
6

Design of Model Libraries

Abstract

This chapter gives some guidelines on structuring object-oriented
model libraries. There are no unique solutions to that problem, but
the idea is to capture key issues and proven solutions in a collec-
tion of Design Patterns which can be applied to other modeling prob-
lems. Design patterns are an attempt to describe “good practice” in a
semi-formal way. Most of the design patterns are applicable to mod-
eling in general, but a few are specific to Modelica or thermo-fluid
systems. Examples using Modelica and the ThermoFluid library are
used throughout the chapter to illustrate the ideas.

6.1 Introduction

Designing a user-extensible model library is different from building mod-
els for one time use. The extensibility is a feature which is not needed to
the same degree in different engineering disciplines. When modeling elec-
trical circuits, the models often consist of a large number of components,
but each component is described by a few well defined mathematical mod-
els, all of which can be made available in an extensive component library.
This means that a user typically composes system models from the library,
but has no need to alter existing models or write new ones. The situation is
different for thermodynamics and process engineering, particularly when
the scope of the models is as broad as with the ThermoFluid library. The
variety of heat- and mass-transfer equations and physical property data
is broad by itself. The number of possible variants grows exponentially
if different combinations of these are taken into account as well. Very
often, modeling requires a problem-specific simplification which does not
hold for other problems. Even a huge component library can not cover
all variants that a modeler needs for routine modeling use. A library for
thermodynamics has to be open for user defined extensions. Designing

177

Chapter 6. Design of Model Libraries

a user-extensible library in such a way that it is powerful, flexible and
easy to understand is a difficult challenge. Object-oriented decomposition
of engineering system models into subsystem and component models fol-
lows the same decomposition as that of the system itself: the elements
found on the blueprint or plant flow sheet should be library models. This
decomposition has been discussed in [Nilsson, 1993] for process engineer-
ing and in [Mühlthaler, 2000] for thermal power plants. Much more code
reuse can be achieved when the decomposition is continued to the level of
physical phenomena. Library design for reuse at the level of phenomena
is the topic of this chapter. Examples refer to thermo-fluid applications
and cover the same models as ThermoFluid. The conceptual structure is
emphasized instead of the details of the actual implementation1.

The Design Arch

Maintenance
Level of Detail

Realization

Component verification

calibration and verification
System level Integration, test

Subsystem level integration
and verification

Detailed feature design
and implementation

System requirements
mostly static models

Architectural design &
system functional design

Preliminary feature design
static and dynamic models

static and dynamic models

Product verification
and deployment

Des
ign

Desig
n R

efin
ement

Verification

Integration
C

alibration

Reuse in next p
roduct g

eneration

Sp
ec

ifi
ca

tio
n

mostly dynamic models

R
eu

se
 in

 n
ex

t d
es

ig
n

st
ep

Experience feedback

Figure 6.1 Model reuse along the design arch. The development phases are typical
for a complex, highly developed product like a car. A similar scheme is sometimes
referred to as design-V.

For an engineer, the foremost goal of a system model is to be mathe-
matically correct and to fulfill the requirements in terms of accuracy and
simulation speed. Due to the tedious work necessary to verify and vali-
date models, this is a long term process. This model validation is called
calibration in the automotive industry while the control community refers
to the same process as grey-box parameter identification. Some parame-
ters are always uncertain, so for every new system the user has to check
again if the simulation gives a “good enough” picture of reality. Parameters
have to be adapted to make simulation model output fit to measurement
data. Many engineers focus on validating and calibrating their models
and tend to neglect structuring and reuse issues. Proper code structuring

1A detailed and complete documentation is found at http://www.modelica.org/library.

178

6.2 Means for Library Structuring

has proved to increase programming productivity in software engineering.
The cyclic nature of modeling in the iterative design of technical products
from one generation to the next makes it obvious that reuse will speed
up the modeling process substantially. Looking at Figure 6.1 reveals that
there are two dimensions of reuse:

1. on the same level of detail for the next product generation and

2. along the path of the “Design Arch” in Figure 6.1, spanning different
levels of detail during the same design cycle.

The second dimension of reuse is more difficult to achieve because the
mathematical models and the time scales of interest are often different
for another level of detail of a system model. The granularity of the sys-
tem topology can vary along the path of the design process. It is common
practice to neglect components with little influence on the system dynam-
ics.

The main incentive for the development of model libraries is the cost
savings from code reuse. The estimations for the cost of software devel-
opment vary widely, in a recent report it was claimed that commercial
software goes at a tariff of USD 50 – 200 per line of debugged code. For
validated code in a modeling language, the numbers are probably higher.
This makes it obvious that validated model libraries of industrial rele-
vance are a valuable resource.

6.2 Means for Library Structuring

Code structuring has been discussed from a language perspective in Chap-
ter 3 and with concrete examples from the ThermoFluid library in Chap-
ter 5. Building on those examples, we will now illustrate how the language
tools can be used for model libraries in general. Modeling always offers
several ways to solve a problem, but in spite of the many possibilities, sim-
ilar solutions for the mathematical parts and code structuring are found
repeatedly even if the modeling languages are different. Building on power
plant library modeling in SMILE and the broader scope of ThermoFluid in
Modelica, experiences from designing object-oriented model libraries are
summarized.

The advantages of using libraries is to reuse as much well-tested code
as possible in models. This minimizes the need for extended testing. Val-
idating and calibrating a model is usually the most time consuming part
of the model development process. While there is no way to avoid the
so called calibration which consists of adapting the model parameters to
plant data via systematic or heuristic methods, testing and internal vali-
dation can be substantially reduced when well tested code is reused. For

179

Chapter 6. Design of Model Libraries

simulation of standard problems and plants, it is possible to rely exclu-
sively on tested model components. This greatly increases the trust in
simulation results.

For the ThermoFluid library, two scenarios of reuse in model develop-
ment have been considered:

• Use a partial component and complete the model by filling in the
missing pieces.

• Start from scratch and build up a model using as many base classes
as make sense.

Clearly, using partial components is faster but the partial models may
not be available. Building models from base classes is more flexible, but
takes longer and needs a thorough understanding of all used classes.
When almost complete partial models are used, a developer only needs
to know the interfaces and requirements of the missing parts. Readers
unfamiliar with object-oriented techniques are recommended to take a
look at the glossary in Appendix A in order to get an overview of the
vocabulary.

Encapsulation

Information hiding is an important principle to improve the maintainabil-
ity of programming code. The idea is that all interaction between models
occurs via well-defined interfaces. If this principle is neglected, the inter-
dependence between models is likely to increase. That in turn makes it
more difficult to change the system model and both flexibility and main-
tainability are lost. Encapsulation of operations is also a property which
makes it easier to debug faulty programs.

At first sight this may not seem like such an important issue. Experi-
ence with typical codes for engineering models in industry which evolved
over many years shows that these codes tend to mutate to almost unmain-
tainable spaghetti-code. The main problem in maintainability is undocu-
mented interdependence of different parts of the code, which is difficult to
detect. This makes it impossible to find an evolutionary solution to adapt
the code to new needs. Many companies depend on the functionality of the
code, but when the last of the original developers leaves the company, a
complete re-engineering has to be undertaken. Proper encapsulation tech-
niques make it much more likely that an evolutionary solution simplifies
the transition to new tools and methods.

Encapsulation in equation based modeling is fundamentally differ-
ent from encapsulation in object-oriented programs, where interaction is
mostly based on message passing between objects. All operations and the
data they operate on are encapsulated in objects. In equation based mod-
eling, all components of a system are linked together via a bipartite graph

180

6.2 Means for Library Structuring

that connects variables and equations of the differential algebraic equa-
tion system. This makes it impossible to speak of encapsulation of oper-
ations: an additional equation in one component can be compensated by
adding a variable in another component, if the bipartite graph connecting
variables and equations allows to match them. As an example, consider
a system of a large network of incompressible, internal flow with three
boundary conditions defining the interaction with the environment. Two
types of boundary conditions can be given: either mass flows or pressures.
One of the many possible configurations for boundary conditions is erro-
neous: when all boundary conditions are mass flows, the pressure inside
the network is arbitrary, creating a so called “floating potential” problem.

Thus it is impossible to localize the error to a specific component: any
one of the existing boundary conditions could be exchanged against a
pressure boundary condition, or an additional pressure boundary condi-
tion could be added to remedy the non-physical situation. The equation
system glues all components together in a way that the problem could be
fixed by providing a pressure anywhere in the system2.

This does not mean that attempts to encapsulate components or data
are useless or impossible. Parameters can be encapsulated in models and
access to them can be restricted. Modelica’s main tool to achieve encap-
sulation is to use connectors to couple models. But the main strength of
acausal modeling – that the direction of the information flow is not de-
termined in the model, but is derived from the boundary conditions of a
complete experiment – makes it difficult to debug models. Variables which
are equated in a connection can be calculated in the models on either side
of the connection. Therefore it can be useful to impose certain rules to
make model debugging and system composition simpler. This has been
done in the ThermoFluid library with flow models and control volumes.
Flow models never calculate the fluid properties and always compute the
flow variables in their connectors, similar rules hold for control volumes.

As in many other programming languages, readable and maintainable
program code can not be enforced by the language. Coding style is an im-
portant element to achieve safe, maintainable code, as has been pointed
out by [Summerville, 2000]. Local parameters and variables in a model
can be declared as protected, which means that they can not be accessed
by dot-notation from the outside and not be modified, see Chapter 3. This
restriction makes debugging easier and prohibits misuse of dot-notation
access. Following a design guideline consequently reduces the training
time for new users. The Balance -models in ThermoFluid take care of all

2Assuming the model has the same number of equations and variables, it has to contain
one additional equation for a mass flow as well. It is equally difficult to localize this additional
equation.

181

Chapter 6. Design of Model Libraries

interaction of a control volume with its environment. It is important that
no other functionality is implemented there, this would make it more dif-
ficult to get an understanding of the role of each model class. Due to the
acausal nature of equations it is impossible to enforce encapsulation of
equations in partial components for a library developer who provides par-
tial models. A complement that makes model usage easier is to postulate
rules for partial library models and document them extensively.

Inheritance and Aggregation

Inheritance is one of the main tools for achieving reuse both in object-
oriented software development and modeling. � Inheritance3 ensures that
code which is common to several models only appears at one place in the
source code, meaning that it only needs to be documented once and main-
tained once in case of changes. But overuse of inheritance has a few draw-
backs. Experience with the design of both software systems and model
libraries has shown that the total number of classes in overly structured
libraries becomes large. Understanding is difficult and a long learning
time is the consequence. Large libraries can not be avoided for complex
systems and a broad application scope, but often the large number of
classes is caused by too extensive use of inheritance. If all variants of a
class of models are derived via inheritance of a base class, many classes
are needed. � Aggregation, on the other hand, makes it possible to add
small units of functionality as needed. The difference in complexity be-
comes obvious when combinations of these different units are considered.
This will be demonstrated with an example from the ThermoFluid library.
The problem is to provide base classes for flow models with one inflow
and one outflow e. g., distributed pipe models, but also lumped stirred
tank reactors. We consider four optional phenomena which may or may
not be required in the model:

• heat transfer interaction,

• dissipative work interaction from a stirrer,

• chemical reactions,

• diffusion through a membrane adjacent to the control volume.

Two alternative designs are considered, one which only uses inheritance
and another option which uses both inheritance and aggregation. The
class structure of both alternatives is illustrated in Figure 6.2 and Fig-
ure 6.3. The usage of the resulting library models is slightly different, so
the figures do not cover the same ranges of model behavior.

3First occurrences of important terms defined in the glossary are marked with a triangle
and typeset in � slanted .

182

6.2 Means for Library Structuring

TwoPort

TwoPortHeatTransfer

TwoPortWork

TwoPortReaction

TwoPortDiffusion

TwoPortHTAndReaction

TwoPortHTAndDiffusion

TwoPortHTAndWork

TwoPortWorkAndDiffusion

TwoPortWorkAndReaction

TwoPortReactionAndDiffusion

TwoPortRAndDAndHeatTransfer

TwoPortRAndDAndHTAndWork

Figure 6.2 Design alternative for TwoPort bases classes using only inheritance.
Not all possible combinations are included. The picture makes it obvious that in-
heritance does not lead to a simple library structure.

Figure 6.2 demonstrates what happens when only single inheritance is
used to provide base classes of many model variants which in principle can
be combined in an arbitrary fashion. In spite of the large number of classes
in the graph, not all possible combinations are present, other combinations
are included even if that particular combination is very unlikely to occur
in practice. For example, a control volume with both dissipative work and
membrane diffusion is very unusual in practice, but from a systematical
point of view it should be part of the class structure. It should be kept in
mind that none of the classes in Figure 6.2 implements any specific heat
transfer or reaction mechanism, they just provide the interfaces.

Figure 6.3 shows the structure of the actual implementation in Ther-
moFluid, see Section 5.4 for more details. It uses a combination of sin-
gle inheritance, aggregation and class parameters to achieve a structure
which is both powerful and simple. Inheritance is used to specialize a
general TwoPort to a TwoPort with heat- and mass transfer interac-
tion. A TwoPort can be used as a base class for models with one inflow
and one outflow, but also for more complex subsystems with one inflow
and one outflow, e. g., a drum boiler composed of several simple models.
TwoPortWithInteraction does not make sense as a base class for a subsys-
tem, but it can be used for control volumes of different types. The instance
of a HeatAndMassInteraction model contained in TwoPortWithInteraction

183

Chapter 6. Design of Model Libraries

is replaceable, so that simple cases (only heat transfer) don’t need to have
parts which complicate matters, like reactions. Because membrane diffu-
sion is the least common type of interaction, the diffusion-connector is not
present in the default case. The example illuminates different features of

TwoPort

TwoPortWithInteraction
+hmi: HeatAndMassInteraction

HeatAndMassInteraction
+heatFlow: connector
+reaction: connector (optional)
+work: connector (optional)
+diffusion: connector (optional)

Replaceable

TwoPortHeatAndReaction
+heatFlow: connector
+sr: SimpleReaction
+connect(heatFlow,hmi.heatFlow)
+connect(sr.reaction,hmi.reaction)

SimpleReaction
+reaction: connector

Replaceable

Figure 6.3 Design alternative for TwoPort bases classes using a combination of
aggregation, inheritance and class parameters. The graphical notation is explained
in Appendix A

.

code reuse using inheritance and aggregation and it also shows that the
border between these cases is floating. Generalizing, it can be claimed
that

• Inheritance fits very well the paradigm of starting with a very gen-
eral model which is then specialized step by step.

• Aggregation is useful to cope with optional features which can occur
in many combinations.

• Class parameters, discussed in more detail in Section 6.2 can help
to keep the simple cases simple while keeping the option for more
complex models.

The usage of multiple inheritance (MI) is haunted by the rumor that
it adds more complexity than benefits. Multiple inheritance always adds
complexity and some possible semantic pitfalls demand more coding disci-
pline. There are however situations when a solution using multiple inher-
itance is simpler than other alternatives. As many tools for code structur-
ing, multiple inheritance has to be used with care. There are also some
fundamental differences between multiple inheritance in programming
languages compared to an equation based modeling language. Repeated
inheritance of the same base class via two inheritance paths, see Fig-
ure 6.4 is problematic in some object-oriented programming languages,

184

6.2 Means for Library Structuring

VariableRecord
+Real a, b, c

Equations_a1
+equation_for_a(a)

Equations_a2
+equation_for_a(a)

Equations_bc1
+equation_for_bc(b,c)

Equations_bc2
+equation_for_bc(b,c)

Variant_1 Variant_2

Variant_4Variant_3

Figure 6.4 Repeated inheritance of the same base class VariableRecord by model
variants one through four. Numerical and other modeling issues can be a reason for
having different implementations of some equations. When several possible imple-
mentations exist and there are good reasons to combine them in a “mix and match”
manner, multiple inheritance gives a compact solution.

but does not pose problems in Modelica. Two issues have to be kept in
mind with MI in Modelica:

• When declarations with identical type and variable name are found
in two base classes, these have to be identical in all components,
including modifications. This is a consequence of merging repeated
declarations into one without preferring any of them.

• Repeated inheritance works only for classes that do not have any
equations (except the definition equations in modifications, which
have to be identical and are merged into one equation), because
including the same equation twice in a model is always a mistake.

Many of the problematic sides of multiple inheritance do not exist in
Modelica due to different semantics, others are easy to avoid. In summary
the reasons for using multiple inheritance in Modelica are:

• Ease of combination of � polymorphic implementations. For equa-
tion based modeling this means different equation implementations
for the same set of variables. These might have different ranges of
validity or numerical properties.

• For so called � mixin classes: behavior which is not always needed
can be added by inheriting from one additional base class.

185

Chapter 6. Design of Model Libraries

• Separate the graphical representation from the implementation. This
can be used to customize graphical plant schematics, recreate the
visual appearance of other simulation programs and similar goals
without affecting the model behavior.

EXAMPLE 1—MULTIPLE INHERITANCE

As an example we compare the use of MI with other design options which
fulfill the same requirements. Alternative designs will be discussed for a
situation similar to Figure 6.4, but with more variants. It is assumed that
three alternatives each exist for four equation parts which all operate on
the same set of twenty variables, giving a total of twelve partial models.
The parts implement different physical features. Some of the features
are optional, some can be implemented in different ways. Each of the
partial models implements a feature with a few equations using a subset
of the common variables. For simplicity it is assumed that all possible
combinations make sense from a modeling point of view, giving a total
of 34 = 81 possible combinations. The following design alternatives are
considered:

Multiple inheritance. With multiple inheritance, twelve base classes
are needed, giving an inheritance structure similar to Figure 6.4.
The more common of the 81 cases can be provided as ready-to-use
models, the others can easily be programmed when needed in a
“some-assembly-required” fashion.

Single inheritance. Providing 81 classes using only single inheritance
results in much redundant code and many classes, so this alternative
can be ruled out.

Component aggregation with connectors. An alternative is to model
the partial behavior in twelve components. If all information propa-
gation between the components uses connectors, six connector types
are needed and overlapping parts of the twenty variables have to be
present in each component. In many cases this gives a lot of over-
head which hinders readability. All interaction between components
is made explicit with connections.

Component aggregation and modifications. Modifications are used
in Modelica to propagate variables from a main model into its com-
ponent models. Interaction between the container model and the
components is achieved via using the propagated variables in equa-
tions. Compared to multiple inheritance, the modification code is
additional overhead.

186

6.2 Means for Library Structuring

The actual design of a similar case in ThermoFluid are the control vol-
ume models which make use of a mix of all four structuring alternatives,
taking advantage of their respective strengths and weaknesses. A few
guidelines can be deduced from the experiences with ThermoFluid:

• It is practical to have optional parts as components because they
can be added later on at any time.

• Multiple inheritance is advantageous for parts with a variety of im-
plementations which can be mixed and matched in many combina-
tions. This means also that multiple inheritance is only used to split
the implementation of complex physical phenomena inside a single
piece of equipment into more manageable parts, but not on the level
of system composition.

• Mix-in behavior is a good case for multiple inheritance. In Ther-
moFluid, the initialization can be regarded as mix-in behavior and
is added to the main model with multiple inheritance.

• System composition is always done by aggregation of engineering
components using connections for the information exchange.

• Model parts which should be encapsulated can be put into a compo-
nent. The component can be part of a model which is then used in
multiple inheritance.

• Single inheritance and specialization of the child class should be
used to finalize a partial model. A control volume class is complete,
but some important high level parameters have to be specified for
the final model: the type of fluid, the geometry, the heat transfer
equation and similar details are defined in a child class using mod-
ifications.

Splitting up the implementation of the equations into different submod-
els does neither contradict nor enhance encapsulation, because the graph
structure of the equation system is largely independent from the compo-
nent structure anyway.

A known problem of multiple inheritance, name clashes and unin-
tentional merging of variables with equal names, is easier to avoid in
Modelica than in traditional programming languages. The Modelica type-
system combined with coding discipline make such errors unlikely: two
variables typed as SIunits.Pressure and Real but both named p will
cause an error. When both variables are of type Real this results in an
unwanted merge of the definitions. When all physical variables make use
of Modelica’s fine-grained typing, such errors are very unlikely to occur.

From a structuring viewpoint, multiple inheritance is closer to aggre-
gation than to single inheritance because it makes it possible to treat

187

Chapter 6. Design of Model Libraries

parts of the model behavior as optional. The parts can then be assembled
as needed. In object-oriented programming this use of multiple inheri-
tance is called “mixin” class. A detailed example of the use of multiple
inheritance and aggregation in ThermoFluid is found in Section 5.4. Simi-
lar structural designs can in principle be achieved with aggregation from
components and multiple inheritance. The difference is the way the parts
interact:

• When model parts are assembled using multiple inheritance, all in-
teraction is implicit in the equations. Interaction is hidden in the
bipartite graph that connects variables and equations. Some of the
variables have to be present in more than one base class.

• For aggregation, there are three options of interaction:

– equations in the container model that access variables in com-
ponent models using dot-notation,

– propagation of variables from the surrounding model to the
components using modifications.

– use of connectors and connections, either between components
or from the surrounding model to a component.

The last option is the most explicit way of interaction. Connectors
result in a lot of overhead for small components with only one or
two equations. Components with dot-notation can make equations
difficult to read.

In Modelica multiple inheritance often increases the readability of the
models because it results in compact code. As [Abelson et al., 1985] put
it: “programs must be written for people to read, and only incidentally for
machines to execute”. This holds equally for modeling languages. A dis-
advantage shared by both methods of aggregation and inheritance is that
it can be difficult to get an overview over the complete set of equations
that form the model. An editor that has the possibility to show the “flat-
tened” code and merges all declarations and equations from base classes
and components would overcome this drawback.

Class Parameters

Mathematical models evolve partially before and partially in parallel to
building prototypes of the real system. This parallelism requires models
which are flexible to quickly answer questions that come up during the
design process. The most important feature to adapt models to changing
needs is flexibility of the model development process. The responsibility

188

6.2 Means for Library Structuring

for achieving this flexibility is shared between the modeling tool, the mod-
eling language and the libraries4. A Modelica feature that promotes flex-
ibility is the concept of generic classes, usually called � type parameters
or � class parameters. Using type parameters, models become polymor-
phic, meaning that they can represent different behavior depending on
the value of the type parameter.

Type parameters are different from aggregation and inheritance be-
cause they do not only provide flexibility during the model development,
but they also keep a model flexible all the way to the model user. A com-
plete model ready for � instantiation can represent vastly differing behav-
ior depending on the chosen type parameters. This illustrates the close
connection between language issues and tool issues with respect to model
flexibility: a type parameter can select a linear model instead of a non-
linear one, but a tool can equally well automate that process. From a user
perspective it may not make a difference whether the linearized model is
generated by the tool or built into the library.

For model library design, the first task is to identify the model parts
or subsystems which should be kept exchangeable. In the ThermoFluid
library, three types of submodels are kept as replaceable models:

• the fluid property calculation in the Medium type parameter,

• equations for heat transfer and

• friction pressure drop equations

Replaceable functions are a special case of generic classes. They are ap-
proximately equivalent to virtual methods in object-oriented programming
languages. Replaceable functions are useful to keep the implementation of
functional computations with given input-output relations exchangeable.
A good example for a replaceable function is the computation of the isen-
tropic change of enthalpy for turbines, valves, pumps and compressors.
No matter in what equipment it is used, it always takes the inflow specific
entropy and the outflow pressure as input arguments and it returns the
corresponding specific enthalpy.

Type parameters are used in component modifications for propagating
a type into hierarchical submodels in the same way as ordinary parame-
ters are propagated. This is a very powerful feature that makes complete
system models polymorphic. It is also the safest way to make sure that
a type change is introduced consistently at all places where it has to be
introduced. An example is a refrigeration system which can be used with
different types of refrigerant, e. g., R134a and R22. A user can change the
refrigerant type at the system level and the changes are propagated into
all components and subcomponents, as illustrated in Figure 6.5.

4A more detailed look at modeling tools is outside the scope of this thesis.

189

Chapter 6. Design of Model Libraries

Capillary Tube

Compressor

RefProps

RefrigerantProperties

Condenser

E
va

po
ra

to
r

q,T

q,T

Environment
C

ab
in

et

Figure 6.5 A refrigeration system is a prototype case where type parameter prop-
agation makes the model very general. The type parameter for the refrigerant type
is propagated down to all levels of the component hierarchy where a fluid property
model is needed.

A requirement for building such systems is that the components or
types which are going to be redeclared have been declared as replaceable
to begin with.

6.3 Design Patterns for Modeling

Software design borrowed the notion of design patterns from architecture:
there it has been in use for a long time to transfer knowledge and proven
solutions to new generations of architects. Design patterns in mathemati-
cal modeling address recurring modeling situations by using a library de-
sign or modeling language idiom that helps to solve that modeling problem
efficiently. The idea is to capture a structuring concept in a catch-phrase
that is easy to remember. A design pattern should be sufficiently abstract
to apply to many different situations, yet concrete enough to make its
application to a particular problem situation obvious. Design patterns for
software have been characterized into three categories: Creational Pat-
terns, Structural Patterns and Behavioral Patterns. Mathematical models
have rich dynamics, but the run-time code structure of dynamic models
is completely static. Creational patterns are not yet implemented for this
type of engineering modeling. Some simulation environments with a focus

190

6.4 Structural Design Patterns

on discrete event systems permit to create and destroy objects with con-
tinuous states during simulation runtime. Usually these are very simple
models with few states which are integrated with their own instance of
an explicit Euler or Runge-Kutta integrators, e. g., a car on a highway
section.

Assuming that the scope and equations of the mathematical models
in the library are clear, the task of library design is to divide the models
into building blocks with well-defined interfaces, similar to Figure 6.6.
Coding guidelines for structuring system models can be classified into
two categories:

• Structural Patterns for code reuse. These can be classified as
physical patterns that abstract physical behavior and topology pat-
terns reflecting system structure.

• Numerical Patterns that make sure that solution methods can
deal with the models as effectively as possible.

The possibilities for design patterns are closely tied to the features of
the modeling language. The existence of equations as independent entities
in the language can be seen as a pattern for modeling. The flow -prefix
in Modelica is a kind of design pattern, derived from a generalization
of Kirchhoff’s law for electrical circuits to all modeling domains where
flows of force, torque, mass etc. follow the same semantics. Consequently,
some of the following patterns are specific to Modelica, but others are
completely independent of the modeling language and apply equally to
FORTRAN subroutines used in a legacy simulator. This holds mostly for
the numerical patterns.

6.4 Structural Design Patterns

In mathematical modeling of systems there are two structures that de-
sign patterns can refer to: the inheritance based class structure and the
mathematical structure of the equation system. The class structure is
responsible for achieving code reuse and the mathematical structure is
important for computational performance. Most people with experience
in mathematical modeling do not at the same time have a background
in software engineering. The software design motivated design patterns
should therefore be suitable for non-programmers and straightforward to
use. The simplicity for the model user is not so much a question of the
complexity of the underlying implementation but of how well the simula-
tion tool wraps the concept into an intuitive user interface. Some of the
following simple patterns are well known since years and used by many

191

Chapter 6. Design of Model Libraries

Figure 6.6 Design patterns: Finding abstractions in a class of technical products
which are useful jigsaw pieces in many contexts.

modelers, but usually patterns which are well known in one engineering
domain are ignored in other domains where they are equally useful.

Unfortunately, many of the design patterns depend both on the expres-
siveness of the modeling language and the capabilities of the modeling
tool. The following design pattern assume Modelica 2.0 as the modeling
language and Dymola as the simulation tool. The patterns are extracted
from the experiences of developing the ThermoFluid library and not meant
to be complete for other engineering domains. Especially the numerical
patterns represent the most common pitfalls for non-experts in simula-
tion. Our experience is that 80 % of the questions and problems arising
from the use of ThermoFluid would have been avoided if all users under-
stood these numerical pitfalls. The remaining 20 of support requests were
caused by “chattering” of discrete modes, an as of yet unsolved problem
of combined continuous and discrete simulation, see Section 2.1.

Physical Patterns

Many attempts have been made to make modeling a more systematic ac-
tivity. All of these attempts emphasize the importance of identifying the
driving forces or potentials and flows. If models are split into submodels
and the connections between these submodels are abstracted to have zero
volume, then the driving forces on both sides of the connection are equal
and the flows are equal in magnitude but opposite in sign. This flow se-
mantics is found in all areas of physical modeling, they have among others
been used in Bond Graphs and the many extensions to Bond Graphs that
try to extend Bond Graphs beyond energy flow, see e. g., [Cellier, 1991]
and [Gawthrop and Smith, 1995]. A recent attempt to develop systematic
rules for physical modeling which can be seen as physical design patterns

192

6.4 Structural Design Patterns

is elaborated in [Weiss and Preisig, 2000].
Flow semantics are not common in other thermo-hydraulic simulation

tools, but using flow semantics makes a significant difference for model
reuse. For the ThermoFluid library it simply means that a 1-to-5 flow
splitter can be realized by attaching 5 flow models to a control volume
model. No extra model is needed and due to the flow semantics the mass
and energy balances are fulfilled.

DESIGN PATTERN 6.1—FLOWCONNECTOR

Use Modelica flow semantics for transport of conserved quantities for all
physical connectors between subsystems. *

EXAMPLE 2—FLOW SEMANTICS

The ThermoFluid library uses flow semantics for three flow types: vector
of component masses, flow of enthalpy and flow of momentum. The usage
of flow semantics makes it in most cases unnecessary to have models for
flow junctions. Splitting a flow into many smaller ones is simply done by
using a one-to-many connection.

Using flow semantics for mass and energy flows avoids errors and reduces
the number of classes needed. It also works for momentum flows for simple
cases, but due to the simplification of the three-dimensional momentum
vector to a scalar, connections with an angle different from 180○C have
to be modeled with a detailed model instead of just connecting the flow
channels.

Topology Patterns

DESIGN PATTERN 6.2—CONNECTORSET

Provide models with typical connector configurations as base classes. Im-
plement the physics inside them in derived classes. *
This design pattern is very basic and has been used in all engineering
Modelica libraries, for example:

• TwoPin is a base class for electrical models such as resistors, ca-
pacitances, diodes and many other models,

• TwoFlanges are base classes to all rotational, one dimensional me-
chanical models with two flanges,

• TwoPorts are the base classes in ThermoFluid with two flow connec-
tors like pipes, valves or pumps.

Similar base classes exist also for other libraries. These base classes are
reused using single or multiple inheritance in the base classes.

193

Chapter 6. Design of Model Libraries

DESIGN PATTERN 6.3—TYPERECORD

Collect the set of variables and record-components that define type com-
patibility in a record class. Classes which belong to this type compatible
set shall inherit from this class. *
TypeRecord is a simple means to ensure type compatibility among a group
of models where a basic, simple model is designed to be replaceable by a
more complex one if needed. The TypeRecord is used as the constraining
class in the declaration of the replaceable component or class.

EXAMPLE 3—TYPE RECORDS

Many classes in the package CommonRecords are designed as TypeRe-
cords: collections of variables that characterize a group of models. The
class StateVariables_ph defines type compatibility for all fluid property
models using pressure p and specific enthalpy h as inputs to the medium
property calculations. The TypeRecord makes it easy for other develop-
ers to write fluid property models which can replace an existing property
model in ThermoFluid without any adapters or interface code. TypeRecord
is a fundamental pattern for polymorphic model implementations in Mod-
elica.

DESIGN PATTERN 6.4—CONSISTENCYMODEL

Collect sets of data, functions and equations that have to stay together
for consistency reasons in one replaceable model. *
This pattern is similar to class design in object-oriented programming.
In mathematical modeling there are also cases where several functions
operate on the same set of data. If these functions should be replaceable,
they should by designed in such a way that it is not possible to replace
parts that render the whole model inconsistent.

EXAMPLE 4—CONSISTENT REDECLARATION

High accuracy property functions consist of a large number of parameters
describing a non-linear thermodynamic surface. Many functions make use
of this data: if e. g., a function for the speed of sound and one for the specific
heat capacity are needed within the same model, the unit of redeclaration
should comprise both the functions and the parameters.

DESIGN PATTERN 6.5—PARAMETERLIFTING

This pattern ensures that consistency constraints between parameters are
enforced when propagating parameters into submodels. *
Geometrical parameters at the interface between two components obvi-
ously have to be consistent in both models. This can be achieved with

194

6.4 Structural Design Patterns

parameters in connectors – an assertion is generated to make sure that
both parameters are identical on both sides of the connect. However, this
would lead to a large number of connectors. A better solution is to make
the container model responsible for consistency of the parameters. This is
best demonstrated with an example.

EXAMPLE 5—PARAMETER PROPAGATION

A heat exchanger in ThermoFluid is composed of a discretized control vol-
ume on the hot side, one on the cold side and a solid wall separating them.
We assume a tube-and-shell configuration with a cylindrical shell and ten
straight tubes. For simplicity, the heat capacity of the outer cylinder is
neglected. The given data is:

component dimension symbol

tube bundle number of tubes N
tube bundle inner diameter di

tube bundle outer diameter do

tube bundle length l
tube bundle density ρ
tube bundle specific heat capacity cp

shell cylinder length L = l
shell cylinder inner diameter Di

The heat capacity of the simplified single tube wall is computed as

C = N l 0.25π (d2
o − d2

i)ρ cp.

The volume of the shell side of the heat exchanger is computed as

Vshell = L(π D2
i − N π d2

o)/4

similar expressions hold for other parameters. This re-parameterization
has to make sure that:

• All low-level parameters are assigned in modifications to avoid pos-
sible sources of errors when setting such values by hand.

• Parameters shared by several components are consistent.

• The top level parameters that a user has to specify are easily acces-
sible from component blueprints.

This may seem to be a trivial issue. However, it is very easy to overlook
such parameter dependencies and it is a common source of errors in com-
ponent based modeling.

195

Chapter 6. Design of Model Libraries

6.5 Numerical Design Patterns

Numerical design patterns address typical numerical pitfalls when text-
book equations are used in modeling code. There are many books on nu-
merical mathematics, e. g., [Press et al., 1986] and [Hairer and Wanner,
1996], but they usually do not address the numerical problems in sys-
tem simulation. The task of a model library designer is to identify typical
pitfalls in a domain and provide library models that avoid them. For non-
obvious pitfalls the library designer should go as far as to discourage the
user to run into them when building models.

In order to be numerically robust, library models should not contain
code that may cause problems. In practice, this can not be achieved com-
pletely, because many problems are not manifested before a complete
model is assembled. Many of the following problems could automatically
be detected by tools and warnings could be issued

DESIGN PATTERN 6.6—SINGULARITYCHECK

Make sure that functions with singular points or singular derivatives
which are non-physical due to simplifications are regularized properly.

*
Many empirical models return physically meaningless values or have sin-
gularities outside their region of validity. For simple system models it
is often not justified to model the regions in detail, but it increases the
robustness and usefulness of the model if the results are qualitatively cor-
rect and the numerical singularities are taken care of. This is sometimes
a hack for physical models, but often an unavoidable compromise to keep
system models simple. Physical correctness outside the region of validity
of the model is sacrificed as long as the qualitative behavior is still correct
and larger robustness of the model is obtained.

EXAMPLE 6—SQUARE ROOT FUNCTIONS

A notorious problem in modeling of flow resistances is the use of empir-
ical or semi-empirical flow resistance formulas involving the square root
function. An example is a formula derived for turbulent flow with high
Reynolds numbers, for which the behavior is often extrapolated to low flow
speeds when the exact behavior at low speeds is not irrelevant. They trig-
ger a standard problem when Newton-Raphson algorithms are used for
solving non-linear equations. In its simplest form, pressure loss formulas
can be written in the following form:

f (∆p) = ṁ− k sinn(∆p)
√

ρ abs(∆p) = 0 ∆p = p1 − p2

Assume that the ∆p has to be calculated from the above equation, e. g.,
in a zero-volume T-junction, see Section 5.8. Successive approximations

196

6.5 Numerical Design Patterns

to the solution of f (∆p) are obtained from the following iteration:

∆p j+1 = ∆p j + f (∆p j)
V f (∆p j)
V∆p j

� ∆p j + f (∆p j)
∆ f (∆p j)
∆(∆p j)

The step sizes of the Newton method depend on the approximated or
analytically computed derivative of f (∆p) with respect to ∆p. For ∆p
close to zero the derivative goes to infinity and the step size goes to zero.
This means that the iteration progresses very slowly. This phenomenon
is sometimes called inflection because it occurs at inflection points of a
curve with an infinite derivative at that point.

The singularity of the pressure drop function near the origin has no
physical significance. Therefore it is perfectly reasonable to replace the
singular formula with an approximation that does not cause numerical
problems. The approximation should of course be correct qualitatively and
it should not influence the system behavior more than necessary. In the
ThermoFluid library, third order polynomials are used in a neighborhood
around zero flow. The polynomial coefficients are chosen such that the
overall function is continuous with continuous derivatives.

EXAMPLE 7—THE LOG-MEAN TEMPERATURE

Another example where a careful implementation is needed is the log-
mean temperature difference, ∆Tlm which has a statically correct behavior
for heat transfer in heat exchangers. This means that heat transfer is
calculated based on:

∆Tlm =
∆T1 − ∆T2

ln(∆T1/∆T2)
where ∆T1 is the temperature difference at one end of the heat exchanger
and ∆T2 is the temperature difference at the other end of the heat ex-
changer. Dynamically and under start-up conditions, the temperature gra-
dients can be reversed for short times. It does not make sense to use the
log-mean temperature difference when the signs of ∆T1 and ∆T2 are dif-
ferent. A numerically robust implementation has to take care of this case,
too. Singularities or numerical ill-conditioning occur when:

• ∆T1 � ∆T2 and

• either ∆T1 � 0 or ∆T2 � 0.

The singularities near zero can be treated in the same way as the flow
singularity above, the case of ∆T1 � ∆T2 can according to [Mattsson, 1997]
be treated as follows. When h∆T1 − ∆T2h < max(h∆T1h, h∆T2h) it is better

197

Chapter 6. Design of Model Libraries

to use the Taylor expansion

∆Tlm = 0.5(∆T1 + ∆T2) �
(

1− 1
12
(∆T1 − ∆T2)2

∆T1∆T2

[
1− 1

2
(∆T1 − ∆T2)2

∆T1∆T2

])

Scaling and normalization are important techniques which traditionally
are used to improve numerical calculations. It is often advantageous to use
dimension free variables and parameters. Many design patterns for model
derivation are based on scaling and normalization. Many books on mod-
eling elaborate on scaling and dimension-free quantities as fundamental
modeling techniques, see e. g., [Lin and Segel, 1988]. Different engineer-
ing domains have different traditions regarding these techniques: in some
domains it is common to always normalize models, in others unscaled
values are used. Normalization is not common in thermo-fluid systems
and process engineering and therefore ThermoFluid uses non-normalized
quantities.

Some types of numerically motivated scaling have to be done by the
model developer, for example the following:

DESIGN PATTERN 6.7—SCALING

Scale extremely nonlinear functions to improve numerics. *

EXAMPLE 8—SCALING OF EXPONENTIAL FUNCTIONS

Chemical equilibrium reactions often contain exponentials of temperature
functions as the equilibrium constant. The dissociation of hydrogen at high
temperatures, 1

2 H2 1 H, can be described by the following equations:

k = 2.6727− 11.247
T

− 0.0743 T + 0.43170 lon(T)+ 0.002407 T2

xH =
√xH2√

p
ek

where xH is the mole fraction of atomic hydrogen, xH2 is the mole fraction
of molecular hydrogen, p is the pressure in atmospheres and T is the
temperature in Kelvin. At low temperatures, the mole fraction of atomic
hydrogen is extremely small. The second equation is scaled by taking
logarithms. This can be achieved by introducing scaled variables, e. g.,
lonxH = lon(xH). At 1 atmosphere and 280 K, the ratio of the left- and
right hand side of the equations is 1.3� 1075 in the non-scaled variables.
This ratio reduces to 172 when logarithmic scales are used.

Scaling of variables and equations can also be done by the tool, but the
tool needs to have information about the ranges and the nominal values
of the variables.

198

6.5 Numerical Design Patterns

DESIGN PATTERN 6.8—VARIABLERANGES

Set tight minimum and maximum and accurate nominal values for all
physical variables. *
Accurate minimum, maximum and nominal values can help numerical
routines to find the solution and improve the numerical conditioning.
Making sure that ranges are set as accurately as possible is thus a part
of careful modeling. Many models have mathematically correct solutions
which are physically meaningless. Equations for chemical equilibrium al-
ways permit solutions with negative concentrations which do not make
sense physically. Limiting the search for solutions of nonlinear solvers to
the physically meaningful ranges reduces the number of failures and the
need for users to provide good initial guess values.

Nominal values are for example important to determine how pertur-
bations should be chosen for numerical linearization of a model.

DESIGN PATTERN 6.9—SMOOTHING

Piece-wise and discontinuous function approximations which should be
continuous for physical reasons shall be smoothened. *
In physical modeling it is common to have empirical or semi-empirical
formulae that approximate measured data. Non-dimensional numbers are
used to describe a given problem with a few parameters. In fluid flow
there are many relations for turbulent or laminar flow with considerable
uncertainty in the transition.

EXAMPLE 9—HEAT TRANSFER EQUATIONS

Convective heat transfer with outer flow perpendicular to a cylinder is
characterized by the following empirical equations:

Nulam = 0.664Re1/2Pr1/3

Nuturb =
0.037Re0.8Pr

1+ 2.443Re−0.1(Pr2/3 − 1)

These formulas are combined as

Nu = 0.3+
√

Nu2
lam + Nu2

turb

10 < Re < 107, 0.6 < Pr < 1000.0

with an offset for low Reynolds numbers. The weighted mean is continuous
and continously differentiable except at the origin. If this formula is to
be used for plant startup, Re = 0, design pattern 6.6 SingularityCheck

199

Chapter 6. Design of Model Libraries

should be used to make the formula robust at zero flow speed. Note that
in this case smoothing acts like a weighted summation because the total
Nusselt number is always larger than any of the parts.

The following two design patterns deal with the stiffness of the resulting
equation system, see Chapter 2. Stiffness is often the result of composing
a system from subsystems. Therefore it is not possible to avoid all stiffness
problems with library models. Choosing a solver that can deal with stiff
equations may not necessarily be the best solution. Making the equation
non-stiff speeds up the solution considerably and broadens the range of
applicable solvers.

DESIGN PATTERN 6.10—TIMECONSTANTSELECTION
Make a problem non-stiff by using a steady-state assumption (singular
perturbation technique) when the fast dynamics of the system are not of
interest. Make a problem non-stiff by approximating very slow dynamics
with constants. *
Typical examples of this technique are given in Chapter 4, the assump-
tion of chemical equilibrium for fast reactions in Section 4.9 and using
the quasi steady-state assumption for the momentum balance of fluids
in Section 4.3. The assumption of taking the volume of a control volume
to the limit of zero, used in Section 5.8 for T-junctions, is based on the
same considerations. This example demonstrates that the decision to use
a control volume model with or without dynamics has to be done on the
system level by the model user. A related technique is to replace very slow
dynamics like fouling with a constant. Modelers should be aware of the
fact that it only makes sense to look at a limited range of system time
constants at a time. This is reflected in the name to this design pattern.

DESIGN PATTERN 6.11—EASINGSTIFFNESS
Render a problem less stiff by making the time constants of the fast dy-
namics slower. *
This design pattern has been used for modeling of turbines in power
plants, see [Thumm, 1989]. This particular way of dealing with stiffness is
better than removing the fast states is explained in Section 5.8. The dis-
advantage of a singular value perturbation in the steam turbine example
is a non-linear equation system involving all tap-off mass flows and pres-
sures in the turbine. This is a purely numerical motivation for knowingly
altering the dynamics of the real system. Under certain circumstances,
this is a reasonable solution:

• Removing the fast states by a singular perturbation leads to numer-
ical difficulties, typically non-linear equations which can be difficult
to solve, especially at initialization time.

200

6.5 Numerical Design Patterns

• The dynamics after changing the time constants are still much faster
than the dynamics of interest.

• The change of the time constants makes the equation system solv-
able by solvers for stiff differential equations.

This technique can also be used to decrease model stiffness in order to
use explicit solvers for hardware-in-the-loop simulation. In the case of the
steam turbine discussed in Section 4.7, the ratio of the largest to smallest
eigenvalue was changed from 106 to 100 without a noticeable influence
on the dynamics of interest. From a control perspective this means that
the model is rendered numerically tractable by changing it outside the
frequency range of interest.

The design patterns EasingStiffness and TimeConstantSelection are
addressing the same problem but suggesting different solutions. This
shows that experience is needed to choose the best solution. In many
cases both of the above methods will work well with similar performance,
in other cases one of the methods is clearly superior to the other.

DESIGN PATTERN 6.12—FULLYSYMBOLICCODE

Make sure that symbolic derivatives are available for all model parts, in-
cluding external functions. This improves the solution of non-linear equa-
tion systems and enables automatic index reduction. *
This design pattern is specific to tools which support symbolic manipu-
lation of the model code like automatic index reduction and automatic
differentiation, but require that all model equations and functions are
differentiable. This is the case in Dymola, MathModelica, ABACUSS II
and to some extent gPROMS. High index problems, compare Section 2.1,
arise when algebraic equations constrain states to a manifold defined by
an algebraic equation. Object-oriented model composition goes hand-in-
hand with the need for automatic index reduction, because the constraint
equations are the equations generated from a connect statement. An algo-
rithmic way to reformulate the model to an equivalent problem with index
one is based on the symbolic differentiation of the algebraic equation. Due
to the complexity of object-oriented modeling, a large part of the algebraic
equations or functions of a model can become a constraint. Consequently,
modelers should provide derivatives for all model functions. In Modelica,
this is done with the help of derivative annotations. Compared to using
equations, this is additional work for the modeler. However, it can not be
avoided for external functions or when functions have other significant
advantages over equations.

DESIGN PATTERN 6.13—DISCONTINUITIES

Avoid discontinuities in user defined functions whenever possible. *

201

Chapter 6. Design of Model Libraries

A Modelica compiler can easily detect discontinuities in equations, but this
is not the case with functions. A function returning discontinuous outputs
for continuous inputs will cause serious trouble for numerical integrators.
Instead of a function with one discontinuity, two functions should be pro-
vided. An event is generated automatically when the functions are called
in the branches of an if-expression.

It may be impossible to avoid discontinuities when reusing external
functions. The next design pattern applies to external functions with dis-
continuities or discontinuous derivatives.

DESIGN PATTERN 6.14—EVENTDETECTION

Provide explicit crossing functions for non-smooth external functions. *
The Modelica language and Modelica implementations handle the numer-
ical requirements of hybrid models automatically. Crossing functions are
needed by numerical integrators for models with discontinuities in the
right-hand side of the differential equations, as outlined in Section 2.1.
The automatic generation of the crossing functions does not work for ex-
ternal functions, where the discontinuities are hidden from the Modelica
translator. The only way to obtain a numerically robust treatment of such
cases is to add a crossing function to the model with the discontinuous
external function. The function has the following properties:

• The function needs to have one output which changes its sign at
the same location as the discontinuity of the original function. This
usually means that it has the same inputs as the original function.

• The crossing function has to be used in such a way in the Modelica
code that it triggers an event, see the following listing.

model ExternalCrossing "a model using a discontinuous external function"
. . . // other model parts omitted
function externalCF "Modelica declaration of external function"

input Real a,b,c "sample input";
output Real zero_xing "value changes sign at discontinuity";
external "C" myCCode(a,b,c,zero_xing); // name of the external function

end externalCF
Real zero_xing "value changes sign at discontinuity";
Boolean externalEvent(start=true) "a boolean variable";

equation
zero_xing = externalCF(a,b,c);
// the next line causes an event when zero_xing changes its sign.
externalEvent = if zero_xing > 0 then true else false;
. . . // further equations and functions omitted

end ExternalCrossing;

Listing 6.1 Usage of an external crossing function.

202

6.6 Conclusions

This type of problem is typical for interfacing Modelica to traditional C– or
FORTRAN codes. A non-trivial example which required to develop the ex-
ternal crossing function and the Modelica interface for multi-phase prop-
erty calculations is described in [Tummescheit and Eborn, 2002]. Cross-
ing functions for external functions could be avoided with similar tech-
niques as derivatives for external functions. Automatic differentiation
techniques, described in more detail in Chapter 7, can not only analyze
code to compute the derivatives of that code, they can also be used to de-
tect discontinuities. This has been demonstrated in [Tolsma and Barton,
2002].

6.6 Conclusions

This chapter discussed two issues in development of object-oriented model
libraries which are independent of the application domain: code structur-
ing for reuse and numerics. Both issues are important to obtain a flexible
and robust library. The numerical design patterns and examples in this
chapter are proposals for avoiding difficulties but they do not cover all
problems that users of ThermoFluid have experienced. The structural de-
sign patterns are also only a few patterns for structuring the model code,
but they summarize patterns that were successfully used in ThermoFluid.
Experiences from model libraries in other domains indicate that there are
many similarities between different domains.

Object-oriented modeling or software techniques are not like a silver
bullet that ensures well structured, well documented and flexible code.
Discipline in documenting code and adequate use of the object-oriented
features are necessary in order to take full advantage of the benefits of
object orientation.

203

