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1 Introduction

Consider
ẏ = g(y, λ).

where y ∈ Rn, λ ∈ Rp. Suppose it has a fixed point at (y0, λ0), i.e., g(y0, λ0) = 0.

Two Questions: (1) Is the fixed point stable or unstable? (2) How is the stability or instability
affected as λ is varied?

Hyperbolic Fixed Points. None of the eigenvalues of Dyg(y0, λ0) lie on the the imaginary axis.

• The stability of (y0, λ0) is determined by its linearized equation.

• Since hyperbolic fixed points are structurally stable, varying λ slightly does not change the
nature of the stability of the fixed point.

Non-hyperbolic Fixed Points. Dyg(y0, λ0) has some eigenvalues on the imaginary axis.

• For λ very close to λ0 (and for y very close to y0), radically new dynamical behavior can
occur: fixed points can be created or destroyed, and periodic, quasiperiodic, or even chaotic
dynamics can be created.

• We will begin by studying the case where the linearized equation has a single zero eigenvalue
with the remaining eigenvalues having nonzero real parts.

1.1 A Zero Eigenvalue

In this case, the orbit structure near (y0, λ0) is determined by the associated center manifold
equation

ẋ = f(x, µ)

where x ∈ R1, µ ∈ Rp and µ = λ − λ0. Moreover, f(0, 0) = 0 (fixed point condition) and
Dxf(0, 0) = 0 (zero eigenvalue condition).
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Saddle-Node Bifurcation. Consider

ẋ = µ− x2.

where (x, µ) = (0, 0) is a bifurcation point and µ = 0 is a bifurcation value. ξ̇ = −2xξ is its
linearized equation. The set of fixed points is given by µ = x2. See the bifurcation diagram below.

Transcritical Bifurcation. Consider

ẋ = µx− x2.

The fixed points are given by x = 0, x = µ. ξ̇ = (µ− 2x)ξ is its linearized equation.
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Pitchfork Bifurcation. Consider
ẋ = µx− x3.

The fixed points are given by x = 0, x2 = µ. ξ̇ = (µ− 3x2)ξ is its linearized equation.

No Bifurcation. Conider
ẋ = µ− x3.

The fixed points are given by µ = x3. Notice that a fixed point is nonhyperbolic is a necessary but
not sufficient condition for bifurcation to occur in an one-paramter family of vector fields.

1.2 Saddle-Node Bifurcation

In this case, a unique curve of fixed point µ(x) passing through (0, 0): (1) it is tangent to µ = 0 at
x = 0 (dµ

dx (0) = 0); and (2) it lay entirely to one side of µ = 0 (d2µ
dx2 (0) 6= 0).

Definition: A fixed point (x, µ)− (0, 0) of an one-parameter family of one-dimensional systems is
said to undergo a bifurcation at µ = 0 if the flow for µ near zero and x near zero is not qualitatively
the same as the flow near x = 0 at µ = 0.
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Theorem on Saddle-Node Bifurcation. In order for

ẋ = f(x, µ)

to undergo a saddle-node bifurcation, we must have f(0, 0) = 0; Dxf(0, 0) = 0 (nonhyperbolic fixed
point), Dµf(0, 0) 6= 0 (unique curve of fixed point through origin), and D2

xx(0, 0) 6= 0 (curves lies
locally on one side of µ = 0).

Remark: consider a general one-parameter family of one-dimensional vector fields having a non-
hyperbolic fixed point at (x, µ) = (0, 0). The Taylor expansion is given by

f(x, µ) = a0µ + a1x
2 + a2µx + a3µ

2 + O(3).

The theorem shows that the dynamics of our equation near (0, 0) are qualitiatively the same as

ẋ = µ± x2

which can be viewed as the normal form for saddle-node bifurcation. Moreover, in this case, all
terms of O(3) and higher could be neglected and the dynamics would not qualitatively changed
(thanks to the implicit function theorem),

1.3 The Transcritical Bifurcation

In this case, (1) two curves of fixed points pass through (0, 0), one given by x = 0, the other by
µ(x); (2) both curves of fixed points existed on both sides of µ = 0; and (3) the stability along each
curve of fixed points changed on passing through µ = 0.

Theorem on Transcritical Bifurcation. In order for

ẋ = f(x, µ)

to undergo a transcritical bifurcation, we must have f(0, 0) = 0; Dxf(0, 0) = 0 (nonhyperbolic fixed
point), Dµf(0, 0) = 0 (existence of two curves), and D2

xµ(0, 0) 6= 0, D2
xx(0, 0) 6= 0 (slope of the other

curve).
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Remark: The theorem show that the dynamics of our equation near (0, 0) are qualitiatively the
same as

ẋ = µx± x2

which can be viewed as the normal form for transcritical bifurcation.

1.4 The Pitchfork Bifurcation

In this case, (1) two curves of fixed points pass through (0, 0), one given by x = 0, the other by
µ = x2; (2) the curve x = 0 exists on both sides of µ = 0; the other curve exists on one side of
µ = 0; and (3) the fixed points on the curve x = 0 has different stability types on opposites of
µ = 0. The fixed points on µ = x2 all have the same stability type.

Theorem on Pitchfork Bifurcation. In order for

ẋ = f(x, µ)

to undergo a pitchfork bifurcation, we must have f(0, 0) = 0; Dxf(0, 0) = 0 (nonhyperbolic fixed
point), with Dµf(0, 0) = 0 (existence of 2 curves), and D2

xxf(0, 0) = 0 (the other curve tangent to
µ = 0), D2

xµ(0, 0) 6= 0, D3
xxx(0, 0) 6= 0 (the other curve on one side).

Remark: The theorem show that the dynamics of our equation near (0, 0) are qualitiatively the
same as

ẋ = µx± x3

which can be viewed as the normal form for pitchfork bifurcation.
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