Classification of Linear Systems

• Given a linear system $\dot{\mathbf{x}} = A\mathbf{x}$, the desired straight-line solutions $(\mathbf{x} = e^{\lambda t}\mathbf{v})$ exist if \mathbf{v} is an **eigenvector** of A with **eigenvalue** λ , $A\mathbf{v} = \lambda \mathbf{v}$.

 \blacktriangleright Recall: **eigenvalues** of A is given by **characteristic equation**

$$\det(A - \lambda I)$$

which has solutions

$$\lambda_1 = \frac{\tau + \sqrt{\tau^2 - 4\Delta}}{2}, \quad \lambda_2 = \frac{\tau - \sqrt{\tau^2 - 4\Delta}}{2}$$

where $\tau = \text{trace}(A) = a + d$ and $\Delta = \det(A) = ad - bc$.
If $\lambda_1 \neq \lambda_2$ (typical situation),
eigenvectors its \mathbf{v}_1 and \mathbf{v}_2 are **linear independent**
and span the entire plan.

General Solution for Initial Value Problem

► Can write any **initial condition** as a **linear combination**

$$\mathbf{x}_0 = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2$$

▶ General solution is given by

$$\mathbf{x}(t) = c_1 e^{\lambda_1 t} \mathbf{v}_1 + c_2 e^{\lambda_2} \mathbf{v}_2$$

Solve IVP $\dot{x} = x + y, \dot{y} = 4x - 2y$ with $(x_0, y_0) = (2, -3)$ and draw phase portrait.

Both Eigenvalues are Real and Different

- ► Have **opposite** signs: Fixed point is a **saddle**.
- ► Same sign (**negative**, **positive**): **nodes** (**stable**, **unstable**).

Figure 5.2.2

Figure 5.2.3

Eigenvalues are Complex Conjugates

Eigenvalues are distinct

$$\lambda_{1,2} = \alpha \pm i\omega; \quad \alpha = \tau/2, \quad \omega = \frac{1}{2}\sqrt{4\Delta - \tau^2}$$

 \blacktriangleright General solution is

$$\mathbf{x}(t) = c_1 e^{\lambda_1 t} \mathbf{v}_1 + c_2 e^{\lambda_2} \mathbf{v}_2$$

where c's and \mathbf{v} 's are **complex**.

- ► $\mathbf{x}(t)$ is a combination of $e^{\alpha t} \cos \omega t$ and $e^{\alpha t} \sin \omega t$.
 - **Decaying** oscillations if $\alpha = \operatorname{Re}(\lambda) < 0$ (stable spiral)
 - Growing oscillations if $\alpha > 0$ (unstable spiral)

Figure 5.2.4

Eigenvalues are Complex Conjugates

 \blacktriangleright General solution is

$$\mathbf{x}(t) = c_1 e^{\lambda_1 t} \mathbf{v}_1 + c_2 e^{\lambda_2} \mathbf{v}_2$$

where $\mathbf{x}(t)$ is a combination of $e^{\alpha t} \cos \omega t$ and $e^{\alpha t} \sin \omega t$.

- ► If eigenvalues are purely imaginary ($\alpha = 0$), all solutions are periodic with $T = 2\pi/\omega$
- ▶ Osicllations have fixed amplitude. Fixed point is a **center**.
- ▶ Easy to determine whether it is clockwise or counterclockwise.

Figure 5.2.4

Eigenvalues are Equal

If 2 eigenvectors, every vector is eigenvector with eigenvalue λ.
Since multiplication by A stretches every vector by λ,

$$A = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}, \qquad \mathbf{x}(t) = e^{\lambda t} \mathbf{x}_0.$$

Trajectories are straight lines through (0, 0) (**star node**). If $\lambda = 0$, a plane of fixed points.

Figure 5.2.5

Figure 5.2.6

Eigenvalues are Equal

► If only 1 eigenvector, fixed point is **degenerate node**.

► Any matrix of the form

$$A = \left(\begin{array}{cc} \lambda & b \\ 0 & \lambda \end{array}\right)$$

has only a 1D eigenspace.

► As $t \to +\infty$, and $t \to -\infty$,

all trajectories become **parallel** to only 1 eigendirection.

Figure 5.2.6

Classification of Fixed Points

► Recall:

$$\lambda_{1,2} = \frac{1}{2} \left(\tau \pm \sqrt{\tau^2 - 4\Delta} \right), \qquad \Delta = \lambda_1 \lambda_2, \qquad \tau = \lambda_1 + \lambda_2.$$

 \blacktriangleright $\triangle < 0$: both are real, opposite signs. Saddle.

► $\Delta > 0, \tau^2 - 4\Delta > 0$: both are real, same sign. Nodes,

► $\Delta > 0, \tau^2 - 4\Delta < 0$: complex conjugates. Center and Spiral.

▶ $\tau^2 - 4\Delta = 0$, both are equal. Star Nodes. Degenerate Nodes.

2002 000 000 000

Classification of Fixed Points

► Recall:

$$\lambda_{1,2} = \frac{1}{2} \left(\tau \pm \sqrt{\tau^2 - 4\Delta} \right), \qquad \Delta = \lambda_1 \lambda_2, \qquad \tau = \lambda_1 + \lambda_2.$$

△ < 0: real, opposite signs. Saddle.
△ > 0, τ² - 4△ > 0: real, same sign. Nodes. τ < 0, τ > 0.
△ > 0, τ² - 4△ < 0: complex conjugates. Center and Spiral.
τ² - 4△ = 0, both are equal. Star Nodes. Degenerate Nodes.

