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Abstract

In this talk I will present a fast, Lie algebra variational integrator.
Due to its variational construction, the method is discrete spatial angular
momentum and symplectic two-form preserving. As a consequence the
discrete energy remains bounded for long-time integrations. Moreover,
the method is explicit, and hence computationally efficient, and easy to
implement.

This method is an instance of a family of Newmark algorithms on
Lie Algebras which generalize certain methods for so(3) proposed and in-
vestigated by Simo & Vu-Quoc [1988]; Simo & Wong [1991] to any Lie
algebra. This family comes from discretizations of variational principles
on trivialized Lie groups specifically the Euler-Poincaré Variational Prin-
ciple [Marsden & Scheurle, 1993]. This view affords a simple and unified
procedure to analyze the geometric structure of these Lie-Newmark meth-
ods and improve them.

By discrete Noether’s theorem, it is shown that all of these algorithms
preserve a discrete spatial angular momentum. An extension of the vari-
ational proof of symplecticity to trivialized Lie groups provides a natural
way to assess the symplectic nature of the algorithms. This discrete proof
of symplecticity leads to some negative results on symplecticity of exist-
ing Lie-Newmark methods. The paper then proposes a new Lie-Newmark
method which leads to a positive result on symplecticity.

Numerical simulations on the free rigid body confirm the positive
and negative results on discrete energy, spatial angular momentum, and
symplectic-form preservation. Moreover quantiative comparisons to the
current state-of-the-art through work-precision diagrams reveal that this
new geometric Lie algebra integrator is fast and efficient.
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