Discussion on KAM Theorem

CDS140B Lecturer: Wang Sang Koon

winter, 2005

1 Integrable Systems

Involution. Consider Hamiltonian equations

$$
\dot{q}_{i}=\frac{\partial H}{\partial p_{i}}, \quad \dot{p}_{i}=-\frac{\partial H}{\partial q_{i}} .
$$

with integrals $F_{1}(q, p)$ and $F_{2}(q, p)$ (where $\frac{d}{d t} F_{i}=0$). The functions F_{1} and F_{2} are in involution if

$$
\left\{F_{1}, F_{2}\right\}=\frac{\partial F_{1}}{\partial q} \frac{\partial F_{2}}{\partial p}-\frac{\partial F_{1}}{\partial p} \frac{\partial F_{2}}{\partial q}=0 .
$$

Here, $\{$,$\} is the Poisson brackets.$
Note: F is an integral if F and H are in involution.
Integrable Systems. The n degree of freedom Hamiltonian system is integrable if the system has n integrals F_{1}, \ldots, F_{n} which are functionally independent and in involution.

Example: The quadratic Hamiltonian generates an integrable system with integrals $F_{i}=\left(q_{i}^{2}+\right.$ p_{i}^{2}).

Example: If $H=H(p)$, the system is integrable with integrals $F_{i}=p_{i}$

Symplectic Matrix and Canonical Transformation. A matrix M is symplectic if $M \Omega M^{T}=$ Ω. If the Jacobian of a transformation $((q, p) \rightarrow(Q, P))$ is symplectic, then it is a canonical transformation which preserves the Hamiltonian form of the equations.

Action-Angle Variables. These variables, which are related to polar coordinates, have the property that the transformation $p, q \rightarrow I, \theta$ is canonical. The transformation can be obtained by using the generating function $S(I, q)$, which has the property that

$$
p=\frac{\partial S}{\partial q}, \quad \theta=\frac{\partial S}{\partial I}
$$

Theorem. If a Hamiltonian system is integrable, then there exists a generating function $S(I, q)$ such that

$$
H(p, q)=H\left(\frac{\partial S}{\partial q}, q\right)=H_{0}(I)
$$

and the Hamiltonian system becomes

$$
\dot{I}=0, \quad \dot{\theta}=\omega(I)=\frac{\partial H_{0}}{\partial I} .
$$

Resonance. The frequencies $\omega_{1}, \ldots, \omega_{n}$ satisfies a resonance relation of order $k \in N$ if there exist k_{1}, \ldots, k_{n} such that

$$
k_{1} \omega_{1}+\ldots+k_{n} \omega_{n}=0
$$

with $k=\left|k_{1}\right|+\ldots+\left|k_{n}\right|$.

2 Perturbation of Integrable Systems

Nearly Integrable Systems. Suppose that $H(p, q)$ has a small parameter ϵ and introduction of action-angle coordinates produces the system

$$
\begin{aligned}
\dot{I} & =\epsilon f(I, \theta) \\
\dot{\theta} & =\omega(I)+\epsilon g(I, \theta) .
\end{aligned}
$$

If $\epsilon=0$ the system is integrable; for small positive ϵ the system is called nearly integrable and can be studied by Birkhoff-Gustavson normalization. Suppose the new Hamiltonian is

$$
H_{0}(I)+\epsilon H_{1}(I, \theta) .
$$

KAM Theorem. If H_{0} is non-degenerate, i.e.

$$
\operatorname{det}\left(\frac{\partial^{2} H_{0}}{\partial I^{2}}\right) \neq 0
$$

then most of the invariant tori which exist for the unperturbed system will exist, abeit slightly deformed, for sufficiently small postive ϵ; moreover, the measure of the complement of the set of tori tends to zero as ϵ tends to zero.

