Hopf Bifrucation

Alexander McKenzie*

November 23, 2005

Consider the planar system

$$
\begin{aligned}
& \dot{x}=-y+x\left(\mu-x^{2}-y^{2}\right) \\
& \dot{y}=x+y\left(\mu-x^{2}-y^{2}\right)
\end{aligned}
$$

The only critical point is at the origin and

$$
D \mathbf{f}(\mathbf{0}, \mu)=\left[\begin{array}{cc}
\mu & -1 \\
1 & \mu
\end{array}\right]
$$

The origin is a stable or an unstable focus of this nonlinear system if $\mu<0$ or if $\mu>0$ respectively. To uncover the structure at $\mu=0$, we rewrite the system in polar coordinates using $x=r \cos \theta$, $y=r \sin \theta, \dot{r}=\frac{1}{r}(x \dot{x}+y \dot{y})$ and $\dot{\theta}=\frac{1}{r^{2}}(x \dot{y}-y \dot{x})$ to find that

$$
\begin{aligned}
& \dot{r}=r\left(\mu-r^{2}\right) \\
& \dot{\theta}=1
\end{aligned}
$$

We see that at $\mu=0$ the origin is a stable focus and for $\mu>0$ there is a stable invariant orbit

$$
\Gamma_{\mu}: \gamma_{\mu}(t)=\sqrt{\mu}(\cos t, \sin t)^{T}
$$

The curves Γ_{μ} represent a one-parameter family of invariant orbits of this system.

Figure 1: Left: Phase portrait with $\mu<0$ illustrating a stable node at the origin. Right: A Hopf bifurcation occurs when $\mu>0$, and an invariant stable orbit is born with radius $\sqrt{\mu}$ as depicted above.

[^0]
[^0]: *am@cs.caltech.edu. Department of Computer Science, MC 256-80, Caltech, Pasadena CA 91125, USA.

