã2(y)ẏ = f̃2(y)

on an analytic manifold M̃2, which is an IDE

of locally constant rank. This involves a

desingularization process

• The decomposition M = M0 ∪M1 ∪M2.

First, let us assume that M is a connected

manifold of dimension d. For i = 0, 1, . . . , let

Si(M) = {x ∈M | rank a(x) ≤ i}

Si(M) is clearly a closed analytic subset of M,

defined by analytic equations, for i = 0, 1, . . . .

• Also, for i = 0, 1, ..., let Li(M) ⊆ Si(M) be

defined by

Li(M) = {x ∈ Si(M) | rank[a(x), f(x)] ≤ i}

Each Li(M) is a closed analytic subset of M

defined by analytic equations.
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• Let

Sk1
(M) ⊂ Sk2

(M) ⊂ . . . ⊂ Skr
(M)

be the distinct nonempty Si(M). We observe

that Skr
(M) ≡M. Consider the

corresponding inclusions

Lk1
(M) ⊆ Lk2

(M) ⊆ . . . ⊆ Lkr
(M).

• rank a(x) = rank[a(x), f(x)] = kj for each

x ∈ Lkj
(M) − Skj−1

(M), j = 1, . . . , r. The

LAS associated to (a, f) has solution for each

x ∈ Lkj
(M) − Skj−1

(M), j = 1, . . . , r, where

we have written Sk0
= ∅, to uniformize the

notation.

• We remark the following useful facts: the set

Lkj
(M) − Skj−1(M) may be empty, for some

j = 1, . . . , r; we have dimSkr−1
(M) < dimM ;

if dim(Lkr
(M)) = d, then Lkr

(M) = M.

• Now let M be a manifold of dimension d and

assume that

Mm =
⋃

j

Wj

is the union of the connected components of

M of maximal dimension d.
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• We will consider the following pairwise

disjoint conditions for a given Wj ⊆Mm,

(a) Lkr
(Wj) = ∅

(b) Lkr
(Wj) 6= ∅ and dimLkr

(Wj) < d

(c) Lkr
(Wj) 6= ∅ and dimLkr

(Wj) = d.

• We now define the following pairwise disjoint

subsets of M.

M0 = (M −Mm) ∪
⋃

b

Lkr
(Wj) ∪

⋃

c

Skr−1
(Wj)

M1 =
⋃

a

Wj ∪
⋃

b

(Wj − Lkr
(Wj))

M2 =
⋃

c

(

Wj − Skr−1
(Wj)

)

.

• We have the following assertions, whose proof

is easy: each subset Lkr
(Wj) ⊆Wj , and each

subset Skr−1
(Wj) ⊆Wj , is a closed analytic

subset of Wj defined by analytic equations on

Wj . In consequence, Wj − Lkr
(Wj),

Wj −Skr−1
(Wj) are open submanifolds of Wj .

• The manifold M is the disjoint union

M = M0 ∪M1 ∪M2.

M1 and M2 are open submanifolds of M. and

M0 is a union of subsets defined by analytic

equations on each Wj , union M −Mm, and

we have that dimM0 < d.
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• We have that the LAS associated to (a, f) has

no solution for x ∈M1. On the other hand, it

has solution for all x ∈M2, moreover,

(a, f)|M2, is an IDE of locally constant rank.

• It remains to see what happens with the

system restricted to M0. The idea here is to

desingularize each closed analytic subset

Lkr
(Wj) ⊆Wj , and Skr−1

(Wj) ⊆Wj . By

forming the disjoint union of those

desingularizations and M −Mm one obtains a

desingularization of M0 say

π0 : M1 →M, where π0(M
1) = M0.

• Then (a, f)|M0 can be naturally lifted to an

IDE (a1, f1) = π∗

0 ((a, f)|M0) on M1 as

follows

a1(y)ẏ = a(π0(y))Tyπ0(y, ẏ)

f1(y) = f(π0(y)).

• Note that M1 is a manifold of dimension

dimM1 = dimM0 < d.

To desingularize (a, f) in a finite number of

steps we repeat the process for the IDE

(a1, f1) with domain M1 and range F, as we

did before with (a, f).
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• We obtain a decomposition

M1 = M1
0 ∪M1

1 ∪M1
2 .

We know that there is no solution to the LAS

system

a1(y)ẏ = f1(y)

for y ∈M1
1 . We also know that there is

solution to the same LAS system for y ∈M 1
2 ,

moreover, (a1, f1)|M1
2 is an IDE of locally

constant rank. Now we desingularize M 1
0

π1 : M2 →M1, π1(M
2) = M1

0

and repeat the process. It is clear that we

obtain a finite sequence of manifolds and

maps

M q πq−1→ M q−1 πq−2→ . . .
π1→M1 π0→M,

where π0(M
1) = M0, π1(M

2) = M1
0 , and in

general πi(M
i+1) = M i

0, for i = 0, ..., q − 1,

where we have written M0 ≡M to unify the

notation.

• We have obtained a finite recursive procedure

that reduces the problem to a finite number

of IDE of locally constant rank, namely, the

IDE of locally constant rank (ai, fi)|M i
2, for

i = 0, 1, ..., q, where we have written

(a0, f0) = (a, f), to unify the notation.
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• We will call this a desingularization process

and the sequence of maps πi and IDE

(ai+1, fi+1), i = 0, ..., q− 1 a desingularization

of (a, f).

• The collection of IDE (ak, fk)|Mk
2 ,

k = 0, ..., q, defines a single IDE (ã2, f̃2) of

locally constant rank in the disjoint union

M̃2 =
⊔q

k=0
Mk

2 . We have a natural projection

π̃2 : M̃2 →M. This IDE (ã2, f̃2) with domain

M̃2 and range F is called the desingularizing

IDE.

• Are the given system and the desingularized

system equivalent? It is easy to see that any

solution of the desingularized sytems is

projected into a solution of the original syste.

The converse is not easy to prove.

• The main difficulty for proving the converse

comes from the following problem. Let

f : X → Y be given and let y(t) be a given

curve in Y. Question: Is it true that there

exists a curve x(t) in X such that

y(t) = f (x(t))?.
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• I do not know the answer to this question in

the category of C∞ manifolds and maps. But

there is a certain affirmativr answer in the

category of real analytic manifolds and maps.

This is possible thanks to the theory of

semianalytic and subanalytic sets, developed

by Lojasiewicz Hardt, Hironaka, Bierstone,

Milman, Sussmann and many others. We will

show later in this talk the main lines of the

proof of the equivalenc in the analytic case.

This case is important because of the many

problems in mechanics that belong to it.

• Before we do that we will see an example

from nonholonomic mechanics.
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3.- The symmetric ball rolling

without sliding or spinning.

• Kinematics. Let an ortonormal system fixed

in the space, say (e1, e2, e3), e1 = (1, 0, 0),

e2 = (0, 1, 0), e3 = (0, 0, 1), then we have a

basis moving with the body, (Ae1, Ae2, Ae3),

where A = A(t). We introduce the variable

z ∈ S2, given by z = Ae3. The spatial angular

velocity ω can be written ω = v0z + z × ż, so

v0 = 〈ω, z〉 is the component of ω along z. To

the usual nonsliding condition ω × re3 = ẋ for

the rigid rolling sphere we must add the extra

condition that the vertical component of the

spatial angular velocity is 0, that is, ω3 = 0.

• Dynamics. We are going to assume that the

center of mass coincides with the center of the

sphere and that the principal axis of inertia

are (Ae1, Ae2, Ae3). The three principal

moments of inertia of the sphere are I1, I2,

I3, and we are going to assume that I1 = I2.

We introduce the adimensional quantities

α = I3/I1 and β = Mr2/I1, where M is the

mass of the sphere.
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• The Lagrangian of the system is given by the

kinetic energy,

1

2
I1ż

2 +
1

2
I3v

2
0 +

1

2
Mẋ2

where ẋ is the velocity of the center of the

sphere. The nonholonomic constraint is given

by ẋ = ω × re3 and ω3 = 0, and using this we

can conclude that the kinetic energy of the

actual motion of the symmetric sphere is

given by

E =
1

2
(I1 +Mr2)ż2 +

1

2
(I3 +Mr2)v2

0 .

• The addition of the extra condition ω3 = 0

introduces an extra singularity in the reduced

system, which is an IDE. We will apply our

desingularization procedure to obtain a single

equivalent differential equation describing the

system. The desingularized manifold

containing the essential dynamics is

diffeomorphic to S2 × S1. Integrability by

quadratures appears in a natural way.
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• The IDE for the symmetric elastic sphere.As

a result of reduction by the symmetry

techniques, in this case reduction by the

subgroup SO(2) × R
2 we obtain the following

system of Lagrange-D’Alembert-Poincaré

equations, which is an IDE,

(α+ β)(z × e3)v̇0 + (1 + β) < z, e3 > ∇ż ż−
(α+ β)v0 < z, e3 > (z × ż) = 0

v0 < z, e3 > + < z × ż, e3 > = 0.

Here ∇ represents the Levi-Civita connection

on S2 with respect to the standard metric.

The previous Lagrange-D’Alembert-Poincaré

equations are derived under the assumption

z3 6= 0 because the so called dimension

assumption is not satisfied for the whole

manifold S2. Nevertheless, by continuity,

these are also satisfied by the motion of the

rolling ball for z3 = 0. One can also check

that these equations are consistent with

balance of momentum (Newton’s law).
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• Preservation of energy. By working with the

previous equations one gets

0 =
d

dt

(

(1 + β)ż2 + (α+ β)v2
0

)

,

from which one deduces

2ε = (1 + β)ż2 + (α+ β)v2
0 ,

where ε represents the normalized energy.

This equation represents conservation of

energy, as one can check more directly by

looking at the expression of the kinetic energy

E given before. We shall assume from now on

that ε > 0, otherwise the motion is trivial.

• We have the following equations to be

satisfied for the symmetric elastic sphere in

variables (z, u) where ż = v and v × z = u, so

the variable v0 does not appears,

(1 + β) < z, e3 >< u̇, e3 × z >

+(α+ β) < u, e3 >
2 = 0

(1 + β) < z, e3 >
2 u2 + (α+ β) < u, e3 >

2

−2ε < z, e3 >
2 = 0,
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• The IDE for the symmetric elastic sphere in

the standard form. Considering that z2 = 1

and ż = z × u, we must have < z, u >= 0.

Using what was said before we can write the

system of equations for the symmetric elastic

sphere in variables (z, u, v0) ∈ R
3 × R

3 × R as

follows,

ż1 = z2u3 − z3u2

ż2 = z3u1 − z1u3

ż3 = z1u2 − z2u1

0 = (1 + β)z3(−z2u̇1 + z1u̇2) + (α+ β)u2
3

0 = (1 + β)z2
3(u2

1 + u2
2 + u2

3) + (α+ β)u2
3 − 2εz2

3

0 = z2
1 + z2

2 + z2
3 − 1

0 = z1u1 + z2u2 + z3u3

0 = 2ε− (1 + β)u2 − (α+ β)v2
0 .

This system can be written in the form

a(X)Ẋ = f(X),

with X = (z, u, v0), where
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•

a =





































1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 −(1 + β)z2z3 (1 + β)z1z3 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0





































f =





































z2u3 − z3u2

z3u1 − z1u3

z1u2 − z2u1

−(α+ β)u2
3

(1 + β)z2
3(u2

1 + u2
2 + u2

3) + (α+ β)u2
3 − 2εz2

3

z2
1 + z2

2 + z2
3 − 1

z1u1 + z2u2 + z3u3

2ε− (1 + β)u2 − (α+ β)v2
0





































.
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• Application of the algorithm.We will work on

the manifold M = R
7, where

(z1, z2, z3, u1, u2, u3, v0) ∈ R
7 are independent

variables. We can easily see that kr = 4,

S4(M) = M, L4(M) = M0,

M1 = M − L4(M), M2 = ∅. Now we shall

describe M0 by equations. Let

ϕ1 = −(1 + β)z2z3

ϕ2 = (1 + β)z1z3

ν1 = (1 + β)z2
3(u2

1 + u2
2 + u2

3) + (α+ β)u2
3 − 2εz2

3

ν2 = z2
1 + z2

2 + z2
3 − 1

ν3 = z1u1 + z2u2 + z3u3

ν4 = 2ε− (1 + β)u2 − (α+ β)v2
0 .

As we know M0 = L4(M) is given by the

condition that rank[a, f ] ≤ 4. Let

M0a = {ϕ1 = 0, ϕ2 = 0}
= {z3 = 0} ∪ {z1 = 0, z2 = 0}

M0b = {ν1 = 0, ν2 = 0, ν3 = 0, ν4 = 0}.

Then we can easily see that M0 = M0a ∪M0b.

The desingularization M 1 of M0 will be the

disjoint union of the desingularizations of

M0a and M0b.
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• The desingularization M 1
a of M0a can be

described by

M1
a ≡ {z3 = 0}⊔{z1 = 0, z2 = 0}, where

⊔

means disjoint union and the projection π0 is

the identity on each disjoint piece of M 1
a . One

can see using (1) - (1) that the lifted system

(a1, f1)|{z3 = 0} satisfies z3 = 0, u3 = 0,

z2
1 + z2

2 = 1, which implies ż = 0, and also,

since u = ż× z, that u = 0. This describes the

motion completely. It consists of the rolling of

the sphere with z(t) = (z10, z20, 0) fixed and

the z component of the angular velocity v0
satisfies 2ε = (α+ β)(v0)

2. The lifted system

(a1, f1)|{z1 = 0, z2 = 0} satisfies z1 = 0,

z2 = 0, z3 = ±1, therefore ż = 0, and then

u = 0, which contradicts equation ν1 = 0,

because we have assumed ε > 0. So there is

no motion, that is, no solution, for the system

(a1, f1)|{z1 = 0, z2 = 0}.
• Now we will desingularize M0b. We are going

to see that M0b is in fact a nonsingular

manifold. More precisely, we will define the

desingularizing manifold M 1
b by equations in

the variables (z, u, v0), with v0z3 = u3).
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• For simplicity, we call µ = 2ε/(1 + β) > 0 and

λ = (α+ β)/(1 + β) > 0, from now on. Then

we have the following equations defining the

nonsingular manifold M 1
b ,

0 = u3 − v0z3

0 = u2
1 + u2

2 + u2
3 + λv2

0 − µ

0 = z2
1 + z2

2 + z2
3 − 1

0 = z1u1 + z2u2 + z3u3.

The proof of this is straightforward. The map

π0 : M1
b →M is then given by the restriction

of the identity (z, u, v0) → (z, u, v0) to M1
b .

Then, the original system would be equivalent

to the following system

ż1 = z2u3 − z3u2

ż2 = z3u1 − z1u3

ż3 = z1u2 − z2u1

z2u̇1 − z1u̇2 = λv0u3

0 = u3 − v0z3

0 = u2
1 + u2

2 + u2
3 + λv2

0 − µ

0 = z2
1 + z2

2 + z2
3 − 1

0 = z1u1 + z2u2 + z3u3.
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• More precisely, if we define

ã(z, u, v0) =





































1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 z2 −z1 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0





































,

f̃(z, u, v0) =





































z2u3 − z3u2

z3u1 − z1u3

z1u2 − z2u1

λv0u3

u3 − v0z3

u2
1 + u2

2 + u2
3 + λv2

0 − µ

z2
1 + z2

2 + z2
3 − 1

z1u1 + z2u2 + z3u3





































,

we see that the previous system is in the form

ã(y)ẏ = f̃(y), with y = (z, u, v0), so it is an

IDE in standard form with domain R
7 and

range R
8, and our IDE in M1

b is given by the

restriction (a1, f1) = (ã, f̃)|M1
b .
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• In order to continue with the algorithm, we

shall find explicitly the lifted system (a1, f1).

By differentiating the first seven of the

previous equations, eliminating the redundant

equation z1ż1 + z2ż2 + z3ż3 = 0, also realizing

appropriate linear operations in the range

space, we have the following system with

domain R
7 and range R

11, which is also

equivalent to our system (a1, f1),

ż1 = z2u3 − z3u2

ż2 = z3u1 − z1u3

ż3 = z1u2 − z2u1

z2u̇1 − z1u̇2 = λv0u3

z1u̇1 + z2u̇2 + z3u̇3 = 0

u1u̇1 + u2u̇2 + u3u̇3 + λv0v̇0 = 0

u̇3 − z3v̇0 = v0z1u2 − v0z2u1

0 = u3 − v0z3

0 = u2
1 + u2

2 + u2
3 + λv2

0

−µ
0 = z2

1 + z2
2 + z2

3 − 1

0 = z1u1 + z2u2 + z3u3.

This system is still not completely

desingularized.
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• One can check by direct calculation that it

can be desingularized in two more iterations

of the algorithm. However, in this example

there is an interesting alternative to find the

solutions, which starts with a precise

description of the manifold M 1
b . We prefer

this alternative because having an

identification of M1
b also helps to understand

the dynamics in a direct way, as we will see

soon.
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• Solving the equations

Identification of M1
b . The manifold M1

b is

given by the equations in the space of the

variables (z1, z2, z3, u1, u2, u3, v0), as we have

seen before. These equation tells us that u is

a vector tangent to the 2-sphere S2, given by

z2 − 1 = 0. Heuristically, for each z ∈ S2 we

consider the 3 dimensional space TzS
2 ×Rz,

where Rz represents a line normal to the

sphere at z ∈ S2, so the collection of all Rz is

a trivial real line vector bundle with base S2.

• One of the equation is a plane containing the

origin 0 = 0z since z3 is fixed once z is fixed.

Another equation gives an ellipsoid. The

intersection of the plane with the ellipsoid is

an ellipse. Therefore M1
b must be some fiber

bundle with fiber S1 and base S2. Using all

this and some imagination we can see that it

is, in fact, the trivial bundle S2 × S1,

moreover, we have the following

parametrization of M1
b in variables (θ, ϕ, ψ).

In any case, this assertion can be easily

checked after some straightforward

calculations.
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•

z1 = sin θ cosϕ

z2 = sin θ sinϕ

z3 = cos θ

u1 = −a cos(ϕ− ψ) cos2 θ cosϕ− b sin(ϕ− ψ) sinϕ

u2 = −a cos(ϕ− ψ) cos2 θ sinϕ+ b sin(ϕ− ψ) cosϕ

u3 = a cos(ϕ− ψ) cos θ sin θ

v0 = a cos(ϕ− ψ) sin θ,

where

a =

√

µ

λ sin2 θ + cos2 θ
, b =

√
µ
′

.

In other words, by some straightforward

calculations we can check that

(z1, z2, z3, u1, u2, u3, v0) in coordinates

(θ, ϕ, ψ) satisfies the equations.

• We can see that the previous system of

equations define a diffeomorphism

f : S2 × S1 →M1
b ,

f(z, (cosψ, sinψ)) = (z, u, v0), which gives the

desired identification of M 1
b . This takes some

long but straightforward calculations.
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• The differential equation for the symmetric

elastic sphere in variables (θ, ϕ, ψ). We get the

equations in coordinates (θ, ϕ, ψ) as follows

cos θ cosϕθ̇ − sin θ sinϕϕ̇ = a cos θ sinϕ cos(ϕ− ψ)

− b cos θ cosϕ sin(ϕ− ψ)

cos θ sinϕθ̇ + sin θ cosϕϕ̇ = −a cos θ cosϕ cos(ϕ− ψ)

− b cos θ sinϕ sin(ϕ− ψ)

− sin θθ̇ = b sin θ sin(ϕ− ψ)

a sin θ cos2 θ cos(ϕ− ψ)ϕ̇−
−b sin θ cos(ϕ− ψ)(ϕ̇− ψ̇) = λa2 cos2(ϕ− ψ) sin2 θ cos θ

If sin θ 6= 0 the system becomes

θ̇ = −b sin(ϕ− ψ)

ϕ̇ = −acos θ

sin θ
cos(ϕ− ψ)

ψ̇ = a cos(ϕ− ψ)
cos θ

sin θ

(

b

a
− 1

)

,

or equivalently,

θ̇ = −b sin(ϕ− ψ)

ϕ̇ = −acos θ

sin θ
cos(ϕ− ψ)

ψ̇ = (b− a)
cos θ

sin θ
cos(ϕ− ψ)
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• It can be easily seen that this system can be

integrated by quadratures. For instance, if we

call w = ϕ− ψ, we can write (1)-(1) as a

planar system in coordinates (θ, w),

θ̇ = −b sinw

ẇ = −bcos θ
sin θ

cosw,

which in turn leads to the separable equation

dθ

dw
= tan θ tanw.

Of course the system is still an analytic IDE

on S2 × S1 which is of constant rank for

sin θ 6= 0, and the rank changes for sin θ = 0.

So we should continue the desingularization

process. Instead, we observe that the only

solution with some initial condition

compatible with the system and involving the

condition sin θ = 0, that is,

(z10, z20, z30, u10, u20, u30, v00) =

(0, 0,±1, u10, u20, 0, 0), is a uniform circular

motion of z on a vertical plane perpendicular

to the constant vector

(u1(t), u2(t), u3(t)) = (u10, u20, 0), while

v0(t) = 0. This is also consistent with physical

reasoning.
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4. Equivalence between a given IDE

and its desingularization

The following assertions establish the equivalence

between a given IDE (a, f) and its

desingularization.

(a) Let y(t), t ∈ [t0, t1) (respectively, t ∈ (t0, t1],)

be an as-solution to (ak, fk) in Mk, k = 1, ..., q.

Then x(t) = πk−1 (y(t)) , t ∈ [t0, t2] (respectively,

t ∈ [t2, t1]) is an as-solution to (ak−1, fk−1) in

Mk−1, for each t2 ∈ (t0, t1).

(b) If x(t), t ∈ [t0, t1) (respectively, t ∈ (t0, t1]) is

an as-solution to (ak−1, fk−1) in Mk−1 such that

x(t) ∈Mk−1

0 , t ∈ [t0, t1) (respectively, t ∈ (t0, t1]),

k = 1, ..., q then there exists t2 ∈ (t0, t1) and a

lifted as-solution y(t), t ∈ [t0, t2] (respectively,

t ∈ [t2, t1]) of x|[t0, t2] (respectively, x|[t2, t1]) to

(ak, fk) in Mk, in particular, x(t) = πk−1 (y(t)) ,

t ∈ [t0, t2] (respectively, t ∈ [t2, t1].)

5. Future work.

• The well known constraint algorithm of Gotay

and Nester gives a global geometric version of

the Dirac-Bergman theory of constraints, for

infinite dimensional presymplectic manifolds.
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• We will briefly show how to deal with the

singular cases, in finite dimensions.

• Let (M,ω) be a presymplectic manifold,

where the manifold M and the presymplectic

form ω are analytic. Let α be a closed

analytic 1-form on M. Then the problem is to

find solutions to the differential equation

iẋ ω = α.

• To write this IDE with the notation used in

the present paper let us assume, for

simplicity, that M is an open subset of the

vector space E, then TM = M ×E and

T ∗M = M ×E∗.
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• Then we can write the equation in the form

a(x)ẋ = f(x),

where a : TM → F by simply taking F ≡ E∗,

f(x) ≡ α(x) and a(x)ẋ ≡ ω(x)(ẋ, ).

• The Gotay-Nester algorithm involves finding

a sequence of constraints submanifolds

M ⊇M1 ⊇, ... ⊇Mq. Mq is called the final

constraint submanifold and the dynamics of

the system takes place on this submanifold.

• It is assumed as part of the algorithm that

each Mi is a submanifold. If we apply our

algorithm, this assumption is no longer

necessary, and the dynamics is recovered as

the dynamics of the system of locally constant

rank (ã2, f̃2) in the analytic manifold M̃2.

Thus M̃2 will be the final constraint

manifoldd. In this sense, our algorithm

represents a generalization of the

Gotay-Nester algorithm.
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