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Lecture 1 
 
 
1. Introduction 
 
Reading material: 
[1]: Chapter 1, Sections 1.1, 1.2 
[1]: Chapter 3, Section 3.1 
[2]: Chapter 1, Sections 1.1, 1.2.1 
 
 
We consider dynamical systems that are modeled by a finite number of coupled 1st order 
ordinary differential equations (ODE-s): 
 
 ( ), ,x f t x u=  (1.1) 
 
In (1.1),  denotes time and t f  is a vector field. We call (1.1) the state equation, refer to 

nx R∈  as the system state, and  as the mu R∈ control input, (external signal). The number 
of the state vector components  is called the n order of the system. Sometimes, another 
equation 
 
 ( ), ,y h t x u=  (1.2) 
 
is also given, where  denotes the py R∈ system output. Equations (1.1) and (1.2) together 
form the system state space model. 
 
A solution ( )x t  of (1.1) (if one exists) corresponds to a curve in state space, as  varies 
from and initial time to infinity. This curve is often referred to as a 

t
state trajectory or a 

system trajectory. 
 
A special case of (1.1) – (1.2) is linear (affine in the control input) system 
 

 
( ) ( )
( )

, ,

,

x f t x g t x u

y h t x

= +

=
 (1.3) 

 



 
 
Letting ( 1 2

T
n )x x x x= … , a special class of nonlinear continuous-time dynamics is 

given by systems in Brunovsky canonical form. 
 

 

( ) ( )
( )

1 2

2 3

n

x x
x x

x f x g x u

y h x

=
=

= +

=

………  (1.4) 

 
For linear time-variant (LTV) systems the state space model (1.1) – (1.2) is: 
 

 
( ) ( )
( ) ( )

x A t x B t u

y C t x D t u

= +

= +
 (1.5) 

 
Finally, the class of linear time-invariant (LTI) systems is written in the familiar form: 
 

 
x A x Bu
y C x Du
= +
= +

 (1.6) 

 
If (1.1) does not contain an input signal u  
 
 ( ),x f t x=  (1.7) 
 
then the resulting dynamics is called unforced. If in addition the function f  does not 
depend explicitly on t , that is 
 
 ( )x f x=  (1.8) 
 
then the system dynamics is called autonomous or time-invariant. Systems that do depend 
on time (explicitly) are called non-autonomous or time-variant. 
 
A point x x∗=  in the state space is an equilibrium point of (1.8) if 
 
 ( ) 0f x∗ =  (1.9) 
 
In other words, whenever the state of the system starts at x∗ , it will remain at x∗  for all 
future times. 
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The linear system x A x=  has an isolated equilibrium point at 0x =  if , that is 
if 

det 0A ≠
A  has no zero eigenvalues. Otherwise, the system has a continuum of equilibrium 

points. These are the only possible equilibrium patterns that a linear system may have. On 
the other hand, a nonlinear system (1.8) can have multiple isolated equilibrium points. 
 
 
Lemma 1.1 (prove it!) 
Trajectories of a 1st order autonomous ODE (assuming that they exist) are monotonic 
functions of time. 
 
 
2. Existence and Uniqueness 
 
Reading material: 
[1]: Chapter 1, Section 4.10 
[2]: Chapter 3, Section 3.1 
[2]: Appendix A 
[2]: Appendix C1 
 
For the unforced system (1.7) to be a useful mathematical model of a physical system, it 
must be able to predict future states of the system given its current state 0x  at . In other 
words, the 

0t
Initial Value Problem (IVP) 

 

 
( )

( )0 0

,x f t x

x t x

=

=
 (2.1) 

 
must have a unique solution. 
 
 
Example 2.1 
The IVP 

 

( )

2

2

1 ,
1 , 0

0 0

x x
x

x x

x

⎧ 0− − ≥⎪= ⎨
+ <⎪⎩
=

 

 
has no solutions at all (show!) on the interval 0 1t≤ ≤ . 
 
Example 2.2 
The IVP 

 
( )

2
3

0 0
x x
x
=

=
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has infinitely many solutions (show!), each of which is defined on R : 
 

 ( )

( )

( )

3

3

1 ,
27
0 ,
1 ,
27

t a t a

x t a

t b t b

⎧ − <⎪
⎪

t b= ≤ ≤⎨
⎪
⎪ − >
⎩

 

 
where  and  are arbitrary constants. If 0a < 0b > 0a b= =  then there are 2 solutions: 

( )
3

27
tx t =  and . ( ) 0x t ≡

 
The existence and uniqueness of IVP can be ensured by imposing appropriate constraints 
on the right hand side function ( ),f t x in (2.1). 
 
We start by stating a sufficient condition for the IVP problem to admit a solution which 
may not be necessarily unique. 
 
Theorem 2.1 (Cauchy / Peano Existence Theorem) 
If ( , )f t x  is continuous in a closed region 
 
 ( ){ }0 0, : , nB t x t t T x x R R R= − ≤ − ≤ ⊆ ×  (2.2) 
 
where  and T R  are strictly positive constants, then there exists 0 1t t T< ≤  such that the 
IVP has at least one continuous in time solution ( )x t . 
 
In other words, continuity of ( ),f t x  in its arguments ensures that there is at least one 
solution of the IVP in (2.1). 
 
The above theorem does not guarantee the uniqueness of the solution. The key constraint 
that yields uniqueness is the Lipschitz condition, whereby ( ),f t x  satisfies the inequality 
 
 ( ) ( ), ,f t x f t y L x y− ≤ −  (2.3) 
 
for all (  and (  in some neighborhood of ) ),t x ,t y ( )0 0,t x . Note that in (2.3), i  denotes 
any p-norm. 
 
The next theorem gives a sufficient condition for the unique existence of a solution. 
 
Theorem 2.2 (Local Existence and Uniqueness) 
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Let ( , )f t x  be piecewise continuous in t  and satisfy the Lipschitz condition (2.3) 
 
 { } [ ]0, : ,n

0 1,x y B x R x x r t t t∀ ∈ = ∈ − ≤ ∀ ∈  (2.4) 
 
Then, there exists some 0δ >  such that the state equation ( ),x f t x=  with ( )0 0x t x=  

has a unique solution over [ ]0 0,t t δ+ . 
 
 
The key assumption in the above theorem is the Lipschitz condition (2.3) which is 
assumed to be valid locally, that is in a neighborhood of ( )0 0,t x  on the compact domain 
B  in (2.4). 
 
One may try to extend the interval of existence and uniqueness over a given time interval 
[ ]0 0,t t δ+  by taking 0 0t t δ+  as a new initial time and ( )0 0x x t δ+  as a new initial 

state. If the conditions of the theorem are satisfied at ( )( )0 0,t x tδ δ+ +  then there exist 

2 0δ >  such that the IVP has a unique solution over [ ]0 0,t t 2δ δ δ+ + +  that passes 

through the point ( )( )0 0,t x tδ δ+ + . We piece together the solutions to establish the 

existence of a unique solution over the interval [ ]0 0 2,t t δ δ+ + . This idea can be repeated 
to keep extending the solution. However, in general the solution cannot be extended 
indefinitely. In that case, there will be a maximum interval [ )0 ,t T , where the unique 
solution exists. 
 
Example 2.3 
The IVP 
 

 
( )

2

0 1
x x
x
=

=
 

 
has a solution 
 

 ( ) 1
1

x t
t

= −
−

 

 
which is defined only for  and can not be extended to R. Note that the function 1t <
( ) 2f x x=  is locally Lipschitz for all x R∈ , and as  the solution has a finite escape 

time, that is it leaves any compact set within a finite time. The phrase “finite escape time” 
is used to describe the phenomenon that a trajectory escapes to infinity at a finite time. 

1t →
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Assuming that ( )f x  is globally Lipschitz, the next theorem establishes the existence of a 
unique solution over any arbitrarily large interval. 
 
Theorem 2.3 (Global existence and Uniqueness) 
Suppose that f  is piecewise continuous in t  and globally Lipschitz in , that is the 
function satisfies Lipschitz condition (2.3) 

x

 
 [ ]0 1, , ,nx y R t t t∀ ∈ ∀ ∈  (2.5) 
 
Then the IVP (2.1) has a unique solution over [ ]0 1,t t , where the final time  may be 
arbitrarily large. 

1t

 
Sufficient conditions in the above theorem are overly conservative. 
 
Example 2.4 
The IVP 

 
( )

3

00
x x
x x
= −

=
  

 
has a unique solution 
 

 ( ) 0
2
02 1
xx t
x t

=
+

 

 
for any initial condition 0x  and for all . 0t ≥
 
Basically, if it is known that IVP has a solution that evolves on a compact domain then 
the solution can be extended indefinitely. 
 
Theorem 2.4 (Global existence and Uniqueness on a compact domain) 
Let ( , )f t x  be piecewise continuous in t , locally Lipschitz in  for all  and all  in 

a domain . Let W  be a compact subset of , 

x 0t ≥ x
nD R⊂ D⊂ D 0x W∈ , and suppose it is 

known that every solution of the corresponding IVP lies entirely in W . Then there is a 
unique solution that is defined for all t . 0≥
 
Remark: There are extensions that deal with existence and uniqueness of IVP-s whose 
system dynamics is discontinuous in , (i.e., not Lipschitz). x
 
Example 2.5 (sliding mode, prove and simulate) 
The IVP 
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 ( )
( )

1 2

2 1

0

sgn

0

x x

2x x x

x x

=⎧⎪
⎨ = − +⎪⎩

=

 

 
has a unique solution for any initial condition vector 0x  and for all . The solution 
reaches manifold  in finite time and “slides” down the manifold towards the 
origin. 

0t ≥

1 2 0x x+ =

 
 
3. Lyapunov Stability 
 
Reading material: 
[1]: Chapter 3, Sections 3.1-3.4 
[1]: Chapter 3, Section 4.5 
[2]: Chapter 4 
 
Stability of equilibrium points is usually characterized in the sense of Lyapunov: 
 
Alexander Michailovich Lyapunov, 1857-1918 
• Russian mathematician and engineer who laid out the foundation of the Stability 

Theory 
• Results published in 1892, Russia 
• Translated into French, 1907 
• Reprinted by Princeton University, 1947 
• American Control Engineering Community Interest, 1960’s 
 
Lyapunov stability theorems give sufficient conditions for stability, asymptotic stability, 
and so on. Statements that establish necessity of these conditions are called the converse 
theorems. 
 
For example, it is known that an equilibrium point of a nonlinear system is exponentially 
stable if and only if the linearization of the system about that point has an exponentially 
stable equilibrium at the origin. 
 
We will be mostly concern with the 2nd theorem of Lyapunov. We will use it to: a) derive 
stable adaptive laws for uncertain system, and b) show boundedness of the system closed-
loop solutions even when the system has no equilibrium points. 
 
Without a loss of generality, we’ll study stability of the origin for the autonomous 
system: 
 
 ( )x f x=  (3.1) 
 

 7



where ( )f x  is locally Lipschitz in  and x ( )0 0f = . 
 
Definition 3.1 (local stability) 
The equilibrium point  of (3.1) is 0x =

• stable if 
 ( ) ( ){ } ( ){ }0, 0, 0 0,R r R x r t x t R∀ > ∃ > < ⇒ ∀ ≥ <  (3.2) 

• unstable if it is not stable (write formal definition similar to (3.2)) 
• asymptotically stable if it is stable and ( )r r R=  can be chosen such that 

 ( ) ( )0 lim
t

x r x t
→∞

0< ⇒ =  (3.3) 

• marginally stable if it is stable but not asymptotically stable, (write formal 
definition) 

• exponentially stable if it is stable and 
( ){ } ( ) ( ), , 0, 0 0 : 0 ,tr x r t x t x e λα λ α −∃ > ∀ < ∧ > ≤  (3.4)  

 

  
 
 Figure 3.1: Stable System Figure 3.2: Unstable System 
 
Basically, an equilibrium point is stable if all solutions starting at nearby points stay 
nearby; otherwise it is unstable. It is asymptotically stable if all solutions starting at 
nearby points not only stay nearby, but also tend to the equilibrium point as time 
approaches infinity. 
 
Remark: Stabilizable systems are not necessarily stable. 
 
Note that by definition, exponential stability implies asymptotic stability, which in turn 
implies stability. 
 
By definition, stability in the sense of Lyapunov defines local behavior of the system 
trajectories near the equilibrium. In order to analyze how the system behaves some 
distance away from the equilibrium, global concepts of stability are required. 
 
Definition 3.2 (global stability) 
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If asymptotic (exponential) stability holds for any initial states, the equilibrium point is 
said to be globally asymptotically (exponentially) stable. 
 
Next, two main theorems of Lyapunov are presented. 

heorem 3.1 (Lyapunov indirect method) 
nonlinear system (3.1), where 

 
T
Let 0x =  be an equilibrium point for the : nf D R→  is 

 

continuously differentiable and D  is a neighborhood of the origin. Let 
 

( )
0x

fA x
x

=

∂
=
∂

 (3.5) 

 
hen: 

the origin is asymptotically stable if
T

•  Re 0iλ <  for all eigenvalues of A  
• the origin is unstable if Re 0iλ >  for ne of the eigenvalues o Aat least o f  

envalues• if at least one of the eig  is on the jω  axis, (i.e., the linearize syd stem is 

 
efore stating the 2nd theorem of Lyapunov we need to introduce the concept of positive 

efinition 3.3 
 a neighborhood of the origin. A function

marginally stable), then nothing can be said about the original nonlinear system 
behavior 

B
definite functions. 
 
D
Let nD R⊂  be  ( ):V x D R→  is said to be 

tive sem
finite

(posi idefinite) if 
• locally positive de , if: ( ) ( ) { }0 0 and 0, 0V V x x D= > ∀ ∈  −

• locally positive semidefinite, if: ( ) ( ) { }0 0 and 0, 0V V x x D= ≥ ∀ ∈  −

• locally negative definite (semidefinite), if it is not locally positive definite 

 
f in the above definition  then the function is globally

(semidefinite) 

I  nD R=  positive (negative) definite 

heorem 3.2 (Lyapunov direct method) 
.1) and let  be a domain containing the 

(semidefinite). 
 
T
Let 0x =  be an equilibrium point for (3 nD R⊂
origi there is a n. If continuously differentiable positive definite function ( ):V x D R→ , 
whose time derivative along the system trajectories is negative semidefinite
 

 in D  

 ( ) ( ) ( )
1 1

0
n n

i i
i ii i

V V VV x x f x f x
x x x= =

∂ ∂ ∂
= = =

∂ ∂ ∂∑ ∑ ≤  (3.6) 
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then the equilibrium is stable. Moreover, if ( ) 0V x <  in { }0D − , then the equilibrium is 
asymptotically stable. 
 
Definition 3.4 
A continuously differentiable positive definite function ( )V x  satisfying (3.6) is called a 
Lyapunov function. 
 
Example 3.1 (prove it) 
Consider the 1st order ODE 
 
 ( )x c x= −  
 
where  is locally Lipschitz on ( )c x ( ),a a−  and satisfies 
 
 ( ){ } ( ) ( ){ }0 0 0, 0 :c c x x x x a= ∧ > ∀ ≠ ∈ − a  

One can show that both  and ( ) ( )
0

x

V x c y dy= ∫ ( ) 2V x x=  are the Lyapunov functions and 

consequently the origin is an asymptotically stable equilibrium (locally) of the system. 
 
 
When the origin  is an asymptotically stable equilibrium of the system, we are often 
interested in determining its 

0x =
region of attraction, (also called region of asymptotic 

stability, domain of attraction, or basin). We want to be able to answer the question:  
Under what condition will the region of attraction be the whole space nR ? 
 
Definition 3.5 
If the region of attraction of an asymptotically stable equilibrium point at the origin is the 
whole space nR , the equilibrium is said to be globally asymptotically stable. 
 
Definition 3.6 
A function  such that : nV R R→ ( )lim

x
V x

→∞
= ∞  is called radially unbounded. 

 
Theorem 3.3 (Barbashin-Krasovskii theorem) 
Let  be an equilibrium point for (3.1). Let  be a radially unbounded 
Lyapunov function of the system. Then the equilibrium is globally asymptotically stable. 

0x = : nV R R→
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Lecture 2 
 
 
4. LaSalle’s Invariance Principle 
 
Reading material: 
[1]: Chapter 3, Sections 3.4.3 
[2]: Chapter 4, Section 4.2 
 
 
We begin with a motivating example. 
 
Example 4.1 (nonlinear pendulum dynamics with friction) 

 
Figure 4.1: Pendulum 

 
Dynamics of a pendulum with friction can be written as: 
 
 ( )2 sin 0M R k M g Rθ θ θ+ + =

2

 (4.1) 
 
or, equivalently in state space form: 
 

 1 2

2 1sin
x x
x a x b x
=
= − −

 (4.2) 

 

where 1x θ= , 2x θ= , ga
R

= , and 2

kb
M R

= . We study stability of the origin 0ex = . 

Note that the latter is equivalent to studying stability of all the equilibrium points in the 
form:  Consider the total energy of the pendulum as a 
Lyapunov function candidate. 

( )2 0 , 0, 1, 2,T
ex l lπ= = ± …±
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 ( ) ( )
1 2 2

2
1

0
Kinetic

Potential

sin 1 cos
2 2

x
2x xV x a y dy a x= + = −∫ +  (4.3) 

 
It is clear that  is a positive definite function, (locally, around the origin). Its time 
derivative along the system trajectories is: 

( )V x

 
 ( ) 2

1 1 2 2 2sin 0V x a x x x x b x= + = − ≤  (4.4) 
 
The time derivative is negative semidefinite. It is not negative definite because ( ) 0V x =  
for  irrespective of the value of 2 0x = 1x . Therefore, we can conclude that the origin is a 
stable equilibrium. 
 
However, using the phase portrait of the pendulum equation (or just common sense), we 
expect the origin to be an asymptotically stable equilibrium. Consequently, the Lyapunov 
energy function argument fails to show this fact. 
 
On the other hand, we notice that for the system to maintain ( ) 0V x =  condition, the 
trajectory must be confined to the line 2 0x = . Using the system dynamics (4.2) yields: 
 
  2 2 1 10 0 sin 0x x x x≡ ⇒ ≡ ⇒ ≡ ⇒ ≡ 0
 
Hence on the segment 1xπ π− < <  of the line 2 0x =  the system can maintain the 

 condition only at the origin ( ) 0V x = 0x = . Therefore, ( )( )V x t  must decrease to 

toward 0 and, consequently,  as t , which is consistent with the fact that, 
due to friction, energy cannot remain constant while the system is in motion. 

( ) 0x t → →∞

 
The forgoing argument shows that if in a domain about the origin we can find a 
Lyapunov function whose derivative along the system trajectories is negative 
semidefinite, and we can establish that no trajectory can stay identically at points where 

, except at the origin, then the origin is asymptotically stable. This argument 
follows from the 
( ) 0V x =

LaSalle’s Invariance Principle. 
 
Definition 4.1 
A set nM R⊂  is said to be 

• an invariant set with respect to (3.1) if: ( ) ( )0 ,x M x t M t R∈ ⇒ ∈ ∀ ∈  

• a positively invariant set with respect to if: ( ) ( )0 , 0x M x t M t∈ ⇒ ∈ ∀ ≥  
 
Theorem 4.1 (LaSalle’s theorem) 
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Let  be a nD RΩ⊂ ⊂ compact positively invariant set with respect to the system 
dynamics (3.1). Let V D  be a continuously differentiable function such that 

 in . Let 
: R→

( )( ) 0V x t ≤ Ω E ⊂Ω  be the set of all points in Ω  where ( ) 0V x = . Let M E⊂  
be the largest invariant set in . Then every solution starting in E Ω  approaches M  as 

, that is t →∞
 

 ( )
( )( )dist ,

lim inf 0
t z M

x t M

x t z
→∞ ∈

⎛ ⎞
⎜ ⎟

− =⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 
 
Notice that the inclusion of the sets in the LaSalle’s theorem is: 
 
 nM E D⊂ ⊂Ω⊂ ⊂ R  
 
In fact, the formal proof of the theorem (see [2], Theorem 4.4, p. 128) reveals that all 
trajectories ( )x t  are bounded and approach a positive limit set  as t . The 
latter may contain asymptotically stable equilibriums and stable limit cycles. 

L M+ ⊂ →∞

 
Remark 4.1 
Unlike Lyapunov theorems, LaSalle’s theorem does not require the function  to be 
positive definite. 

( )V x

 
Most often, our interest will be to show that ( ) 0x t →  as . For that we will need to 

establish that the largest invariant set in 

t →∞

E  is the origin, that is: { }0M = . This is done by 

showing that no solution can stay identically in  other than the trivial solution E ( ) 0x t ≡ . 
 
Theorem 4.1 (Barbashin-Krasovskii theorem) 
Let  be an equilibrium point for (3.1). Let  be a 0x = :V D R→ continuously 
differentiable positive definite function on a domain  containing the origin, such 
that  in . Let 

nD R⊂
( )( ) 0V x t ≤ D ( ){ }: 0S x D V x= ∈ =  and suppose that no other solution 

can stay in , other than the trivial solution S ( ) 0x t ≡ . Then the origin is locally 

asymptotically stable. If, in addition, ( )V x  is radially unbounded then the origin is 
globally asymptotically stable. 
 
 
Note that if  is negative definite then ( )V x { }0S =  and the above theorem coincides with 
the Lyapunov 2nd theorem. Also note that the LaSalle’s invariant set theorems are 
applicable to autonomous system only. 
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Example 4.2 
Consider the 1st order system 
 
 x a x u= +  
 
together with its adaptive control law
 
 ( )ˆu k t= − x  
 
The dynamics of the adaptive gain ( )k̂ t  is 
 

 2k̂ xγ=  
 
where 0γ >  is called the adaptation rate. Then the closed-loop system becomes: 
 

 
( )( )

2

ˆ

ˆ

x k t a x

k xγ

⎧ = − −⎪
⎨
⎪ =⎩

 

 
The line  represents the system equilibrium set. We want to show that the 
trajectories approach this equilibrium set, as , which means that the adaptive 
controller regulates 

0x =
t →∞

( )x t  to zero in the presence of constant uncertainty in . Consider 
the Lyapunov function candidate 

a

 

 ( ) ( )21 1ˆ ˆ,
2 2

V x k x k b
γ

= + −  

 
where b . The time derivative of V  along the trajectories of the system is given by a>
 

 ( ) ( ) ( ) ( ) ( )2 2 21ˆ ˆ ˆ ˆ ˆ, 0V x k x x k b k x k a k b x x b a
γ

= + − = − − + − = − − ≤  

 
Since  is positive definite and radially unbounded function, whose derivative 

 is semi-negative, the set 

( ˆ,V x k )
0( )ˆ,V x k ≤ ( ) ( ){ }2ˆ ˆ, : ,c x k R V x k cΩ = ∈ ≤  is compact, 

positively invariant set. Thus taking cΩ = Ω , all the conditions of LaSalle’s Theorem are 

satisfied. The set E  is given by ( ){ }ˆ, :cE x k x 0= ∈Ω = . Because any point on the line 

 is an equilibrium point,  is an invariant set. Therefore, in this example 0x = E M E= . 
From LaSalle’s Theorem we conclude that every trajectory starting in  approaches , 

as , that is  as . Moreover, since 
cΩ E

t →∞ ( ) 0x t → t →∞ ( )ˆ,V x k  is radially unbounded, 
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the conclusion is global, that is it holds for all initial conditions ( ) ( )( )ˆ0 , 0x k  because the 

constant c  in the definition of  can be chosen large enough that cΩ ( ) ( )( )ˆ0 , 0 cx k ∈Ω . 

 
Homework Assignment: 
• simulate the adaptive control example using MATLAB 
• test different initial conditions ( ) ( )( )ˆ0 , 0x k  

• run simulations of the system while increasing the rate of adaptation 0γ >  until high 
frequency oscillations and / or system departure occurs. Try to quantify maximum 
allowable maxγ  as a function of the initial conditions. 

• run simulations of the system while increasing the control time delay 0τ ≥ , that is 
using the control in the form ( ) ( ) ( )ˆu t k t x tτ τ= − − − . Try to quantify maximum 
allowable time delay maxτ  (perhaps, as a function of the initial conditions) before the 
system starts to oscillate at a high frequency or simply departs. 

 
 
5. Boundedness and Ultimate Boundedness 
 
Reading material: 
[2]: Section 4.8 
 
Consider the nonautonomous system 
 
 ( ),x f t x=  (5.1) 
  

[where ): 0, nf D R∞ × →  is piecewise continuous in t , locally Lipschitz in x  on 

, and  is a domain that contains the origin [ )0, D∞ × nD R⊂ 0x = . 
 
Note that if the origin is an equilibrium point for (5.1) then by definition: 

. On the other hand, even if there is no equilibrium at the origin, 
Lyapunov analysis can still be used to show boundedness of the system trajectories. We 
begin with a motivating example. 

( ),0 0, 0f t t= ∀ ≥

 
Example 5.1 
Consider the IVP with nonautonomous scalar dynamics 
 

 ( )0

sin
0

x x t
x t a

δ
δ

= − +

= > >
 (5.2) 

 
The system has no equilibrium points. The IVP explicit solution can be easily found and 
shown to be bounded for all , uniformly in , that is with a bound b  independent of 0t t≥ 0t
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0t . In this case, the solution is said to be uniformly ultimately bounded (UUB), and is 
called the ultimate bound, (prove it). 

b

 
Turns out, the UUB property of (5.2) can be established via Lyapunov analysis and 

without using the explicit solution of the state equation. In fact, starting with ( )
2

2
xV x = , 

we calculate the time derivative of V  along the system trajectories. 
 
 ( ) ( ) ( )2 2sin sinV x x x x x t x x t x x x xδ δ δ= = − + = − + ≤ − + = − −δ  
 
It immediately follows that 
 
 ( ) 0,V x x δ< ∀ >  
 
In other words, the time derivative of V  is negative outside the set { }B xδ δ= ≤ , or 

equivalently, all solutions that start outside of Bδ  will enter the interval within a finite 
time, and will remain within the interval bounds afterward. Formally, it can be stated as 
follows. 
 

Choose 
2

2
c δ
> . Then all solutions starting in the set 

 
 ( ){ }

2

c

x c

B V x c Bδ

≤

= ≤ ⊃  

 
will remain therein for all future time since V  is negative on the boundary. Hence the 
solutions are uniformly bounded. 
 
Moreover, an ultimate bound of the solutions can also be found. Choose ε  such that 
 

 
2

2
cδ ε< <  

 
Then  is negative in the annulus set V ( ){ }V x cε ≤ ≤ , which implies that in this set 

 will decrease monotonically in time until the solution enters the set ( )(V x t ) ( ){ }V x ε≤ . 

From that time on, cannot leave the set because again V  is negative on its boundary 

( )V x ε= . Since ( )
2

2
xV x = , we can conclude that the solution is UUB with the ultimate 

bound 2x ε≤ . 
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Lecture 3 
 
 
Definition 5.1 
 
The solutions of (5.1) are 

• uniformly bounded if there exists a positive constant c , independent of , and 
for every , there is 

0 0t ≥

(0,a∈ )c ( ) 0aβ β= > , independent of , such that 0t
 
 ( ) ( )0 0,x t a x t tβ t≤ ⇒ ≤ ∀ ≥  (5.3) 
 

• globally uniformly bounded if (5.3) holds for arbitrarily large  a
• uniformly ultimately bounded with ultimate bound b  if there exist positive 

constants  and c , independent of t , and for every , there is 

, independent of , such that 

b 0 0≥ )c

)
(0,a∈

( ,T T a b= 0t
 
 ( ) ( )0 , 0x t a x t b t t T≤ ⇒ ≤ ∀ ≥ +  (5.4) 
 

• globally uniformly ultimately bounded if (5.4) holds for arbitrarily large . a
 

 
Figure 5.1: UUB Concept 

In the definition above, the term uniform indicates that the bound b  does not depend on 
. The term ultimate indicates that boundedness holds after the lapse of a certain time 
. The constant c  defines a neighborhood of the origin, independent of t , such that all 

0t
T 0
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trajectories starting in the neighborhood will remain bounded in time. If  can be chosen 
arbitrarily large then the UUB notion becomes global. 

c

 
Basically, UUB can be considered as a “milder” form of stability in the sense of 
Lyapunov (SISL). A comparison between SISL and UUB concepts is given below. 
 

• SISL is defined with respect to an equilibrium, while UUB is not. 
• Asymptotic SISL is a strong property that is very difficult to achieve in practical 

dynamical systems. 
• SISL requires the ability to keep the state arbitrarily close to the system 

equilibrium by starting sufficiently close to it. This is still too strong a 
requirement for practical systems operating in the presence of unknown 
disturbances. 

• The main difference between UUB and SISL is that the UUB bound  cannot be 
made arbitrarily small by starting closer to the equilibrium or the origin. In 
practical systems, the bound  depends on disturbances and system uncertainties. 

b

b
To demonstrate how Lyapunov analysis can be used to study UUB, consider a 
continuously differentiable positive definite function ( )V x . Choose 0 cε< < . Suppose 

that the sets ( ){ }V xε εΩ = ≤  and ( ){ }c V x cΩ = ≤  are compact. Let 
 
 ( ){ } cV x c εεΛ = ≤ ≤ = Ω −Ω  
 
and suppose that it is known that the time derivative of ( )( )V x t  along the trajectories of 
the nonautonomous dynamical system (5.1) is negative definite inside , that is Λ
 
 ( )( ) ( )( ) 00, ,V x t W x t x t t≤ − < ∀ ∈Λ ∀ ≥  
 
where  is a continuous positive definite function. Since V  is negative in ( )(W x t ) Λ , a 

trajectory starting in  must move in the direction of decreasing Λ ( )( )V x t . In fact, it can 
be shown that in the set Λ  the trajectory behaves as if the origin was uniformly 
asymptotically stable, (which it does not have to be in this case). Consequently, the 
function  will continue decreasing until the trajectory enters the set ( )(V x t ) εΩ  in finite 
time and stays there for all future time. Hence, the solutions of (5.1) are UUB with the 
ultimate bound max

x
b x

ε∈Ω
= . A sketch of the sets Λ , cΩ , εΩ  is shown in Figure 5.2. 
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Figure 5.2: UUB by Lyapunov Analysis 
 
In many problems, the relation ( ) ( ),V t x W x≤ −  is derived and shown to be valid on a 

domain which is specified in terms of x . In such cases, the UUB analysis involves 
finding the corresponding domains of attraction and an ultimate bound. In particular, 
suppose that 
  
 ( ) TV x x P x=  (5.5) 
 
where  is a positive definite symmetric matrix. Also suppose that the time 
derivative of V  evaluated along the system (5.1) trajectories satisfies the following 
relation: 

0TP P= >

  
 ( ) ( ) { } 0, , ,T T

RV x x Q x x Pb t x x S x R t tε= − + ∀ ∈ ≤ ∀ ≥  (5.6) 
 
where  is the radius of the sphere , 0R > RS 0TQ Q= > ,  is a constant known 

vector, and 

nb R∈

( ) max,t xε ε≤ < ∞  for all Rx S∈ , uniformly in t . Then it can be shown that 

all the solutions ( )x t  of (5.1) are UUB. The formal proof goes as follows. 
 
We start with the well-known double-inequality, which is valid for any positive definite 
matrix  and for all vectors P x . 
 
 ( ) ( )2

min max
TP x x P x P xλ λ≤ ≤ 2

P

 (5.7) 
 
where  denote the smallest and the largest eigenvalues of , 
respectively. 

( ) ( )min max,Pλ λ P

 
An upper bound for V  in (5.6) can be calculated. 
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 ( ) ( ) ( )( )2

min max min maxV x Q x x Pb x Q x Pbλ ε λ≤ − + = − − ε  (5.8) 
 

Let 
( )

max

min
r

Pb
S x r

Q
ε

λ
⎧ ⎫⎪ ≤⎨
⎪ ⎪⎩ ⎭

⎪
⎬ . Then it follows from (5.8) that 

 
 ( ) { }0, RV x x r x R S S< ∀ ∈Λ = ≤ ≤ = − r

r

 (5.9) 
 
Let  and define ( ) 2

maxb Pλ= ( ){ }b V x bΩ ≤ . Then . In fact, if rS ⊂ Ωb rx S∈  then 
using the right hand side of (5.7) yields: 
 
 ( ) ( )2 2

max max
Tx P x P x P r bλ λ≤ ≤ =

b

 (5.10) 
 
Hence,  and the inclusion  is proven. bx∈Ω rS ⊂ Ω
 
Let ( ) 2

minB P Rλ=  and define ( ){ }B V x BΩ ≤ R. Then B SΩ ⊂ . In fact, if  then 
using the left hand side of (5.7) yields: 

Bx∈Ω

 ( ) ( )2 2
min min

TP x x P x B P Rλ ≤ ≤ =λ  (5.11) 
 
Hence, x R≤ , that is Rx S∈ , and the inclusion B SRΩ ⊂  is proven. 
 
Next we need to make sure that b B< . The latter implies 
 
 ( ) ( )2

max minb P r P Rλ λ= < 2 B=  (5.12) 
 
or, equivalently: 
 

 ( )
( )

min

max

Pr
R P

λ
λ

<  (5.13) 

 
The above relation can be viewed as a restriction on the eigenvalues of  and the 
constants  and 

P
r R . Basically, inequality (5.13) ensures that 

 
  (5.14) r b BS ⊂ Ω ⊂ Ω ⊂ RS
 
Graphical representation of the four sets is given in Figure 5.2. 
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Figure 5.2: Representation of the sets  and the Ultimate Bound r b BS ⊂ Ω ⊂ Ω ⊂ RS M  
 
Next we show that all solutions starting in BΩ  will enter bΩ  and remain there 
afterwards. 
 
If  then since V  in ( )0 bx t ∈Ω 0< B bΛ = Ω −Ω , ( )( )V x  is a decreasing function of time 
outside of . Therefore, solutions that start in 

t

bΩ bΩ  will remain there. 
 
Suppose that . Inequality (5.8) implies that ( )0x t ∈Λ
 

 

( ) ( )
( )
( ) ( )

( ) ( )
( )
( )

( )
( ) ( )

( )
( )

2
min max

2 maxmin
max min

max min

maxmin

max min

V x V x

V x Q x x Pb

PbQ
P x P x

P P

PbQ
V x V x

P P

λ ε

ελ
λ

λ λ

ελ
λ λ

≥ ≤

≤ − +

= − +

≤ − +

λ  (5.15) 

 
Thus, V x  satisfies the following differential inequality, (as a function of time): ( )( ) 0t ≥
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 ( ) ( ) ( )V x aV x g V x≤ − +  (5.16) 
 

where ( )
( )

min

max

Q
a

P
λ
λ

=  and 
( )
max

min

Pb
g

P

ε

λ
=  are positive constants. Let ( ) ( )W x V x= . Then 

relation (5.16) is equivalent to 
 

 ( ) ( )
2 2
aW x W x g

≤ − +  (5.17) 

 
Define 
 

 ( ) ( ) ( )
2
aZ x W x W x+  (5.18) 

 
Inequality (5.17) implies that 
 

 ( )( ) 0,
2
gZ x t t t≤ ∀ ≥  (5.19) 

 
Solving (5.18) for W  yields: 
 

 ( )( ) ( )( ) ( ) ( ) ( )( )0

0

2 2
0

ta at t t

t

W x t W x t e e Z x d
τ

τ τ
− − − −

= + ∫  (5.20) 

 
Therefore 
 

 

( )( ) ( )( ) ( ) ( ) ( )( )

( )( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( )( )
( )

( )

0

0

0 0

0

0

2 2
0

2 2 2 2
0 0

2
0

o 1

1
2

o 1

ta at t t

t

ta a a at t t t t t t

t

a t t

W x t W x t e e Z x d

g gW x t e e d W x t e e
a

g g ge W x t
a a a

τ

τ

τ τ

τ

− − − −

− − − − − − − −

− −

≤ +

0⎡ ⎤
≤ + = + −⎢ ⎥

⎣ ⎦

⎡ ⎤= + − = +⎢ ⎥⎣ ⎦

∫

∫  (5.21) 

 
As t  and in terms of the original variables, one gets →∞
 

 ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )
( )maxmax max

minmin min

o 1 o 1 o 1T

r

PbP Pgx t P x t r
a QP P

ελ λ
λλ λ

⎛ ⎞
≤ + = + = +⎜ ⎟⎜ ⎟

⎝ ⎠
 (5.22) 
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Choose 0δ > . Then it is easy to see that there exists T  independent of  such that 0t

( )o 1 δ≤  and , consequently 
 

 ( ) ( ) ( )
( )

max
0

min

, ,T
B

P
x t P x t r t T t x

P

λ
δ

λ
≤ + ∀ ≥ + ∀ ∈Ω  (5.23) 

 
Since the above relation is valid for all solutions that start in Λ , it is also valid for the 
solution which starts in  and maximizes the left hand side of the inequality. In other 
words 

Λ

 

 ( ) ( ) ( )
( )

max

min

max
B

T

x

P
x t P x t r

P

λ
δ

λ∈Ω
≤ +  (5.24) 

 
On the other hand 
 
 ( ) ( ) ( ) ( )maxmax max

B B

T

x x
x t P x t P x tλ

∈Ω ∈Ω
=  (5.25) 

 
Hence 
 

 ( ) ( )
( ) ( )

max
0

min max

, , B

P
x t M r t T t x

P P

λ δ
λ λ

≤ + ∀ ≥ + ∀ ∈Ω  (5.26) 

 
Consequently, the solutions of (5.1) are UUB with the ultimate bound M . The bound is 
shown in Figure 5.2. Summarizing the results, we state the following theorem. 
 
Theorem 5.1 
Let  and  be symmetric positive definite matrices and let 

. Suppose that the time derivative of V  along the trajectories of (5.1) 

satisfies (5.6), for all 

0TP P= > 0TQ Q= >

( ) TV x x P x=

{ }Rx S x R∈ = ≤ . Let 
( )

max

min
r

Pb
S x r

Q
ε

λ
⎧ ⎫⎪ ⎪≤⎨ ⎬
⎪ ⎪⎩ ⎭

 and suppose that 

( )
( )

min

max

Pr
R P

λ
λ

< . Then the solutions are UUB with the ultimate bound M  in (5.26). 
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