Bifurcation of Fixed Points

CDS140B Lecturer: Wang Sang Koon

Winter, 2005

1 Introduction

Consider

$\dot{y} = g(y, \lambda).$

where $y \in \mathbb{R}^n, \lambda \in \mathbb{R}^p$. Suppose it has a fixed point at (y_0, λ_0) , i.e., $g(y_0, \lambda_0) = 0$.

Two Questions: (1) Is the fixed point stable or unstable? (2) How is the stability or instability affected as λ is varied?

Hyperbolic Fixed Points. None of the eigenvalues of $D_y g(y_0, \lambda_0)$ lie on the the imaginary axis.

- The stability of (y_0, λ_0) is determined by its linearized equation.
- Since hyperbolic fixed points are structurally stable, varying λ slightly does not change the nature of the stability of the fixed point.

Non-hyperbolic Fixed Points. $D_y g(y_0, \lambda_0)$ has some eigenvalues on the imaginary axis.

- For λ very close to λ_0 (and for y very close to y_0), radically new dynamical behavior can occur: fixed points can be created or destroyed, and periodic, quasiperiodic, or even chaotic dynamics can be created.
- We will begin by studying the case where the linearized equation has a single zero eigenvalue with the remaining eigenvalues having nonzero real parts.

1.1 A Zero Eigenvalue

In this case, the orbit structure near (y_0, λ_0) is determined by the associated center manifold equation

 $\dot{x} = f(x, \mu)$

where $x \in R^1, \mu \in R^p$ and $\mu = \lambda - \lambda_0$. Moreover, f(0,0) = 0 (fixed point condition) and $D_x f(0,0) = 0$ (zero eigenvalue condition).

Saddle-Node Bifurcation. Consider

$$\dot{x} = \mu - x^2.$$

where $(x, \mu) = (0, 0)$ is a bifurcation point and $\mu = 0$ is a bifurcation value. $\dot{\xi} = -2x\xi$ is its linearized equation. The set of fixed points is given by $\mu = x^2$. See the bifurcation diagram below.

Transcritical Bifurcation. Consider

$$\dot{x} = \mu x - x^2.$$

The fixed points are given by $x = 0, x = \mu$. $\dot{\xi} = (\mu - 2x)\xi$ is its linearized equation.

Pitchfork Bifurcation. Consider

$$\dot{x} = \mu x - x^3.$$

The fixed points are given by $x = 0, x^2 = \mu$. $\dot{\xi} = (\mu - 3x^2)\xi$ is its linearized equation.

No Bifurcation. Conider

$$\dot{x} = \mu - x^3$$

The fixed points are given by $\mu = x^3$. Notice that a fixed point is nonhyperbolic is a necessary but not sufficient condition for bifurcation to occur in an one-paramter family of vector fields.

1.2 Saddle-Node Bifurcation

In this case, a unique curve of fixed point $\mu(x)$ passing through (0,0): (1) it is tangent to $\mu = 0$ at x = 0 $(\frac{d\mu}{dx}(0) = 0)$; and (2) it lay entirely to one side of $\mu = 0$ $(\frac{d^2\mu}{dx^2}(0) \neq 0)$.

Definition: A fixed point $(x, \mu) - (0, 0)$ of an one-parameter family of one-dimensional systems is said to undergo a bifurcation at $\mu = 0$ if the flow for μ near zero and x near zero is not qualitatively the same as the flow near x = 0 at $\mu = 0$.

Theorem on Saddle-Node Bifurcation. In order for

$$\dot{x} = f(x,\mu)$$

to undergo a saddle-node bifurcation, we must have f(0,0) = 0; $D_x f(0,0) = 0$ (nonhyperbolic fixed point), $D_{\mu} f(0,0) \neq 0$ (unique curve of fixed point through origin), and $D_{xx}^2(0,0) \neq 0$ (curves lies locally on one side of $\mu = 0$).

Remark: consider a general one-parameter family of one-dimensional vector fields having a non-hyperbolic fixed point at $(x, \mu) = (0, 0)$. The Taylor expansion is given by

$$f(x,\mu) = a_0\mu + a_1x^2 + a_2\mu x + a_3\mu^2 + O(3).$$

The theorem shows that the dynamics of our equation near (0,0) are qualitatively the same as

$$\dot{x} = \mu \pm x^2$$

which can be viewed as the normal form for saddle-node bifurcation. Moreover, in this case, all terms of O(3) and higher could be neglected and the dynamics would not qualitatively changed (thanks to the implicit function theorem),

1.3 The Transcritical Bifurcation

In this case, (1) two curves of fixed points pass through (0,0), one given by x = 0, the other by $\mu(x)$; (2) both curves of fixed points existed on both sides of $\mu = 0$; and (3) the stability along each curve of fixed points changed on passing through $\mu = 0$.

Theorem on Transcritical Bifurcation. In order for

$$\dot{x} = f(x,\mu)$$

to undergo a transcritical bifurcation, we must have f(0,0) = 0; $D_x f(0,0) = 0$ (nonhyperbolic fixed point), $D_\mu f(0,0) = 0$ (existence of two curves), and $D_{x\mu}^2(0,0) \neq 0$, $D_{xx}^2(0,0) \neq 0$ (slope of the other curve).

Remark: The theorem show that the dynamics of our equation near (0,0) are qualitatively the same as

$$\dot{x} = \mu x \pm x^2$$

which can be viewed as the normal form for transcritical bifurcation.

1.4 The Pitchfork Bifurcation

In this case, (1) two curves of fixed points pass through (0,0), one given by x = 0, the other by $\mu = x^2$; (2) the curve x = 0 exists on both sides of $\mu = 0$; the other curve exists on one side of $\mu = 0$; and (3) the fixed points on the curve x = 0 has different stability types on opposites of $\mu = 0$. The fixed points on $\mu = x^2$ all have the same stability type.

Theorem on Pitchfork Bifurcation. In order for

$$\dot{x} = f(x, \mu)$$

to undergo a pitchfork bifurcation, we must have f(0,0) = 0; $D_x f(0,0) = 0$ (nonhyperbolic fixed point), with $D_{\mu}f(0,0) = 0$ (existence of 2 curves), and $D_{xx}^2f(0,0) = 0$ (the other curve tangent to $\mu = 0$), $D_{x\mu}^2(0,0) \neq 0$, $D_{xxx}^3(0,0) \neq 0$ (the other curve on one side).

Remark: The theorem show that the dynamics of our equation near (0,0) are qualitatively the same as

$$\dot{x} = \mu x \pm x^3$$

which can be viewed as the normal form for pitchfork bifurcation.