Hopf Bifrucation

Alexander McKenzie*

November 23, 2005

Consider the planar system

$$\dot{x} = -y + x(\mu - x^2 - y^2)$$

 $\dot{y} = x + y(\mu - x^2 - y^2)$

The only critical point is at the origin and

$$D\mathbf{f}(\mathbf{0},\mu) = \left[egin{array}{cc} \mu & -1 \ 1 & \mu \end{array}
ight]$$

The origin is a stable or an unstable focus of this nonlinear system if $\mu < 0$ or if $\mu > 0$ respectively. To uncover the structure at $\mu = 0$, we rewrite the system in polar coordinates using $x = r \cos \theta$, $y = r \sin \theta$, $\dot{r} = \frac{1}{r}(x\dot{x} + y\dot{y})$ and $\dot{\theta} = \frac{1}{r^2}(x\dot{y} - y\dot{x})$ to find that

$$\dot{r} = r(\mu - r^2)$$
$$\dot{\theta} = 1$$

We see that at $\mu = 0$ the origin is a stable focus and for $\mu > 0$ there is a stable invariant orbit

$$\Gamma_{\mu}: \gamma_{\mu}(t) = \sqrt{\mu} (\cos t, \sin t)^{T}$$

The curves Γ_{μ} represent a one-parameter family of invariant orbits of this system.

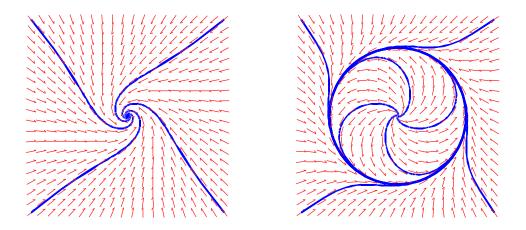


Figure 1: Left: Phase portrait with $\mu < 0$ illustrating a stable node at the origin. Right: A Hopf bifurcation occurs when $\mu > 0$, and an invariant stable orbit is born with radius $\sqrt{\mu}$ as depicted above.

^{*}am@cs.caltech.edu. Department of Computer Science, MC 256-80, Caltech, Pasadena CA 91125, USA.