- Given a linear system $\dot{\mathbf{x}}=A \mathbf{x}$, the desired straight-line solutions $\left(\mathbf{x}=e^{\lambda t} \mathbf{v}\right)$ exist if \mathbf{v} is an eigenvector of A with eigenvalue $\lambda, A \mathbf{v}=\lambda \mathbf{v}$.
- Recall: eigenvalues of A is given by characteristic equation

$$
\operatorname{det}(A-\lambda I)
$$

which has solutions

$$
\lambda_{1}=\frac{\tau+\sqrt{\tau^{2}-4 \triangle}}{2}, \quad \lambda_{2}=\frac{\tau-\sqrt{\tau^{2}-4 \triangle}}{2}
$$

where $\tau=\operatorname{trace}(A)=a+d$ and $\triangle=\operatorname{det}(A)=a d-b c$.

- If $\lambda_{1} \neq \lambda_{2}$ (typical situation),
eigenvectors its \mathbf{v}_{1} and \mathbf{v}_{2} are linear independent and span the entire plan.
- Can write any initial condition as a linear combination

$$
\mathbf{x}_{0}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}
$$

- General solution is given by

$$
\mathbf{x}(t)=c_{1} e^{\lambda_{1} t} \mathbf{v}_{1}+c_{2} e^{\lambda_{2}} \mathbf{v}_{2}
$$

- Solve IVP $\dot{x}=x+y, \dot{y}=4 x-2 y$ with $\left(x_{0}, y_{0}\right)=(2,-3)$ and draw phase portrait.

- Have opposite signs: Fixed point is a saddle.
- Same sign (negative, positive): nodes (stable, unstable).

Figure 5.2.2

Figure 5.2.3

Eigenvalues are Complex Conjugates

- Eigenvalues are distinct

$$
\lambda_{1,2}=\alpha \pm i \omega ; \quad \alpha=\tau / 2, \quad \omega=\frac{1}{2} \sqrt{4 \triangle-\tau^{2}}
$$

- General solution is

$$
\mathbf{x}(t)=c_{1} e^{\lambda_{1} t} \mathbf{v}_{1}+c_{2} e^{\lambda_{2}} \mathbf{v}_{2}
$$

where c 's and \mathbf{v} 's are complex.

- $\mathbf{x}(t)$ is a combination of $e^{\alpha t} \cos \omega t$ and $e^{\alpha t} \sin \omega t$.
- Decaying oscillations if $\alpha=\operatorname{Re}(\lambda)<0$ (stable spiral)
- Growing oscillations if $\alpha>0$ (unstable spiral)

Figure 5.2.4

- General solution is

$$
\mathbf{x}(t)=c_{1} e^{\lambda_{1} t} \mathbf{v}_{1}+c_{2} e^{\lambda_{2}} \mathbf{v}_{2}
$$

where $\mathbf{x}(t)$ is a combination of $e^{\alpha t} \cos \omega t$ and $e^{\alpha t} \sin \omega t$.

- If eigenvalues are purely imaginary $(\alpha=0)$, all solutions are periodic with $T=2 \pi / \omega$
- Osicllations have fixed amplitude. Fixed point is a center.
- Easy to determine whether it is clockwise or counterclockwise.

(a) center

(b) spiral

Figure 5.2.4

- If 2 eigenvectors, every vector is eigenvector with eigenvalue λ.
- Since multiplication by A stretches every vector by λ,

$$
A=\left(\begin{array}{cc}
\lambda & 0 \\
0 & \lambda
\end{array}\right), \quad \mathbf{x}(t)=e^{\lambda t} \mathbf{x}_{0}
$$

Trajectories are straight lines through $(0,0)$ (star node).

- If $\lambda=0$, a plane of fixed points.

Figure 5.2.5

Figure 5.2.6

- If only 1 eigenvector, fixed point is degenerate node.
- Any matrix of the form

$$
A=\left(\begin{array}{ll}
\lambda & b \\
0 & \lambda
\end{array}\right)
$$

has only a 1D eigenspace.

- As $t \rightarrow+\infty$, and $t \rightarrow-\infty$, all trajectories become parallel to only 1 eigendirection.

Figure 5.2.5

Figure 5.2.6

- Classification of Fixed Points

- Recall:

$$
\lambda_{1,2}=\frac{1}{2}\left(\tau \pm \sqrt{\tau^{2}-4 \triangle}\right), \quad \triangle=\lambda_{1} \lambda_{2}, \quad \tau=\lambda_{1}+\lambda_{2}
$$

- $\triangle<0$: both are real, opposite signs. Saddle.
$\rightarrow \triangle>0, \tau^{2}-4 \triangle>0$: both are real, same sign. Nodes,
$\triangleright \triangle>0, \tau^{2}-4 \triangle<0$: complex conjugates. Center and Spiral.
$\downarrow \tau^{2}-4 \triangle=0$, both are equal. Star Nodes. Degenerate Nodes.

- Classification of Fixed Points

- Recall:

$$
\lambda_{1,2}=\frac{1}{2}\left(\tau \pm \sqrt{\tau^{2}-4 \triangle}\right), \quad \triangle=\lambda_{1} \lambda_{2}, \quad \tau=\lambda_{1}+\lambda_{2}
$$

- $\triangle<0$: real, opposite signs. Saddle.
- $\triangle>0, \tau^{2}-4 \triangle>0$: real, same sign. Nodes. $\tau<0, \tau>0$.
$\triangleright \triangle>0, \tau^{2}-4 \triangle<0$: complex conjugates. Center and Spiral.
$\triangleright \tau^{2}-4 \triangle=0$, both are equal. Star Nodes. Degenerate Nodes.

