Introduction to Hamiltonian Systems

CDS140B Lecturer: Wang Sang Koon

winter, 2005

1 Introduction

Consider a C^{2} function of $2 n$ variables $q_{i}, p_{i} H: R^{2 n} \rightarrow R$, then the Hamiltonian equations are

$$
\dot{q}_{i}=\frac{\partial H}{\partial p_{i}}, \quad \dot{p}_{i}=-\frac{\partial H}{\partial q_{i}} .
$$

It can be written in a compact form

$$
\dot{z}=J \nabla H(z), \quad z=(q, p) .
$$

where J is the canonical sympletic matrix. What follow are some basic facts.

1.1 Symplectic Matrix and Canonical Transformation.

A matrix M is symplectic if $M J M^{T}=J$. If the Jacobian of a transformation $((q, p) \rightarrow(Q, P))$ is symplectic, then it is a canonical transformation which preserves the Hamiltonian form of the equations.

1.2 $H(q, p)$ is a first integral of the equations.

1.3 Stability of Equilibria.

Nondegenerate Critical Point. Suppose $F: \mathbb{R}^{n} \leftarrow \mathbb{R}$ is a $C^{r}(r \geq 3)$ function. Supppose $x=x_{0}$ is a point such that $\frac{\partial F}{\partial x}\left(x_{0}\right)=0$. Then x_{0} is said to be a critical point. If x_{0} is such that $\left|\frac{\partial^{2} F}{\partial x^{2}}\left(x_{0}\right)\right| \neq 0$ then it is said to be a nondegerate critical point.

Theorem. If λ is an eigenvalue of a linearized Hamiltonian system, so are $-\lambda, \bar{\lambda}$ and $-\bar{\lambda}$.

Remark: Hamiltonian system cannot be linear stable.

Morse Lemma If F has a nondegenerate critical point at $x=0$, then in a neighborhood of $x=0$ there exist a C^{r-2} diffeomorphism, which transforms F to the form

$$
G(y)=G(0)-y_{1}^{2}-\cdots-y_{k}^{2}+y_{k+1}^{2}+\cdots+y_{n}^{2} .
$$

Theorem. If $H(q, p)-H(0,0)$ is sign definite in a neighborhood of the critical point $(0,0)$, the equilibrium solution $(q, p)=(0,0)$ is stable.

Lemma: Consider $\dot{x}=f(x), x \in \mathbb{R}^{n}$, and suppose that it generates a flow $\phi_{t}(\cdot)$. Let D_{0} denote a domain in \mathbb{R}^{n} and let $D_{t}=\phi_{t}\left(D_{0}\right)$ denote the evolution of D_{0} under the flow. Let $V(t)$ denote the volume of D_{t}. Then

$$
\left.\frac{d V}{d t}\right|_{t=0}=\int_{D_{0}} \nabla \cdot f d x
$$

where $\nabla \cdot f$ denotes the divergence of a vector field.

Liouville's Theorem. The flow generated by a time-independent Hamiltonian system is volume preserving,

Remark: Attraction by an equilibrium solution is impossible as the flow in phase space is volume preserving (Liouville).

Poincaré Recurrence Theorem: Consider a bounded domain $D \subset \mathbb{R}^{n}, g$ is injective, continuous, volumn-preserving mapping of D into itself. Then each neighborhood U of each point in D contains a point x which returns to U after repeated applications of the mapping $\left(g^{n}(x) \in U\right.$ for some $n \in \mathbb{N}$).

2 Harmonic Oscillator with Two Degrees of Freedom

Consider linear harmonic oscillator with two degrees of freedom with Hamiltonian

$$
H=\frac{1}{2} \omega_{1}\left(q_{1}^{2}+p_{1}^{2}\right)+\frac{1}{2} \omega_{2}\left(q_{2}^{2}+p_{2}^{2}\right) .
$$

with ω_{i} positive.

- Phase space is 4 -dimensional. The constant energy surface $\left(H=E_{0}\right)$ is topologically a 3-dimensional sphere S^{3}.
- Besides H, there are two other integrals

$$
\tau_{1}=\frac{1}{2}\left(q_{1}^{2}+p_{1}^{2}\right), \quad \tau_{2}=\frac{1}{2}\left(q_{2}^{2}+p_{2}^{2}\right) .
$$

However, there are only two functionally independent integrals as

$$
E_{0}=\omega_{1} \tau_{1}+\omega_{2} \tau_{2} .
$$

- The existence of two independent integrals enables us to envisage the structure of the phase space (a foliation of invariant tori around one of the normal mode linked with a foliation of invariant tori around the other normal mode).

3 A Nonlinear Example with Two Degrees of Freedom

Consider

$$
H=\frac{1}{2}\left(p_{1}^{2}+4 q_{1}^{2}\right)+\frac{1}{2}\left(p_{2}^{2}+q_{2}^{2}\right)-q_{1} q_{2}^{2} .
$$

- Origin of phase space is a stable critical point.

Averaging Method. After applying averaging method, we obtain:

Averaged System Has Two Integrals. The two integrals are:

$$
\begin{aligned}
4 \rho_{1}^{2}+\rho_{2}^{2} & =2 E_{0} \\
\frac{1}{2} \rho_{1} \rho_{2}^{2} \cos \left(\psi_{1}-2 \psi_{2}\right) & =I
\end{aligned}
$$

Two New Families of Periodic Orbits. Besides the family of normal modes in the $p_{1}, q_{1}-$ direction, there are two new families of periodic solutions.

Poincaré Section for the System. See the figure for the Poicaré section in the book.

4 A Few Remarks on Birkhoff-Gustavson Normal Form

Theorem for Birkhoff Normal Form: Consider Hamiltonian $H(q, p)=H_{2}+H_{3}+H_{4}+\ldots$ and suppose the frequencies ω_{i} do not satisfy a resonance relation of order $\leq k$, then there exists a canonical transformation such that the new Hamiltonian is in Birkhoff normal form to degree k.

Definition: $\quad H(q, p)$ is in Birkhoff normal form to degree k if H can be written as $H=H_{k}(I)+R_{k}$ where H_{k} is a a polynomial of degree k when written out in q, p variables $\left(I_{i}=\frac{1}{2}\left(q_{i}^{2}+p_{i}^{2}\right)\right)$ and R_{k} represents the higher order terms.

