
1

Hardware-in-the-Loop
Simulation & Analysis

Hubertus Tummescheit,
With material from Christoph Haugstetter

November 2003

Outline

• Achieving Real-time performance

• Numerical and symbolic techniques to achieve
real-time performance

• Fixed step solvers: implicit or explicit methods
• Tearing, inline integration
• Mixed-mode integration
• Mode handling

• Hardware-in-the-loop definitions
• Scope – what it is, what it is not

• Motivation

• Illustrate HIL effectiveness by example

• Choosing the right model for the task

• I/O scaling verification

• Start / stop verification

• Dynamic performance validation

2

Fixed Step Solvers:

Simple 1st order ODE example:

)(xfx =&

Discretize using explicit Euler:

)(1 nn xfhx ⋅=+

Discretize using implicit Euler:

)(11 ++ ⋅+= nnn xfhxx

At each time step, solve this equation for xn+1

Fixed Step Solvers:

At each time step, solve this equation for xn+1

Similar for systems of equation, but for implicit methods, use
local linearization (Jacobian)for some steps instead of non-
linear function:

)(1

1

1

1

1

1

+≈





















∂
∂

∂
∂

∂
∂

∂
∂

= n

n

n

n

xf

x

f

x

f

x

f

x

f

A

L

MOM

L

Computation time:

1. Step update (constant)

2. Update of Jacobian if needed (much longer than 1)

3

Fixed Step Solvers:

Why use implicit solvers?

• Explicit methods are unstable for stiff systems, except for very
small step sizes.

• Implicit solvers are stable for much larger step sizes for stiff
systems

• Therefore, implicit solvers may be much faster in spite of the
equation system
and the time to update the Jacobian

Tearing
Tearing of linear or non-linear system:

1

2

(,) 0

(,) ()
r t

r t t

g x x

g x x residue x

=
=

() 0g x =

1. Split the vector of unknowns into two parts called tearing
variables, xt, and the remaining variables, xr, and

2. Select some equations of g as as residue equations such that the
residues can be determined if the tearing variables are known

Usually sparse system of dimension dim(g1)+ dim(g2)
is reduced to a (usually full) system of of dimension
dim(g2).

4

Tearing Example

Simple to solve for a b c d and e when f is known. Assume f is known.
Then we can present the problem h6 (f) = 0 to a numerical solver.
Computationally hard to find good tearings. System for a,b,c,d,e might
even be linear

• Combinatoric explosion: NP-hard problem
• Pivoting to find structure?
• Users may have insight (“false dynamics”), automatic in Dymola

{

1

2

1 3

4

5

62

1 * 0

* 1 * 0

* 1 * 0

* * * 1 * 0

* * 1 * 0

* * * * 0

a b c d e f

h

h

g h

h

h

hg

    
    
         =   

   
   
      
   

Incidence
matrix

Tearing for linear systems

In the linear case above, where L is required to be
a lower-triangular, non-singular matrix, the result is
even nicer. The system can be transformed to

     =    
    

r 112

t 2 t21 22

x bL A

x b + residue(x)A A

1 1
1 1 1()− −− = −22 2 2 t 2 2 1A A L A x b A L b

L is lower triangular, so inversion of L is just backward
Substitution and can be done symbolically.

5

Inline Integration

Back to implicit solvers:

Can tearing be combined in a smart way with implicit solvers?
Linear case:

1nn1n xAxx ++ ⋅⋅+= h

A often large and sparse, same dimension as number of states.
Procedure: perform the discretization symbolically before
handing the system to the solver and perform tearing to get
smaller system (the discretization formula is in-lined into the
equations)

Mixed-Mode Integration

Idea to combine advantages of implicit and explicit solvers.
Split system into fast and slow part:

)x,(xfx

)x,(xfx
FSF

FSS

=
=

F

S

&

&

Analyze linear situation. Use
To split up system into two parts, and discretize the fast
part with the implicit Euler, the slow part with the explicit Euler
method

)x,(xfhxx

)x,(xfhxx
F

1n
S

1n
FF

n
F

1n

F
n

S
n

SS
n

S
1n

+++

+

⋅+=

⋅+=

}1,0{),,...,(1 ∈= δδδ ndiagP

() () S
n

S
n

F
n

S
n

S
n

S
n

11 ++ −+−=

+=

AxPIhxPIx

hPAxPxx

6

Mixed-Mode Integration

Add the equations and solve for xn+1. For given step size h

() () F
n

F
n

F
n

S
n

S
n

S
n

11 ++ −+−=

+=

AxPIhxPIx

hPAxPxx

()() ()PAIAPIhIU

xUx

hh

nhn

+−−=

=
−

+

1

1

Problem (tough!): split into fast and slow part to make h
as large as possible such that Uh is stable.

Details see Schiela, Olsson: Mixed-mode integration for
Real-time simulation, Modelica Workshop 2000

Mode handling

• Automatic gearbox example
• Efficient solution of linear systems of equations
• Coefficients depending on clutch switching
• Different code for each combination
• All different combinations: 2n

• Instead, determine used combinations of switches
(modes) by off-line simulation

• Speed-up: 10 times

planetary1=110/50

C4=0.12 C5=0.12

planetary2=110/50

C
6=
0.
1
2

bearing2

C
8=
0.
12

shaf tS=2e-3

S

planetary3=120/44

C11=0.12

shaftS1=2e-3

S

C
12
=0
.1
2

bearing1bearing4

7

Mode handling II

• Set Advanced.ModeHandling = true
• Translate
• Simulate typical cases
• Translate generated model with mode

information (see Dymola Manual for details)
• Simulate

Generated Model with Modes

model geartestModeValues

extends geartest;

Boolean bigModeVariables[:] = {B4.Locked, B3.logic.Locked, B1.logic.Locked, B2.logic.Locked,
C2.logic.Locked, C1.logic.Locked, C0.Locked, B0.logic.Locked, freeWheel.Locked,
LU.logic.Locked, B5.logic.Locked};

Real bigModes[13,11]={
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{ 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1},
{ 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0},
{ 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0},
{ 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0},
{ 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0},
{ 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0},
{ 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0},
{ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0},
{ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1},
{ 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0},
{ 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0},
{ 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0} };

end geartestModeValues;

8

Code Structure

if (B4_Locked == 0 AND B3_logic_Locked == 0 AND B1_logic_Locked == 0 AND
B2_logic_Locked == 0 AND C2_logic_Locked == 0 AND C1_logic_Locked == 0
AND C0_Locked == 0 AND B0_logic_Locked == 0 AND freeWheel_Locked == 0
AND LU_logic_Locked == 0 AND B5_logic_Locked == 0) {

// Solve simpler system of equations for this mode

} else {

OutputSection
DynamicsSection
Vs_u_v = A_0*sin(6.28318530717959*f_0*Time)+v0_0;
Vs_p_v = Vs_u_v;
D_n_v = C_v;

MixedSystemOfEquations(5){
/* Mode handling of an equation system */
if (D_off == 0) {
D_v = 0;
R_n_v = D_v+D_n_v;
R_v = Vs_p_v-R_n_v;
Vs_n_i = 0.1*R_v;
D_s = Vs_n_i;

}
else {
Vs_n_i = 0;
R_v = 10*Vs_n_i;
R_n_v = Vs_p_v-R_v;
D_v = R_n_v-D_n_v;
D_s = D_v;

}

MixedModeStartBoolean //
UpdateVariable(D_off, Less(D_s, 0, 0));

...

Ideal diode with Modes

InitialSection
PI_0 = 3.14159265358979;
Vs_n_v = 0;
G_p_v = 0;
C_n_v = 0;
R1_n_v = 0;

R=10 Exponential

Vs

C=
0.
001

1=
50

G

9

Speed-up with Modes

• Simulation of gearbox with 11 clutches on dSPACE
(500 Mz Dec alpha processor)

• Linear algebraic loop with 55 unknowns,
Tearing gives 23 unknowns

• Cycle time: > 2 ms

• Mode handling: 10-30 active modes
• Linear systems of sizes: 0-9
• Constant J matrices; precalculation and LU-

factorization
• Maximum cycle time: 0.18 ms

Speed-up with Modes

• Simulation of gearbox on dSPACE

• Previous average cycle time: 0.9 ms
• Previous maximum cycle time: 2.4 ms
• Previous initial set-up time: 2.5 ms

• Average cycle time: 0.15 ms
• Maximum cycle time: 0.18 ms
• Initial set-up time: 0.4 ms

10

Part II: Industrial Examples of HIL-testing

Plant

Obstacle

Vsetpoint Speed

Inertial Navigation

Ladar

Vision system

ABS braking

Throttle

Inner Loop
Controller

Outer Loop
Controller

Vref
waypoint

speed

Position
Disturbances

Decentralized Design

Path planning

Most critical Control Loops
Complex controls often have cascade architecture

11

Ensure a common vocabulary
Definitions

• Real-time model: computing a time interval ∆t in simulation < ∆t; predictable
performance

• Validation: “Did we build the right system?” (is the problem solved correctly)

• Verification: “Did we build the system right?” (does solution conform to specs)

• dSPACE: manufacturer of real-time simulator

• ECU: Electronic control unit (“plant controller”)

• HIL: Hardware-in-the-Loop: Plant simulated in real-time, connected to real ECU

• H/W: Hardware

• Regression testing: assure correct performance after a S/W change

• Signal conditioning: conversions between different signal types; scaling/filtering

• Simulator: Rack-mounted setup, containing dSPACE computer, signal
conditioning, break out box; connected to Host PC (non-realtime)

• S/W: Software

HIL definitions
A powerful, flexible tool for verification & validation of controller performance

Signal Interface

Definition. Process and tools for verifying the logical and temporal
correctness of integrated control system hardware & software.

• Control loops closed using real-time simulated plant.
• Interfaces are exercised to ensure correct system integration.
• Testing can be automated (Design for Experiments).

Signal Interface

Controller hardware

dSPACE simulated plant

HIL can also be used for:

• Automated production test
• Field service debug & test
• Calibration

12

Control System Development Process
HIL key to Validation & Verification of controlled dynamic performance

Controls
Realization FR

Controls Design

Pictures

HIL Verific
ation

Controls
Functional
Requirements

HI
L

Ve
rif

ic
at

io
n

Control System
Realization

to co
de

Code releaseHIL Validation

Controls Design Tasks

• Process control architecture
• Compensator design e.g.
lead/lag, PID, selectors
• Start / stop design
• Alarms, shutdowns, diagnostics
• Communications software

HIL Verification & Validation Tasks
associated with System Integration & Test

• Closed-loop, real-time, dynamic performance
• Start / stop verification
• Signal conditioning scaling
• Connector pin-out
• Calibration of gains

HIL is a flexible, rigorous validation & verification tool that complements
“desktop” design methods, process & tools.

Yesterday's test showed that software skipped few states during normal shutdown. Correction has been made to the software, and the new
version has been checked out during second shift. It will be loaded to the test stand computer tomorrow morning.

Fuel and air calculation problem seen last night was due to equation problem not software. Software was re-written with the correct
calculation. Transition from startup leg to main leg was tested successfully.

New Software issue was discovered when performing normal shutdown. During normal shutdown, the air flow should stop first to prevent …, but
current shutdown sequence stops air and fuel concurrently. No large … spike was noticed on last shutdown. The team can manually drive down air
flow during shutdown sequence if necessary. Software team are working hard to determine root cause and correct this issue.

June 12:

The primary objective of todays' testing was to advance through the transition from the start fuel leg to fuel flow control using the main fuel valve
(without overriding the FCV and then to hold in R65 and switch to automatic air flow control. Just like before, we overrode the FCV because the
fuel flow measurement was still reading 10 times greater than the actual flow as measured from the test stand. This discrepancy is
an issue with the software calculation which will be fixed tomorrow. The transition to main fuel valve was smooth.

• Morning stories (example from UTCFC early prototype of fuel cell) cite “software” bugs
almost daily (some of them error in the Functional Requirements, not S/W !)

• Majority of “bugs” relate to VALIDATION not VERIFICATION

• HIL testing would catch many safely

June 11:

June 10:

Testing resumed today with a light-off that triggered a high temperature shutdown on the …. The cause of the shutdown was an unexpected
transition into auto fuel/air control because of a missing time delay override. Subsequent attempts to restart revealed … onto the high shift
catalyst. Based on this, a decision has been made to replace the … catalyst and preparations for this replacement were made during second shift.

June 23:

Controls implementation / Test plan Risks
Controller software / functionality being validated

13

0.2 sec

Setpoint
Delay = 0.1s
Delay = 0.2s

6 8 time [s] 12 14

4

25

5

20

Plant in

Plant
out

9.5 10 time [s] 11
11.5

4

25

5

20

Setpoint
Response

Plant in

Plant
out

Oscillatory response caused by
additional delay in feedback loop

Motivational Example: Temporal Correctness
Computing the right answer at the right time

Why HIL? Why Now?
Prototype software & hardware increase risk to schedule and performance

(Bus) communication critical to performanceMultiple ECUs

ConsequenceDriver

Reduced integration time, shorter turn-back
cycles

Faster design cycles (“concurrent
engineering”)

Plant downtime, during switch-overEvaluation of new control architectures

- Exception handling not thoroughly tested

- Quantization errors, electrical noise, time
delays neglected

Limits of dynamic analysis (“desktop
analysis”) due to various feasibility constraints

Limited regression testing doneS/W checkout requires 5 man-weeks

Logical vs. temporal correctness criticalController bandwidth approaching sample rate

H/W performance uncertainController hardware is pre-production

It is often the Combination of several effects that causes poor closed-loop
performance e.g. limit cycles (oscillations)

14

Example High-Level H/W Setup
Signal Flow / Communication Diagram

Control Desk
(dSPACE-GUI)

Host PC

Test
Automation

Matlab

Controller
override Software
(dll only/no GUI)

ActiveX Controls
“Wrapper”

Base
Board

Controller (ECU)

I/O

I/O
CAN

TCP/IP

ModemRS-
232

RS-
485

Embedded
Controller
S/WPower

Power

Ethernet

Real-time
Simulation
of Plant

dSPACE

I/O (dig)

I/O (an)

I/O (CAN)

Sign. Cond.

0-10V 4-20mA

0-10V PWM

.

.

.

Breakout
Box

Fault
Insertion
Unit

Simulator

Real-time
Simulatio
n
of Plant

(optical)

.
.

Bus, e.g. CAN

Controls of other
subsystem

Data
Acquisition

Engineering
Terminal

Controls of other
subsystem

HIL Example 1: Scaling Tests
Static model sufficient

Real
Controller

HIL Plant Model

I/OI/O

I/OI/O

Morning Story 6/9/2003: ”… measurement was reading about 10 times greater than the
actual flow as measured from the test stand. This discrepancy is a software issue …”

Model characteristics

• “Low-level Verification (against FR)”

• Static models: potentially very fast

• Override time delays in sequence (speed up)

• All test results can be saved, together with report
(traceable, documented verification)

6040

Model applications

• Override plant model Out Read internal
controller variables (through Ethernet)

• Same setup: compare controller-internal,
calculated variables against pre-established table

• Override internal controller variables Read
plant model Inputs

• Compare controller parameters against FR

15

HIL Example 2: Sequence (Start/Stop)
Simplified Dynamics enable robust and fast performance

Morning Story 5/22/2003: ”… the associate felt an electric shock entering the right side of
his body ... indicated that 277 VAC was present …”
Morning Story 5/27/2003: ”Heaters are on when emergency shut down was triggered,
it was suspected as a software issue”

Model characteristics

• Mostly based on first-order dynamics, covering
main cross-correlations

• Suitable for start-up: radically changing physics

• Tailored to specific test objective (wide range)

• Not a detailed dynamic analysis
0 100 time [s]
500

P
-S

ta
te

,
R

-S
ta

te150

0

50

Model applications

• Verify Truth-tables, sequential correctness

• Start-value settings

• Alarms & Shutdowns in each state

HIL Example 3: Dynamic Performance
Linear Model provides high (local) fidelity

Model characteristics

• High level of dynamic fidelity of interest

• Covers second-order effects

• Fidelity is best close to linearization point

Model applications

• Verify performance of auto-tuning

• Advanced (e.g. multivariable) control concepts

• Stability of fast inner loops; timing issues

• Interaction with other subsystem controllers

Limits of Performance 5/20/2003: even small delays or imperfect tuning hurt transient
performance considerabl

Setpoint
Delay = 0.1s
Delay = 0.2s

16

Combined Heat and Power HIL Activity
Modeling / Hardware

• Dynamic models created in Dymola by SJTU (China)
– Based on ThermoFluid Library (Eborn/Tummescheit)
– Dynamics of system are slow enough for HIL (30-40 states, <1000r/s)
– Non-linear equation sets are too difficult for HIL (can be fixed)…~15

numerical Jacobians!
– Linearized single-operating-point models currently used

• dSpace single processor system used for Chiller emulation
– Dymola -> Simulink interface to dSpace currently used
– Dymola -> dspace interface under evaluation

• Control system re-constructed for HIL experiments
– 40 inputs, 2 variable outputs, 8 relay outputs

so...

si...

si...

f lu...f lu...

c... c...

c...

co...
h... chiller

T...

of ...

D...

D
...

Fl...Fl...

V...

InitV

D...

k={1.8...

Gain1

M...

Mi...Mi...
Flow ...

PI
T={10}

-

Flow ... Flo...

uMa...

Flo...

s...ch...

Industry Example: Test Plans and Automation
Utilize the full potential: how we can employ the tool most efficiently

• Enable precise, repeatable, recorded, standardized work-flow: S/W quality

• Design for Experiment: rigorous, wide range of test scope

• Execution speed much faster without “Human-in-the-Loop”

• Implemented in Matlab (alternative would be Python)
– flexible to handle exceptions
– includes the test documentation

• Goals:

– Standard regression testing in < 2 hour
– Eliminate S/W and H/W turn-backs

