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Lecture 4 
 
 
6. Invariance – like Theorems 
 
Reading material: 
[1]: Section 4.5 
[2]: Section 8.3 
 
 
For autonomous systems, LaSalle’s invariance set theorems allow asymptotic stability 
conclusions to be drawn even when V  is only negative semi-definite in a domain � Ω . In 
that case, the system trajectory approaches the largest invariant set E , which is a subset 
of all points  where x∈Ω ( ) 0V x =� . However the invariant set theorems are not 
applicable to nonautonomous systems. In the case of the latter, it may not even be clear 
how to define a set E , since V  may explicitly depend on both  and . Even when t x

( )V V x=  does not explicitly depend on t  the nonautonomous nature of the system 
dynamics precludes the use of the LaSalle’s invariant set theorems. 
 
Example 6.1 
The closed-loop error dynamics of an adaptive control system for 1st order plant with one 
unknown parameter is 
 

 
( )

( )
e e w t

e w t

θ

θ

= − +

= −

�
�   

 
where  represents the tracking error and e ( )w t  is a bounded function of time t . Due to 

the presence of ( )w t , the system dynamics is nonautonomous. Consider the Lyapunov 
function candidate 
 
 ( ) 2 2,V e eθ θ= +  
 
Its time derivative along the system trajectories is 
 
 ( ) ( )( ) ( )( ) 2, 2 2 2 2 2V e ee e e w t e w t eθ θθ θ θ= + = − + + − = − ≤�� � 0  
 



This implies that V  is a decreasing function of time, and therefore, both  and ( )e t ( )tθ  
are bounded signals of time. But due to the nonautonomous nature of the system 
dynamics, the LaSalle’s invariance set theorems cannot be used to conclude the 
convergence of  to the origin. ( )e t
 
In general, if  then we may expect that the trajectory of the system 

approaches the set 
( ) ( ),V t x W x≤ − ≤� 0

( ){ }0W x = , as t . Before we formulate main results, we state a 
lemma that is interesting in its own sake. The lemma is an important result about 
asymptotic properties of functions and their derivatives and it is known as the Barbalat’s 
lemma. 

→∞

 
Definition 6.1 (uniform continuity) 
A function ( ) :f t R R→  is said to be uniformly continuous if 
 
 ( ) ( ) ( )2 1 2 10 0 t t f t f tε δ δ ε δ ε∀ > ∃ = > ∀ − ≤ ⇒ − ≤  
 
Note that  and  play a symmetric role in the definition of the uniform continuity. 1t 2t
 
Lemma 6.1 (Barbalat) 
Let ( ) :f t R R→  be differentiable and has a finite limit as t . If →∞ ( )f t�  is uniformly 

continuous then ( ) 0f t →�  as t , (see proof in [2], p. 323). →∞
 
Lemma 6.2 
If ( )f t�  is bounded then ( )f t  is uniformly continuous. 
 
An immediate and practical corollary of Barbalat’s lemma can now be stated. 
 
Corollary 6.1 
If ( ) :f t R R→  is twice differentiable, has a finite limit, and its 2nd derivative is bounded 

then ( ) 0f t →�  as t . →∞
 
In general, the fact that derivative tends to zero does not imply that the function has a 
limit. Also, the converse is not true. In other words: 
 
 ( ) ( ) 0f t C f t→ ⇔ →�  
 
Example 6.2 

• As t , →∞ ( ) ( )sin lnf t = t  does not have a limit, while ( ) ( )cos ln
0

t
f t

t
= →� . 
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• As t , →∞ ( ) ( )2sin 0t tf t e e−= → , while ( ) ( ) ( )2 2sin sint t t tf t e e e e−= − +� →∞ . 
 
Example 6.3 
Consider an LTI system 
 
 x A x B u= +�  
 
with a Hurwitz matrix A  and a uniformly bounded in time input ( )u t . These two facts 

imply that the state ( )x t  is bounded. Thus, the state derivative ( )x t�  is bounded. Let 
y C x=  represent the system output. Then y C x=� �  is bounded and, consequently the 
system output  is a ( )y t uniformly continuous function of time. Moreover, if the input 

( ) 0u t u=  is constant then the output ( )y t  tends to a limit, as t . The latter combined 
with the fact that 

→∞
y  is uniformly continuous implies, (by Barbalat’s Lemma), that the 

output time derivative y�  asymptotically approaches zero. 
 
To apply Barbalat’s lemma to the analysis of nonautonomous dynamic systems we state 
the following immediate corollary. 
 
Corollary 6.2 (Lyapunov-like Lemma) 
If a scalar function  is such that ( ,V V t x= )

)
)

•  is lower bounded ( ,V t x

•  is negative semi-definite along the trajectories of ( ,V t x� ( ),x f t x=�  

•  is uniformly continuous in time ( ,V t x� )
then , as . ( ), 0V t x →� t →∞
 
Notice that the first two assumptions imply that ( ),V t x  tends to a limit. The latter 
coupled with the 3rd assumption proves (using Barbalat’s lemma) the corollary. 
 
Example 6.4 
Consider again the closed-loop error dynamics of an adaptive control system from 
Example 6.1. Choosing ( ) 2,V e e 2θ θ= + , it was shown that along the system trajectories: 

. The 2( ) 2, 2V e eθ = − ≤� 0 nd time derivative of V  is 
 
 ( ) ( )( ), 4 4V e ee e e w tθ θ= − = − − +�� �  
 
Since ( )w t  is bounded by hypothesis, and ( )e t and ( )tθ  were shown to be bounded, it is 

clear that V  is bounded.. Hence, V  is uniformly continuous and by the Barbalat’s lemma �� �
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(or the Lyapunov-like lemma),  which in turn indicates that the tracking error 0V →� ( )e t  
tends to zero, as t . →∞
 
 
7. Basic Concepts and Introduction to Adaptive Control 
 
Reading material: 
[1]: Chapter 8, Section 8.1 
[2]: Section 1.2.6 
[2]: Section 4.2, Example 4.10 
[2]: Section 12.1 
 
 
 
Introduction 
 
Since the 1950’s adaptive control has firmly remained in the mainstream of controls and 
dynamics research, and it has grown to become a well-formed scientific discipline. One 
of the reasons for the continuing popularity and rapid growth of adaptative control is its 
clearly defined goal – to control dynamical systems with unknown parameters. 
 
Research in adaptive control started in connection with the design of autopilots for high-
performance aircraft. But interest in the subject has soon diminished due to the lack of 
insights and the crash of a test flight, (NASA X-15 program). The last decade has 
witnessed the development of a coherent theory for adaptive control, which has lead to 
many practical applications in the areas such as aerospace, robotics, chemical process 
control, ship steering, bioengineering, and many others. 
 
The basic idea in adaptive control is to estimate the uncertain plant and / or controller 
parameters on-line based on the measured system signals and use the estimated 
parameters in control input computation. An adaptive controller can thus be regarded as 
an inherently nonlinear dynamic system with on-line parameter estimation. 
 
Generally speaking, the basic objective of adaptive control is to maintain consistent 
performance of a system in the presence of uncertainty or unknown variation in plant 
parameters. 
 
There are two main approaches for constructing adaptive controllers: 

• Model reference adaptive control (MRAC) method 
• Self-tuning control (STC) method 

 
Schematic representation of an MRAC system is given in Figure 7.1.  
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Figure 7.1: Model Reference Adaptive Control System 
 
The MRAC system is composed of four parts: 

• Plant of a known structure but with unknown parameters 
• Reference model for specification of the desired system output 
• Feedback / feedforward control law with adjustable gains, (controller) 
• Parameter / gain adaptation law 

 
Schematic representation of an STC system is given in Figure 7.2. 
 

 
 

Figure 7.2: Self-Tuning Control System 
 
The STC system combines a controller with an on-line (recursive) plant parameter 
estimator. A reference model can be added to the architecture. Basically, STC system 
performs simultaneous parameter identification and control. The controller parameters 
are computed from the estimates of the unknown plant parameters, as they were the true 
ones. This idea is often referred to as the Certainty Equivalence Principle. By coupling 
different control and estimation schemes, one can obtain a variety of self-tuning 
regulators. 
 
When the true plane parameters are unknown, the controller parameters are either 
estimated directly (direct schemes) or computed by solving the same design equations 
using plant parameter estimates (indirect schemes). MRAC and STC systems can be 
designed using both direct and indirect approaches. 
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Our focus will be on the design, analysis and evaluation of the direct MRAC systems for 
continuous plants with uncertain dynamics. 
 
 
Tracking Control Problem 
 
In particular, we consider tracking problems for continuous plants operating in the 
presence of modeling uncertainties, environmental disturbances, and control failures. 
State feedback / feedforward tracking control will be designed for uncertain dynamical 
systems in the form 
 

 
( )
( )

, , ,

,

x f t x u

y h x

= Θ

= Θ

�
 (7.1) 

 
where x  is the state, u  is the control, Θ  is a vector of unknown constant parameters,  
is the controlled output. It is assumed that the system state vector 

y
x  is available 

(measured on-line). 
 
The tracking problem is to design the control input  so that the controlled output u ( )y t  

tracks a given reference signal ( )r t  in the presence of the system uncertainties, that is the 
output tracking error
 
 ( ) ( ) ( )ye t y t r t= −  (7.2) 
 
becomes sufficiently small, as . Moreover, it is required that during tracking, all 
the signals in the corresponding closed-loop system remain bounded. 

t →∞

 
If  then we say that an ( ) 0ye t → asymptotic output tracking is achieved. In general, it 
might not be feasible to achieve asymptotic tracking. In that case, the goal will be to 
achieve ultimate boundedness of the tracking error within a prescribed tolerance, that is 
 
 ( ) ,ye t t Tε≤ ∀ ≥  (7.3) 
 
where ε  is the prescribed small positive number. 
 
 

MRAC Design of 1st Order Systems 
 
Suppose that a plant contains unknown constant parameters, without any information 
about their bounds. The plant dynamics is 
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 ( )( )x a x b u f x= + +�  (7.4) 
 
where x  is the state, u  is the control input,  and b  are a unknown constants. It is 
assumed that the sign of b  is known, while the unknown and possibly nonlinear function 
( )f x  is linearly parameterized in terms of  N unknown constant parameters iθ  and 

known bounded basis functions iϕ . 
 

 ( ) ( ) ( )
1

N
T

i i
i

f x xθ ϕ θ
=

= =∑ xΦ

)

 (7.5) 

 
In (7.5), ( ) ( ) ( )( T N

i ix x xϕ ϕΦ = ∈… R  denotes the known regressor vector. It is 

assumed that the regressor components ( )i xϕ  are piece-wise continuous functions of the 
system state x . 
 
A reference model is described by the 1st order differential equation 
 
 ( )m m m mx a x b r t= +�  (7.6) 
 
where  and  are the desired constants and 0ma < mb ( )r t  is the reference input. 
 
The task is to design a control law ( )u t  such that all the signals in the system remain 

bounded, while the tracking error ( ) ( ) ( )me t x t x t= −  tends to zero asymptotically, as 

. Notice, that the tracking task must be accomplished in the presence of ( )t →∞ 2N +  

unknown constant parameters: { }1, , , , Na b θ θ… . 
 
First, we define an ideal control solution, as if the unknown parameters were known. The 
ideal control is formed using feedback / feedforward architecture 
 
 ( )T

ideal x ru k x k r θ= + − Φ x  (7.7) 
 
Substituting (7.7) into (7.4), the closed-loop dynamics can be written. 
 
 ( ) ( )x rx a b k x b k r t= + +�  (7.8) 
 
Comparing (7.8) with the desired reference model dynamics (7.6), it immediately follows 
that ideal gains  and  must satisfy the following xk rk matching conditions
 

 x

r m

a b k a
b k b

m+ =
=

 (7.9) 
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Since in (7.9) there are 2 equations and two unknowns, it becomes clear that the ideal 
solution (which is not known !) always exists. 
 
Based on (7.7), tracking control solution is formed. 
 
 ( )ˆ ˆ ˆT

x ru k x k r xθ= + − Φ  (7.10) 
 
where the feedback gain , the feedforward gain , and the estimated vector of 

parameters 

ˆ
xk r̂k

θ̂  will be found to achieve the desired tracking. 
 
Towards this end, substitute (7.10) into the system dynamics (7.4). Then the closed-loop 
system becomes 
 

 ( ) ( ) ( )ˆ ˆ ˆ T

x rx a b k x b k r xθ θ⎛= + + − − Φ⎜
⎝ ⎠

� ⎞⎟  (7.11) 

 
Using matching conditions (7.9) yields 
 

 N ( ) ( ) ( ) ( )ˆ ˆ ˆ
m

T

m r x x r r
b

x a x b k r b k k x b k k r b xθ θ= + + − + − − − Φ�  (7.12) 

 
Define the parameter estimation errors to be 
 

 

ˆ

ˆ

ˆ

x x

r r

k k k

k k k
x

r

θ θ θ

∆ = −

∆ = −

∆ = −

 (7.13) 

 
Then the closed-loop dynamics of the tracking error signal ( ) ( ) (me t x t x t= − )  can be 
obtained by subtracting (7.6) from (7.12). 
 
 ( ) ( ) ( ) ( )( )T

m m x re t x t x t a e b k x k r xθ= − = + ∆ + ∆ −∆ Φ� � �  (7.14) 
 
Consider the Lyapunov function (candidate). 
 
 ( ) ( )2 1 2 1 2 1, , , T

x r x x r rV e k k e b k k θθ γ γ θ− − − θ∆ ∆ ∆ = + ∆ + ∆ + ∆ Γ ∆  (7.15) 
 
where 0xγ > , 0rγ > , and  are the so-called 0T

θ θΓ = Γ > rates of adaptation. 
Taking the time derivative of V  along the trajectories of (7.14), one gets 
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( ) ( )
( )( )( ) ( )

( )( )
( )( ) ( ) ( )( )

1 1 1

1 1

2 1

1 1

ˆ ˆ ˆ, , , 2 2

ˆ ˆ ˆ2 2

ˆ2 2 sgn

ˆ ˆ2 sgn 2 sgn

T
x r x x x r r r

T T
m x r x x x r r r

m x x x

T
r r r

V e k k ee b k k k k

e a e b k x k r x b k k k k

a e b k x e b k

b k r e b k b x e b

θ

θ

θ

θ γ γ θ θ

1θ γ γ θ

γ

γ θ θ

− − −

− −

−

− −

∆ ∆ ∆ = + ∆ + ∆ + ∆ Γ

= + ∆ + ∆ −∆ Φ + ∆ + ∆ + ∆ Γ

⎛ ⎞= + ∆ +⎜ ⎟
⎝ ⎠

⎛ ⎞+ ∆ + + ∆ −Φ +Γ⎜ ⎟
⎝ ⎠

� � �� �

� � �

�

� �

θ−

 (7.16) 

 
Using (7.16), the adaptive laws are chosen to enforce closed-loop stability. 
 

 

( )

( )

( ) ( )

ˆ sgn

ˆ sgn

ˆ sgn

x x

r r

k x e b

k r e b

x e bθ

γ

γ

θ

= −

= −

= Γ Φ

�

�

�
 (7.17) 

 
In fact, due to (7.17) the time derivative becomes negative semi-definite, that is 
 
 ( ) N ( )2

0

, , , 2x r mV e k k a e tθ
<

0∆ ∆ ∆ = ≤�  (7.18) 

 
which immediately implies that the signals , , ,x re k k θ∆ ∆ ∆  are uniformly bounded. The 
latter coupled with the fact that ( )mx t , ( )r t  are bounded and θ  is a constant vector, 

implies that the system state ( )x t  and the estimated vector of parameters  are 

uniformly bounded. It was assumed that the vector of the components 
( )ˆ tθ

( )i xϕ  of the 

regressor vector ( )xΦ  were piece-wise continuous functions of x . Therefore, they are 

uniformly bounded. Hence, the control ( )u t  in (7.10) is uniformly bounded. 

Consequently, both ( )x t�  and ( )mx t�  are uniformly bounded. 
 
Differentiating (7.18) yields 
 
 ( ) ( ) ( ), , , 4x r mV e k k a e t e tθ∆ ∆ ∆ =�� �  (7.19) 
 
Therefore V  is bounded and, consequently, V  is uniformly continuous function of time. 
Since  is lower bounded, V  is negative semi-definite and uniformly continuous, then 
all the three conditions of the Lyapunov-like lemma (Corollary 6.2) are satisfied, and 
therefore 

�� �
V �

 
 ( )lim 0

t
V t

→∞
=�  (7.20) 
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Due to (7.18), we can finally conclude that the tracking error goes to zero asymptotically, 
as . Moreover, since the Lyapunov function is radially unbounded, the control 
solution is global, that is the closed-loop 

t →∞
tracking error dynamics is globally 

asymptotically stable. The tracking problem is solved. 
 
Theorem 7.1 
For the uncertain dynamical system in (7.4) with the controller in (7.10) and the adaptive 
laws in (7.17), the closed-loop state ( )x t  asymptotically tracks the state ( )mx t  of the 
reference model in (7.6), while all the signals in the closed-loop system remain bounded. 
Moreover, the closed-loop tracking error dynamics in (7.14) is globally asymptotically 
stable. 
 
 
 

Lecture 5 
 
 
8. Dynamic Inversion based MRAC Design for 1st Order Systems 
 
Using similar design approach a dynamic inversion (DI) based adaptive control laws can 
be derived. Consider the uncertain dynamical system 
 
 ( )x a x bu f x= + +�  (8.1) 
 
Let the constants  and b  be unknown. Assume that , where  is the known 
lower bound of . Also assume that the unknown possible nonlinear function 

a 0 0b b≥ > 0b
b ( )f x  is 

linearly parameterized in terms of the unknown constants iθ  and known bounded basis 
functions ( )i xϕ , that is: 
 

 ( ) ( ) ( )
1

N
T

i i
i

f x xθ ϕ θ
=

= =∑ xΦ  (8.2) 

 
Let the reference model dynamics be specified as: 
 

 
( )

( )0,
m m m m

m

x a x b r t

a r t

= +

< < ∞

�
 (8.3) 

 
Rewrite the system dynamics in the form: 
 
 ( ) ( ) ( ) ( ) ( )( )

( )

ˆ ˆ ˆ ˆˆ ˆ
a b f x

x a x bu f x a a x b b u f x f x
∆ ∆ ∆

= + + − − − − − −�
�	
 �	
 ���	��


 (8.4) 
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where , , and â b̂ ( ) ( )ˆ Tf x θ= Φ x  represent the on-line estimated quantities, while a∆ , 

, and b∆ ( )f x∆  are the corresponding approximation errors. Using 
 

 ( ) ( ) ( )
1

ˆ ˆ ˆ
N

T
i i

i
f x xθ ϕ θ

=

= =∑ xΦ  (8.5) 

 
the function approximation error can be written as: 
 

 ( ) ( ) ( ) ( ) ( ) ( )
1

ˆ ˆ ˆ

i

N
T

i i i
i

f x f x f x x x
θ

θ θ ϕ θ
=

∆

∆ = − = − = ∆ Φ∑��	�

 (8.6) 

 
Consider the following dynamic inversion based adaptive controller
 

 ( ) ( )( )1 ˆˆˆ
T

m mu a a x b r x
b

θ= − + − Φ  (8.7) 

 
Substituting (8.7) into the 2nd term of (8.4), yields 
 
 ( )T

m mx a x b r a x bu xθ= + −∆ −∆ −∆ Φ�  (8.8) 
 
Let  be the tracking error signal. Its dynamics can be obtained by subtracting 
(8.3) from (8.8). 

me x x= −

 
 ( )T

me a e a x bu xθ= −∆ −∆ −∆ Φ�  (8.9) 
 
Consider the following Lyapunov function candidate: 
 
 ( ) 2 1 2 1 2 1, , , T

a bV e a b e a b θθ γ γ θ− − −∆ ∆ ∆ = + ∆ + ∆ + ∆ Γ ∆θ  (8.10) 
 
where 0aγ > , 0bγ > ,  will eventually become the adaptation rates. The 
timed derivative of V  along the trajectories of the error dynamics (8.9) can be computed: 

0T
θ θΓ = Γ >

 

 

( ) ( )
( )( ) ( )

( ) ( ) ( )( )

1 1 1

1 1

2 1 1 1

ˆ ˆˆ, , , 2 2

ˆ ˆˆ2 2

ˆ ˆˆ2

T
a b

T T
m a b

T
m a b

V e a b ee a a bb

e a e a x bu x a a bb

a e a a x e b b u e x e

θ

θ

θ

θ γ γ θ θ

1θ γ γ θ

γ γ θ θ

− − −

− − −

− − −

∆ ∆ ∆ = + ∆ + ∆ + ∆ Γ

= −∆ −∆ −∆ Φ + ∆ + ∆ + ∆ Γ

= + ∆ − + ∆ − + ∆ Γ −Φ

� ��� �

� ��

� ��

θ  (8.11) 

 
Based on (8.11) and in order to make 0V ≤� , the adaptive laws are chosen as: 
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( )

ˆ

ˆ

ˆ

a

b

a x e

b u e

x eθ

γ

γ

θ

=

=

= Γ Φ

�

�

�
 (8.12) 

 
In fact, this leads to 
 
 ( ) 2, , , 2 mV e a b a eθ 0∆ ∆ ∆ = ≤�  (8.13) 
 
Therefore, the signals , , ,e a b θ∆ ∆ ∆  are bounded. Since ( )r t  is bounded, then the 

reference model state mx  is bounded. Hence, ˆ ˆˆ, , ,x a b θ  are bounded. 
 
Due to the division by  in (8.7) and in order to keep the control signal u  bounded, we 
need to modify adaptive laws (8.12). Consider the following modification of the 2

b̂
nd 

equation in (8.12): 
 

 
( )

( )
0 0

0

ˆ ˆ, if 0ˆ
ˆ0, if 0

b u e b b b b u e
b

b b u e

γ⎧ ⎡ ⎤≥ ∨ = ∧ >⎪ ⎣ ⎦= ⎨
⎪ = ∧ <⎩

�  (8.14) 

 
Basically, the intent is to stop the adaptation if the  reaches its lower limit  and its 
time derivative is negative. One needs to verify that this modification does not adversely 
effects the closed-loop stability. Formally, we need to show that 

b̂ 0b

 

 ( )1 ˆ 0bb b u eγ −∆ − ≤�  (8.15) 

 
When , the adaptive law (8.14) is the same as the corresponding law in (8.12) and, 

therefore . Suppose that there exists T  such that 
0b̂ b≥

22 mV a e≤� 0≤ ( ) 0b̂ T b= . Since  

then . If 
0b b≥

( ) ( ) 0
ˆ 0b T b T b b b∆ = − = − ≤ ( ) ( ) 0u T  then again e T ≥ 022 mV a e= ≤� , while 

 implying that ( )ˆ 0bb T u eγ= ≥� ( )b̂ t  increases locally for t . On other hand, if 

 then according to (8.14), 

T≥

( ) ( ) 0u T e T < ( ) NN
1

0 0

ˆ 0bb b u e bu eγ −

≤ ≤

∆ − = −∆ ≤� . As a result, 

. Thus, modification (8.14) always contributes to making the time 
derivative of V  to be negative-semidefinite. 

22 mV a e≤� 0≤

 
The adaptive laws can now be written explicitly. 
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( )

( ) ( )( )
( )

( )( )

0 0

0

ˆ

ˆ ˆ, if 0ˆ
ˆ0, if 0

ˆ

a m

b m m

m

a x x x

u x x b b b b u x x
b

b b u e

x x xθ

γ

γ

θ

⎡ = −⎢
⎢ ⎧ ⎡ ⎤− ≥ ∨ = ∧ −⎪⎢ >⎣ ⎦= ⎨⎢ ⎪ = ∧ <⎢ ⎩
⎢

= Γ Φ −⎢⎣

�

�

�

 (8.16) 

 
Next, a formal proof is given to show that the DI based adaptive control in (8.7) provides 
asymptotic tracking of the reference model state. 
 
Since  then 0V ≤� , , ,e a b θ∆ ∆ ∆  are bounded. The latter implies that ˆ ˆˆ, , ,x a b θ  are 
bounded. Due to modification (8.14),  and consequently u  is bounded. This in turn 
implies that 

0b̂ b≥
x�  is bounded. Moreover, since  is bounded, then r mx�  is bounded and 

therefore e  is bounded. Because of (8.14) �
 
 ( ) 2, , , 2 mV e a b a eθ 0∆ ∆ ∆ ≤ − ≤�  (8.17) 
 
for all . Since V  is bounded from below by zero and its derivative is semi-negative, 

 converges to a limit, as a function  of time. Integrating both sides of (8.17) yields: 
0t ≥

V
 

 ( ) ( ) ( )2

0

0 2
t

mV t V a e dτ τ 0− ≤ − ≤∫  (8.18) 

 
or, equivalently: 
 

 ( ) ( ) ( )(2

0

1 0
2

t

m

e d V V t
a

τ τ )≤ − <∫ ∞  (8.19) 

 

Let ( ) ( )2

0

t

W t e dτ τ= ∫ . From (8.19) it follows that ( )W t  tends to a finite limit, as . 

At the same time its time derivative is 

t →∞

( ) ( )2W t e t=� . Since ( ) ( )2W t ee t= <�� � ∞  then 

 is uniformly continuous. Using Barbalat’s Lemma, implies that  ( )W t� ( )lim 0
t

W t
→∞

=� . 

Thus,  and the tracking problem is solved. ( )2lim 0
t

e t
→∞

=

 
Remark 8.1 
Modification (8.14) is a special case of the well-known Projection Operator. Since the 
right hand side of (8.14) is not Lipschitz the closed-loop system does not satisfy the 
sufficient conditions to have a unique trajectory, given an initial state. Corresponding 
solutions can be defined similar to the case of variable structure systems such as systems 
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with sliding modes. Nevertheless, a continuous version of the Projection Operator exists 
and will be covered later in the course. 
 
 
 

Lecture 6 
 
 
 
9. MRAC Design for Affine-in-Control MIMO Systems 
 
Reading material: 
[1]: Chapter 8, Section 8.3 
[1]: Chapter 8, Section 8.5 
 
 
In this section, we consider MRAC design for a class of multi-input-multi-output 
(MIMO) nonlinear systems whose plant dynamics is linearly parameterized, the 
uncertainties satisfy the so-called matching conditions, and if the full state is measurable, 
(i.e., available on-line as the system output). More specifically, consider the nth order 
MIMO system in the form: 
 
 ( )( )x A x B u f x= + Λ +�  (9.1) 
 
where nx R∈  is the system state,  is the control input, mu R∈ n mB R ×∈  is known matrix, 

 and n nA R ×∈ m mR ×Λ∈  are unknown matrices. In addition, it is assumed that Λ  is 
diagonal, its elements iλ  are non-negative, and the pair ( ),A BΛ  is controllable. The 
uncertainty in is introduced to model a control failure phenomenon. Λ
 
Moreover, the unknown possibly nonlinear function ( ) : n mf x R R→  represents the so-
called system matched uncertainty. It is assumed that the function can be written as a 
linear combination of  known N bounded basis functions with unknown constant 
coefficients. 
 
 ( ) ( )Tf x = Θ Φ x  (9.2) 
 
In (9.2),  is the unknown constant matrix, while N mR ×Θ∈ ( ) Nx RΦ ∈  represents the 
known regressor vector. 
 
The control objective of the MIMO tracking problem is to choose the input vector u  such 
that all signals in the closed-loop system are bounded and the state x  follows the state 

n
refx R∈  of a reference model specified by the LTI system 
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 ( )ref ref ref refx A x B r t= +�  (9.3) 
 
where n n

refA R ×∈  is Hurwitz, n m
refB R ×∈ , and ( ) mr t R∈  is a bounded reference input 

vector. Note that the reference model and its external input ( )r t  must be chosen so that 

( )refx t  represents a desired trajectory that ( )x t  has to follow. In other words, the control 
input  needs to be chosen such that the tracking error vector asymptotically tends to 
zero. 

u

 
 ( ) ( )lim 0mt

x t x t
→∞

− =  (9.4) 

 
If the matrices  and  were known, one could apply the control law A Λ
 
 ( )T T T

x ru K x K r x= + −Θ Φ  (9.5) 
 
and obtain the closed-loop system 
 
 ( )T

x
T
rx A B K x B K r= + Λ + Λ�  (9.6) 

 
Comparing (9.6) with the desired dynamics in (9.3), it follows that the ideal (unknown) 
matrix gains must be chosen to satisfy the so-called matching conditions: 
 

  (9.7) 
T
x r

T
r ref

A B K A

B K B

⎡ + Λ =
⎢

Λ =⎢⎣

ef

 
Assuming that the matching conditions take place, it is easy to see that the closed-loop 
system is the same as that of the reference model, and consequently, asymptotic 
(exponential) tracking is achieved for any bounded reference input signal . ( )r t
 
Remark 9.1 
Given the matrices , , , ,ref refA B A BΛ , no  may exist to satisfy the matching 
conditions (9.7) indicating that the control law (9.5) may not have enough structural 
flexibility to meet the control objective. Often in practice, the structure of  is known, 
and the reference model matrices  are chosen so that (9.7) has a solution for 

. 

,xK Kr

r

A
,ref refA B

,x rK K
 
Assuming that  in (9.7) exist, consider the following control law: ,xK K
 
 ( )ˆ ˆ ˆT T T

x ru K x K r x= + −Θ Φ  (9.8) 
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where  are the estimates of the ideal unknown matrices 
, respectively. The estimated matrices will be generated on-line and by an 

appropriate adaptive law. 

ˆ ˆ ˆ, ,n m m m N n
x rK R K R R× ×∈ ∈ Θ∈ ×

, ,x rK K Θ

 
Substituting (9.8) into (9.1), the closed-loop system dynamics can be written. 
 

 ( ) ( ) ( )( )ˆ ˆ ˆ TT T
x rx A B K x B K r x= + Λ + Λ − Θ−Θ Φ�  (9.9) 

 
Subtracting (9.3) from (9.9), closed-loop dynamics of the n  – dimensional tracking error 
vector  can be obtained. ( ) ( ) ( )refe t x t x t= −
 

 ( ) ( ) ( )( )ˆ ˆ ˆ TT T
x r ref refe A B K x B K r x A x B= + Λ + Λ − Θ−Θ Φ − −� ref r  (9.10) 

 
Using matching conditions (9.7) further yields: 
 

 
( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

ˆ ˆ ˆ

ˆ ˆ ˆ

T

ref x x ref ref r r

T T T

ref x x r r

e A B K K x A x B K K r B x

A e B K K x K K r x

= + Λ − − + Λ − − Λ Θ−Θ Φ

⎡ ⎤= + Λ − + − − Θ−Θ Φ⎢ ⎥⎣ ⎦

�
 (9.11) 

 
Let , , and ˆ

x x xK K K∆ = − ˆ
r r rK K K∆ = − ˆ∆Θ = Θ−Θ  represent the parameter estimation 

errors. In terms of the latter, the tracking error dynamics becomes: 
 
 ( )T T T

ref x re A e B K x K r x⎡ ⎤= + Λ ∆ + ∆ −∆Θ Φ⎣ ⎦�  (9.12) 
 
Vector and matrix norms 
Before proceeding any further, recall that given a matrix , the n m

i jA a R ×⎡ ⎤= ∈⎣ ⎦ Frobenius 
norm is defined by 
 
 ( ) 2

,

tr T
i jF

i j

A A A= = a∑  (9.13) 

 
with  the trace operator. On the other hand, given any vector p-norm, the ( )tr induced 
matrix norm is defined by 
 

 
0

sup p
p

x p

A x
A

x≠
=  (9.14) 

 
Collection of Facts about vector and matrix norms, (prove it). 
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• For vector 1-norm 
1

1

n

i
i

x x
=

=∑ , the induced matrix norm is equal to the maximum 

absolute column sum, that is: 
1 1 1

max
n

i jj m i

A a
≤ ≤

=

= ∑ . 

• For vector 2-norm 2
2

1

n

i
i

x x
=

=∑ , the induced matrix norm is equal to the maximum 

singular value of , that is: A ( )max2
A Aσ= . 

• For vector -norm ∞
1
max ii n

x x
∞ ≤ ≤
= , the induced matrix norm is equal to the maximum 

absolute row sum, that is: 
1 1
max

m

i ji n j
A a

∞ ≤ ≤
=

= ∑ . 

• The induced matrix norm satisfies: 
p p

A x A x≤
p

, and for any two compatibly 

dimensioned matrices,  and A B , one also has: 
p p

A B A B≤
p

. 

• The Frobenius norm is not an induced norm of any vector norm, but it is compatible 
with the 2-norm in the sense that: 

2 2F
A x A x≤ . 

• For any two compatibly dimensioned matrices  and A B , the Frobenius inner 
product is defined as: , T

F
A B A= B . 

• According to the Schwartz inequality one has: , T
F FF F

A B A B A B= ≤
F

. 

• For any two co–dimensional vectors  and b , the a trace identity takes place: 
. ( )trT Ta b b a=

 
Let . Going back to analyzing the tracking error 
dynamics in (9.12), consider the Lyapunov function candidate: 

0, 0, 0T T
x x r r Θ ΘΓ = Γ > Γ = Γ > Γ = Γ >T

 
 ( ) ( )1 1 1, , , trT T T T

x r x x x r r rV e K K e P e K K K K− − −
Θ⎡ ⎤∆ ∆ ∆Θ = + ∆ Γ ∆ + ∆ Γ ∆ + ∆Θ Γ ∆Θ Λ⎣ ⎦  (9.15) 

 
where  satisfies the 0TP P= > algebraic Lyapunov equation
 
 T

ref refP A A P Q+ = −  (9.16) 
 
for some . Then the time derivative of V , evaluated along the trajectories of 
(9.12), can be calculated. 

0TQ Q= >
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( )( )( )
( )( )( )

( )

1 1 1

1 1 1

ˆ ˆ2 tr

ˆ ˆ ˆ2 tr

2

T T T T T
x x x r r r

TT T T
ref x r

T T T T
ref x r

T T T
x x x r r r

T T
ref ref

V e P e e P e K K K K

A e B K x K r x P e

e P A e B K x K r x

K K K K

e A P P A e e P B

− − −
Θ

− − −
Θ

⎛ ⎞ˆ⎡ ⎤= + + ∆ Γ + ∆ Γ + ∆Θ Γ Θ Λ⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

= + Λ ∆ + ∆ −∆Θ Φ

+ + Λ ∆ + ∆ −∆Θ Φ

⎛ ⎞⎡ ⎤+ ∆ Γ + ∆ Γ + ∆Θ Γ Θ Λ⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

= + + Λ

� �� � �

� � �

( )( )
1 1 1ˆ ˆ ˆ2 tr

T T T
x r

T T T
x x x r r r

K x K r x

K K K K− − −
Θ

∆ + ∆ −∆Θ Φ

⎛ ⎞⎡ ⎤+ ∆ Γ + ∆ Γ + ∆Θ Γ Θ Λ⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠
� � �

�

 (9.17) 

 
Using (9.16), yields: 
 

 

( )
( )

( ) ( )

1

1

1

ˆ2 2 tr

ˆ2 2 tr

ˆ2 2 tr

T T T T
x x x

T T T
r r r r

T T T

V e Q e e P B K x K K

e P B K r K K

e P B x

−

−

−
Θ

⎡ ⎤= − + Λ∆ + ∆ Γ Λ⎢ ⎥⎣ ⎦
⎡+ Λ∆ + ∆ Γ Λ⎢⎣
⎡ ⎤+ − Λ∆Θ Φ + ∆Θ Γ ΘΛ⎢ ⎥⎣ ⎦

��

�

�

x

⎤
⎥⎦

⎞⎤ ⎟⎥⎦ ⎠

 (9.18) 

 
Using the trace identity, one gets 
 

  (9.19) 

( ) ( )

tr

tr

tr

T T

T T

T T

T T T T
x x

b ba a

T T T T
r r

b ba a

T T T T

b ba a

e P B K x K x e P B

e P B K r K r e P B

e P B x x e P B

⎡ ⎛ ⎞
⎢ ⎜ ⎟Λ∆ = ∆ Λ
⎢ ⎜ ⎟

⎝ ⎠⎢
⎢ ⎛ ⎞
⎢ ⎜ ⎟Λ∆ = ∆ Λ⎢ ⎜ ⎟

⎝ ⎠⎢
⎢ ⎛ ⎞⎢ ⎜ ⎟Λ∆Θ Φ = ∆Θ Φ Λ⎢ ⎜ ⎟⎢ ⎝ ⎠⎣

��	�
 ��	�
�	
 �	


��	�
 ��	�
�	
 �	


��	�
 ��	�
��	�
 ��	�


 
Substituting (9.19) into (9.18), further yields 
 

  (9.20) 
( )

1

1 1

ˆ2 tr

ˆ ˆ2 tr 2 tr

T T T
x x x

T T T T
r r r

V e Q e K K x e P B

K K r e P B x e P B

−

− −
Θ

⎛ ⎞⎡ ⎤= − + ∆ Γ + Λ⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠
⎛ ⎞ ⎛⎡ ⎤ ⎡+ ∆ Γ + Λ + ∆Θ Γ Θ−Φ Λ⎜ ⎟ ⎜⎢ ⎥ ⎢⎣ ⎦ ⎣⎝ ⎠ ⎝

��

� �

 
Adaptive laws are chosen as follows: 
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 ( )

( )

ˆ

ˆ

ˆ

T
x x

T
r r

T

K x e P B

K r t e P B

x e P BΘ

⎡ = −Γ⎢
⎢ = −Γ⎢
⎢Θ = Γ Φ⎢⎣

�

�

�
 (9.21) 

 
Then the time-derivative of V  becomes negative semi-definite. 
 
 0TV e Q e= − ≤�  (9.22) 
 
Therefore the closed-loop error dynamics is stable, that is the tracking error ( )e t  and the 

parameter estimation errors ( )xK t∆ , ( )rK t∆ , ( )t∆Θ  are bounded signals in time. 

Therefore, the parameter estimates ( )ˆ
xK t , ( )ˆ

rK t , ( )ˆ tΘ  are also bounded. Since ( )r t  is 

bounded then ( )refx t  and ( )refx t�  are bounded. Hence, the system state ( )x t  is bounded 

and, consequently the control input ( )u t  in (9.8) is bounded. The latter implies that ( )x t�  

is bounded and, hence  is bounded. Furthermore, the 2( )e t� nd time derivative of  ( )V t
 
 2  (9.23) T TV e Q e e Q= − = −�� �e
 
is bounded and thus  is a uniformly continuous function of time. The latter coupled 

with the facts that 
( )V t�

( )V t  is lower bounded and ( ) 0V t ≤�  implies (Barbalat’s Lemma) that 

. Thus ( )lim 0
t

V t
→∞

=� ( )lim 0
t

e t
→∞

=  and the MIMO tracking problem is solved. 

 
 
Remark 9.2 (prove it) 
If some of the diagonal elements iλ  of the unknown diagonal matrix Λ  are negative and 
the signs of all of them are known, then the adaptive laws 
 

 ( )

( )

ˆ sgn

ˆ sgn

ˆ sgn

T
x x

T
r r

T

K x e P B

K r t e P B

x e P BΘ

⎡ = −Γ Λ⎢
⎢ = −Γ Λ⎢
⎢Θ = Γ Φ Λ⎢⎣

�

�

�
 (9.24) 

 
solve the MIMO tracking problem, where [ ]1sgn diag sgn , , sgn mλ λΛ = … . 
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