Smale Horseshoe and Conley-Moser Conditions

CDS140B Lecturer: Wang Sang Koon

Winter, 2005

1 Introduction to Chaos.

The Study of Deterministic Chaos. Despite the fact that the system is deterministic, it has the property that imprecise knowledge of the initial condition may lead to unpredictability after some finite time. We will cover

- Symbolic Dynamics which is the paradigm for deterministic chaos.
- Conley-Moser Conditions which allow one to verify the existence of Smale Horseshoelike dynamics and chaos.
- Homoclinic Orbits and Heteroclinic Cycles where horseshoe-like dynamics exists and where the whole machinery of symbolic dynamics can make this chaotic behavior more precise.

2 Symbolic Dynamics and the Shift Map

Phase Space. The phase space for the shift map Σ is the space of "bi-infinite" sequences of 0's and 1's, with a specific metric. Two sequences are "near each other" if they are identical on a long central block.

The Shift Map σ on Σ . σ is a homeomorphism and that it has the following properties:

- 1. a countable ∞ of periodic orbits of all periods,
- 2. an uncountable ∞ of nonperiodic orbits, and
- 3. a "dense orbit", i.e., an orbit that is dense in Σ .

Deterministic Chaos. The dynamics of $\sigma : \Sigma \to \Sigma$ model the phenomenon of deterministic chaos which has the following ingredients:

- Σ is compact;
- σ is topologically transitive, i.e., given any two open sets in Σ some iterate of one will intersect the other (this essentially follows from the existence of the dense orbit);
- σ exhibits sensitive dependence on initial conditions, i.e., the distance between nearby initial conditions grows under some fixed number of iterates.

3 Smale Horseshoe

Horseshoe Map is a two-dimensional map

$$f: D \to D$$

where f contracts the square D in the horizontal direction, expand it in the vertical direction, and folds it onto itself in such a way that

- the two "horizontal" rectangles H_0 and H_1 are mapped to the two vertical rectangle V_0 and V_1 respectively;
- horizontal boundaries of H_i map to horizontal boundaries of V_i , and vertical boundaries of H_i map to vertical boundaries of V_i .

Invariant Set of Horseshoe Map. Consider the invariant set of this map

$$\Lambda = \bigcap_{-\infty}^{\infty} f^n(D).$$

 Λ is the set of points in the square that remain in the square under all forward and backward iterations by f.

Cantor Set of Vertical Lines. Notice that $f(D \cap f(D)) \cap D$ consists of four vertical rectangles. This process can be carried out indefinitely. Passing to the limit as $n \to \infty$ gives

$$\Lambda_{-} = D \cap f(D) \cap \ldots \cap f^{n}(D) \ldots,$$

which is a Cantor set of vertical lines. These vertical lines are the sets of points in D that remain in D under all *backward* iterations of f.

Cantor Set of Horizontal Lines. Similarly, $f^{-1}(D \cap f^{-1}(D)) \cap D$ consists of four horizontal rectangles. Passing to the limit as $n \to \infty$ gives

$$\Lambda_+ = D \cap f^{-1}(D) \cap \ldots \cap f^{-n}(D) \ldots,$$

which is a Cantor set of horizontal lines, which are the set of points n D that remain in D under all *forward* iterations of f.

Cantor Set of Points. Hence the set

$$\Lambda = \Lambda_+ \cap \Lambda_-$$

is a Cantor set of points. These are the points in D that remain in D under all iterations by f.

Dynamics on the Invariant Set. The dynamics on Λ of f is "modelled" by the shift map σ . There is a change of coordiates that transform f, restricted to Λ , to $\sigma : \Sigma \to \Sigma$.

Horseshoe Dynamics is Chaotic. Every orbit of the shift map is mapped uniquely to an orbit of f_{Λ} . f_{Λ} has the same orbit structure as σ :

- it has a countable infinity of periodic orbits of all periods,
- an uncountable inifinity of non-periodic orbits, and
- an orbit that is dense in Λ .

It is also chaotic in the same sense as the shift map.

4 Conley-Moser Conditions

Conley-Moser Conditions for a general two-dimensional map to have an invariant set on which it has the shift dynamics. These conditions are a combination of geometric and analytical conditions.

- The geometrical part consists of generalizing the notion of horizontal and vertical rectangles by allowing the boundaries to be Lipschitz curves, rather than straight lines.
 - horizontal "rectangles" map to "vertical" rectangles,
 - with horizontal boundaries map to horizontal boundaries and vertical boundaries map to vertical boundaries.
- The analytical part requires uniform (but not constant) contraction in the horizontal directions and expansion in the vertical direction.