Introduction to Chaos and Symbol Dynamics

CDS140B Lecturer: Wang Sang Koon

winter, 2005

1 Introduction to Chaos.

The Study of Deterministic Chaos. Despite the fact that the system is deterministic, it has the property that imprecise knowledge of the initial condition may lead to unpredictability after some finite time.

Example: Look at the phase space of a pendulum and a pendulum with perodical forcing. Notice the complexity of the homoclinic tangle.

Overview: We will cover

- Symbolic Dynamics which is the paradigm for deterministic chaos.
- Conley-Moser Conditions which allow one to verify the existence of Smale Horseshoelike dynamics and chaos.
- Homoclinic Orbits and Heteroclinic Cycles where horseshoe-like dynamics exists and where the whole machinery of symbolic dynamics can make this chaotic behavior more precise.

2 Symbolic Dynamics and the Shift Map

Phase Space. The phase space for the shift map Σ is the space of "bi-infinite" sequences of 0's and 1's, with a specific metric. Two sequences are "near each other" if they are identical on a long central block.

 Σ is a Cantor Set. It can be proved that Σ is compact, perfect (i.e., every point is a limit point), and totally disconnected, i.e., Σ is a Cantor set.

Example: Classical Cantor "Middle-Thirds" Set.

The Shift Map σ on Σ . σ is a homeomorphism and that it has the following properties:

- 1. a countable ∞ of periodic orbits of all periods,
- 2. an uncountable ∞ of nonperiodic orbits, and
- 3. a "dense orbit", i.e., an orbit that is dense in Σ .

Deterministic Chaos. The dynamics of $\sigma : \Sigma \to \Sigma$ model the phenomenon of deterministic chaos which has the following ingredients:

- Σ is compact;
- σ is topologically transitive, i.e., given any two open sets in Σ some iterate of one will intersect the other (this essentially follows from the existence of the dense orbit);
- σ exhibits sensitive dependence on initial conditions, i.e., the distance between nearby initial conditions grows under some fixed number of iterates.

Remark: Despite the fact that the system is deterministic, it has the property that imprecise knowledge of the initial condition may lead to unpredictability after some finite time.