- Simplest class of high-dimensional systems. Important for classification of fixed points of nonlinear systems.
- Two-dimensional linear system:

$$
\begin{aligned}
& \dot{x}=a x+b y \\
& \dot{y}=c x+d y
\end{aligned}
$$

- Written compactly in matrix form

$$
\dot{\mathbf{x}}=A \mathbf{x} ; \quad A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right), \quad \mathbf{x}=\binom{x}{y}
$$

- Linear: if $\mathbf{x}_{1}, \mathbf{x}_{2}$ are solutions, so is $c_{1} \mathbf{x}_{1}+c_{2} \mathbf{x}_{2}$.
- $\mathrm{x}^{*}=0$ is always a fixed point for any A.
- Solutions of $\dot{\mathbf{x}}=A \mathbf{x}$ can be visualized as trajectories moving on (x, y) plane, called phase plane.
- Phase plan analysis of Simple harmonic oscillator

$$
m \ddot{x}+k x=0 .
$$

- Rewritten as

$$
\begin{aligned}
\dot{x} & =v \\
\dot{v} & =-\frac{k}{m} x=-\omega^{2} x
\end{aligned}
$$

- Vector Field: assign a vector $(\dot{x}, \dot{v})=\left(v,-\omega^{2} x\right)$ at (x, v).

- Fixed point $(0,0)$: mass at rest at its equilibrium position.
- Closed orbit: periodic motion, oscillation of mass.
- (a): x most negative, $v=0$; SP most compressed.
- (a) to (b): x increases, $v>0 ; \mathrm{M}$ pushed back to equil.
-(b): M at $x=0$, has largest $v>0$, overshoots
- (b) to (c) M eventually comes to rest at end of SP.
- (c) to (a): M gets pulled up, eventually completes cycle.

- Cosider

$$
\binom{\dot{x}}{\dot{y}}=\left(\begin{array}{cc}
a & 0 \\
0 & -1
\end{array}\right)\binom{x}{y} .
$$

- Solution: $x(t)=x_{0} e^{a t}$ and $y(t)=y_{0} e^{-t}$.
- (a) $a<-1: x(t)$ decays faster than $y(t) ; x^{*}$ is stable node.
- (b) $a=-1$: symmetrical node.
- (c) $-1<a<0 ; x(t)$ decays slower than $y(t)$; stable node.
- (d) $a=0: x(t)=x_{0}$; an line of fixed points.
- (e): $a>0: x(t)$ grows exponentially; x^{*} is saddle point. x-axis, unstable manifold; y-axis, stable manifold of x^{*}

(a) $a<-1$

(b) $a=-1$

(c) - - $<a<0$

(d) $a=0$

(e) $a>0$

