

Fixed Step Solvers:

Simple 1st order ODE example:

 $\dot{x} = f(x)$

Discretize using explicit Euler:

 $x_{n+1} = h \cdot f(x_n)$

Discretize using implicit Euler:

$$x_{n+1} = x_n + h \cdot f(x_{n+1})$$

At each time step, solve this equation for x_{n+1}

Inline Integration

Back to implicit solvers:

Can tearing be combined in a smart way with implicit solvers? Linear case:

$$\mathbf{x}_{\mathbf{n}+1} = \mathbf{x}_{\mathbf{n}} + h \cdot \mathbf{A} \cdot \mathbf{x}_{\mathbf{n}+1}$$

A often large and sparse, same dimension as number of states. Procedure: perform the discretization symbolically before handing the system to the solver and perform tearing to get smaller system (the discretization formula is in-lined into the equations)

$$\begin{split} & \textbf{Mixed-Mode Integration} \\ & \textbf{Idea to combine advantages of implicit and explicit solvers.} \\ & \textbf{Split system into fast and slow part:} \\ & \dot{\mathbf{x}}^{S} = \mathbf{f}^{S}(\mathbf{x}^{S}, \mathbf{x}^{F}) \\ & \dot{\mathbf{x}}^{F} = \mathbf{f}^{F}(\mathbf{x}^{S}, \mathbf{x}^{F}) \\ & \dot{\mathbf{x}}^{F} = \mathbf{f}^{F}(\mathbf{x}^{S}, \mathbf{x}^{F}) \\ & \mathbf{x}_{n+1}^{-F} = \mathbf{x}_{n}^{-F} + \mathbf{h} \cdot \mathbf{f}^{F}(\mathbf{x}_{n+1}^{-S}, \mathbf{x}_{n+1}^{-F}) \\ & \textbf{Analyze linear situation. Use } \mathbf{P} = diag(\delta_{1}, \dots, \delta_{n}), \ \delta \in \{0, 1\} \\ & \textbf{To split up system into two parts, and discretize the fast part with the implicit Euler, the slow part with the explicit Euler method \\ & \mathbf{x}_{n}^{S} = \mathbf{P}\mathbf{x}_{n}^{S} + \mathbf{h}\mathbf{P}\mathbf{A}\mathbf{x}_{n}^{S} \\ & \mathbf{x}_{n+1}^{F} = (\mathbf{I} - \mathbf{P})\mathbf{x}_{n}^{S} + \mathbf{h}(\mathbf{I} - \mathbf{P})\mathbf{A}\mathbf{x}_{n+1}^{S} \end{split}$$

Mixed-Mode Integration

$$\mathbf{x}_n^S = \mathbf{P}\mathbf{x}_n^S + \mathbf{h}\mathbf{P}\mathbf{A}\mathbf{x}_n^S$$
$$\mathbf{x}_{n+1}^F = (\mathbf{I} - \mathbf{P})\mathbf{x}_n^F + \mathbf{h}(\mathbf{I} - \mathbf{P})\mathbf{A}\mathbf{x}_{n+1}^F$$

Add the equations and solve for x_{n+1} . For given step size h

$$\mathbf{x}_{n+1} = \mathbf{U}_{h}\mathbf{x}_{n}$$
$$\mathbf{U}_{h} = (\mathbf{I} - \mathbf{h}(\mathbf{I} - \mathbf{P})\mathbf{A})^{-1}(\mathbf{I} + h\mathbf{P}\mathbf{A})$$

Problem (tough!): split into fast and slow part to make h as large as possible such that $\rm U_h$ is stable.

Details see Schiela, Olsson: Mixed-mode integration for Real-time simulation, Modelica Workshop 2000

Mode handling II

- Set Advanced.ModeHandling = true
- Translate
- Simulate typical cases
- Translate generated model with mode information (see Dymola Manual for details)
- Simulate

Definitions

- Real-time model: computing a time interval Δt in simulation < Δt; predictable performance
- Validation: "Did we build the right system?" (is the problem solved correctly)
- Verification: "Did we build the system right?" (does solution conform to specs)
- dSPACE: manufacturer of real-time simulator
- ECU: Electronic control unit ("plant controller")
- HIL: Hardware-in-the-Loop: Plant simulated in real-time, connected to real ECU
- H/W: Hardware
- Regression testing: assure correct performance after a S/W change
- Signal conditioning: conversions between different signal types; scaling/filtering
- Simulator: Rack-mounted setup, containing dSPACE computer, signal conditioning, break out box; connected to Host PC (non-realtime)
- S/W: Software

Contro	ller software / functionality being validated
Contro	nor soltware / fariotionality being validated
	g stories (example from UTCFC early prototype of fuel cell) cite "software" bugs daily (some of them error in the Functional Requirements, not S/W !)
 Majorit 	y of "bugs" relate to VALIDATION not VERIFICATION
 HIL tes 	ting would catch many safely
June 23:	
Testing res	imed today with a light-off that triggered a high temperature shutdown on the The cause of the shutdown was an unexpected
	nto auto fuel/air control because of a missing time delay override. Subsequent attempts to restart revealed onto the high shift sed on this, a decision has been made to replace the catalyst and preparations for this replacement were made during second shift.
catalyst. Ba June 12: Yesterday's	
catalyst. Ba June 12: Yesterday's version has June 11: Fuel and aii	sed on this, a decision has been made to replace the catalyst and preparations for this replacement were made during second shift.
catalyst. Ba June 12: Yesterday's version has June 11: Fuel and aii calculation <u>New Softw</u> current shu	sed on this, a decision has been made to replace the catalyst and preparations for this replacement were made during second shift. test showed that software <u>skipped few states during normal shutdown</u> . Correction has been made to the software, and the new been checked out during second shift. It will be loaded to the test stand computer tomorrow morning.
catalyst. Ba June 12: Yesterday's version has June 11: Fuel and aii calculation <u>New Softw</u> current shu	sed on this, a decision has been made to replace the catalyst and preparations for this replacement were made during second shift. test showed that software <u>skipped few states during normal shutdown</u> . Correction has been made to the software, and the new been checked out during second shift. It will be loaded to the test stand computer tomorrow morning. calculation problem seen last night was <u>due to equation problem not software</u> . <u>Software was re-written with the correct</u> . Transition from startup leg to main leg was tested successfully. are issue was discovered when performing normal shutdown. During normal shutdown, the air flow should stop first to prevent, to down sequence stops air and fuel concurrently. No large spike was noticed on last shutdown. The team can manually drive down air

Prototype software & hardware increase risk to schedule and performance			
Driver	Consequence		
Controller hardware is pre-production	H/W performance uncertain		
Controller bandwidth approaching sample rate	Logical vs. temporal correctness critical		
S/W checkout requires 5 man-weeks	Limited regression testing done		
Limits of dynamic analysis ("desktop analysis") due to various feasibility constraints	 Exception handling not thoroughly tested Quantization errors, electrical noise, time delays neglected 		
Evaluation of new control architectures	Plant downtime, during switch-over		
Multiple ECUs	(Bus) communication critical to performance		
Faster design cycles ("concurrent engineering")	Reduced integration time, shorter turn-back cycles		

It is often the <u>Combination</u> of several effects that causes poor closed-loop performance e.g. limit cycles (oscillations)

Combined Heat and Power HIL Activity

Modeling / Hardware

- Dynamic models created in Dymola by SJTU (China)
 - Based on ThermoFluid Library (Eborn/Tummescheit)
 - $-\,$ Dynamics of system are slow enough for HIL (30-40 states, <1000r/s)
 - Non-linear equation sets are too difficult for HIL (can be fixed)...~15 numerical Jacobians!
 - Linearized single-operating-point models currently used
- dSpace single processor system used for Chiller emulation
 - Dymola -> Simulink interface to dSpace currently used
 - Dymola -> dspace interface under evaluation
- Control system re-constructed for HIL experiments
 - 40 inputs, 2 variable outputs, 8 relay outputs

Industry Example: Test Plans and Automation

Utilize the full potential: how we can employ the tool most efficiently

- Enable precise, repeatable, recorded, standardized work-flow: S/W quality
- Design for Experiment: rigorous, wide range of test scope
- Execution speed much faster without "Human-in-the-Loop"
- Implemented in Matlab (alternative would be Python)
 - flexible to handle exceptions
 - includes the test documentation
- Goals:
 - Standard regression testing in < 2 hour
 - Eliminate S/W and H/W turn-backs