Discussion on KAM Theorem

CDS140B Lecturer: Wang Sang Koon

winter, 2005

1 Integrable Systems

Involution. Consider Hamiltonian equations

$$\dot{q}_i = \frac{\partial H}{\partial p_i}, \quad \dot{p}_i = -\frac{\partial H}{\partial q_i}.$$

with integrals $F_1(q,p)$ and $F_2(q,p)$ (where $\frac{d}{dt}F_i = 0$). The functions F_1 and F_2 are in involution if

$$\{F_1, F_2\} = \frac{\partial F_1}{\partial q} \frac{\partial F_2}{\partial p} - \frac{\partial F_1}{\partial p} \frac{\partial F_2}{\partial q} = 0.$$

Here, $\{,\}$ is the Poisson brackets.

Note: F is an integral if F and H are in involution.

Integrable Systems. The *n* degree of freedom Hamiltonian system is integrable if the system has *n* integrals F_1, \ldots, F_n which are functionally independent and in involution.

Example: The quadratic Hamiltonian generates an integrable system with integrals $F_i = (q_i^2 + p_i^2)$.

Example: If H = H(p), the system is integrable with integrals $F_i = p_i$

Symplectic Matrix and Canonical Transformation. A matrix M is symplectic if $M\Omega M^T = \Omega$. If the Jacobian of a transformation $((q, p) \rightarrow (Q, P))$ is symplectic, then it is a canonical transformation which preserves the Hamiltonian form of the equations.

Action-Angle Variables. These variables, which are related to polar coordinates, have the property that the transformation $p, q \to I, \theta$ is canonical. The transformation can be obtained by using the generating function S(I, q), which has the property that

$$p = \frac{\partial S}{\partial q}, \quad \theta = \frac{\partial S}{\partial I}.$$

Theorem. If a Hamiltonian system is integrable, then there exists a generating function S(I,q) such that

$$H(p,q) = H(\frac{\partial S}{\partial q},q) = H_0(I)$$

and the Hamiltonian system becomes

$$\dot{I} = 0, \quad \dot{\theta} = \omega(I) = \frac{\partial H_0}{\partial I}.$$

Resonance. The frequencies $\omega_1, \ldots, \omega_n$ satisfies a resonance relation of order $k \in N$ if there exist k_1, \ldots, k_n such that

$$k_1\omega_1 + \ldots + k_n\omega_n = 0$$

with $k = |k_1| + \ldots + |k_n|$.

2 Perturbation of Integrable Systems

Nearly Integrable Systems. Suppose that H(p,q) has a small parameter ϵ and introduction of action-angle coordinates produces the system

$$\dot{I} = \epsilon f(I, \theta)$$

 $\dot{\theta} = \omega(I) + \epsilon g(I, \theta).$

If $\epsilon = 0$ the system is integrable; for small positive ϵ the system is called nearly integrable and can be studied by Birkhoff-Gustavson normalization. Suppose the new Hamiltonian is

$$H_0(I) + \epsilon H_1(I,\theta).$$

KAM Theorem. If H_0 is non-degenerate, i.e.

$$\det \ (\frac{\partial^2 H_0}{\partial I^2}) \neq 0,$$

then most of the invariant tori which exist for the unperturbed system will exist, abeit slightly deformed, for sufficiently small postive ϵ ; moreover, the measure of the complement of the set of tori tends to zero as ϵ tends to zero.