
A Systematic Illustration on Reduction of N-body 
Problem with Application to Molecular Systems 

Molei Tao 
May 29, 2007 

 
1. Introduction 
 
N-body problem studies the dynamics of a given Lagrangian/Hamiltonian system in 
which N particles travel in  space with interactions described by a potential. The phase 
space could be viewed as , since 

3

6n 3nT 6n≅  and * 3 6nT n≅ . This means that 6N 
possibly-nonlinear first order ODEs altogether describe the dynamics. It will be great if 
the dimension could be reduced. In fact, such idea was initiated by pioneer physicists 
~400 years ago in solving Kepler problem [1, 2], in which the 2-body problem of sun-
earth-gravity is studied with the aid of conservations of total linear momentum and total 
angular momentum. 
 Now, people could follow a systematic way to rigidly carry out reductions. 
Momentum maps are introduced to depict the essence of conserved quantities including 
total linear momentum and total angular momentum, and N-body problems could be 
studied by symplectic reduction theory which utilizes symmetries [3, 4, 5]. 
 In this article, a geometrical reduction of 3-body problem will be described, with 
both the zero angular momentum and the non-zero angular momentum cases discussed. 
What follows is a discussion on the singularity issue associated with the reduction of 2-
body problem. Then Yanao et al. [6]’s work of a further decrease of dimension in 6-body 
problem will be introduced and discussed. Applications and future directions will 
conclude the article. 
 
2. Reduction of 3-body problem 
 
2.1 Geometrical point of view 
 
The configuration space is . The original phase space 3 3Q = × × 3

0M TQ=  has a 
dimension of 18. Consider the hyper-regular Lagrangian given as the sum of kinetic 
energy and an inter-particle potential energy: 

2 2 2
1 2 3 1 2 3 1 1 2 2 3 3 1 2 2 3 3 1

1( , , , , , ) ( ) ( , , )
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L m m m V= + + − − −r r r r r r r r r r r r r r r−  

L has translational and rotational symmetries, i.e., it is both invariant under the action of 
the Lie algebra of translational group  and of rotational group . 3 (3)SO
 When the symmetry Lie group , the Lie algebra 3

1G = 3
1g = , , and 

the associated momentum map  is 

*
1g ≅ 3

3 3q

*
1 1:J TQ g→

1 1 1 2 2( )qJ v m m m= + +q q , where 1 2 3 1 2 3( , , , , , )qv = q q q q q q  
 This corresponds to total linear momentum, which is conserved on any trajectory 
according to Noether’s theorem. 



 When the symmetry Lie group 2 (3)G SO= , the Lie algebra , 
, and the associated momentum map  is 

3
2 (3)g so= ≅

*
2g ≅ 3

3

*
2 2:J TQ g→

2 1 1 1 2 2 2 3 3( )qJ v m m m= × + × + ×q q q q q q   
This corresponds to conserved total angular momentum. 
Let’s first employ symplectic reduction with respect to the translational symmetry 
. Given a total linear momentum 3

1G = * 3
1 gμ ∈ ≅ , 1

1 1( )J μ−  will be a submanifold of 
 with codimension 3, if TQ 1μ  is a regular value of 1J . This means 3 variables could be 

reduced by fixing the total linear momentum to a certain value, since any value of 1μ  is 
regular in this case. The isotopy group 1 1 1{ |G a G aμ 1}μ μ= ∈ ⋅ =  stands for group actions 
that will not change the momentum. In this case, , since none of the 
translation shifts will change the total linear momentum. 

1
3

1G Gμ = =
1

1
1 1( ) /J Gμμ−  is symplectic 

manifold with dimension of 18-3-3=12 [3,4,5]. This could be understood as that centre of 
mass of the 3 particles is fixed at the origin of an inertial frame, since the total linear 
momentum is conserved. Another theorem guarantees that the reduced Hamiltonian 
system (we could freely switch between Lagrangian and Hamiltonian aspects since L is 
hyper-regular) corresponds to the original Hamiltonian system [3,4,5]. Therefore, the 
original system 0M  with 9 degrees of freedom (DOF for short) has been reduced to a 
system 1

1
1 1 1( ) /M J Gμμ−=  with 6 DOF using the translational symmetry.  

We now carry out the second symplectic reduction with respect to the rotational 
symmetry . Notice that 2 (3)G SO= 1M  could be identified with a submanifold of TQ , 
and the momentum map 2J  could be naturally inherited (we will therefore use the 
notation 2J  without any distinction). We could similarly reduce the phase space to 

2
1

2 2 2( ) /M J Gμμ−= , and relate the Hamiltonian flows. However, the second reduction is 
more complicated than the first one. 

When 2 0μ = , , since any rotation will not change 0. However, 
the action of 

2 2 (3)G G SOμ = =
2Gμ  on  is not free, since the action of  on  is not free 

and (0,0) is a fixed point. One way to overcome this is to introduce collision-free 
manifold 

1
2 (0)J − (3)SO 3T

0M̂  by getting rid of 1 2 3= =r r r  points in 0M , thus avoid fixed point in 
. Notice the set of discarded points has a measure of 0. The dimension of 1

2 (0)J − ⊂ 1M
2M  will be 12-3-3=6. 

When 2 0μ ≠ , 2Gμ  is not  but , since only rotations along the direction 
of the angular momentum could reserve it. The action of 

(3)SO 1S
2Gμ  on 1

2 2( )J μ−  is free (the 
particle position and velocity vector need to be on the same line, if fixed point existed; 
but this will result in 2 0μ = ). The dimension of 2M  will be 12-3-1=8. 

I would like to make one more comment on the difference between the two 
reductions. The first reduction always and generally works, while the second doesn’t. The 
difference intrinsically points out the fact that all inertial frames are equal while 
rotational frames are not! 
 
2.2 Practical point of view 
 



In this section we will choose local coordinates for the reduced system, as well as 
illustrate how to obtain the Lagrangian/Hamiltonian. 

Since reduction with respect to translational symmetry corresponds to fixing an 
inertial frame at centre of mass, Jacobi vectors could be employed as coordinates [7, 8]. 
Of course, there are many choices other than Jacobi vectors, but Jacobi vectors is 
commonly used because it is a global coordinate which diagonalizes the kinetic energy 
for any value of N. “The usual way to define Jacobi coordinates is to organize the 
particles intro a hierarchy of clusters, in which each cluster consists of one or more 
particles and where each Jacobi vector joins the centers of mass of two clusters, thereby 
creating a larger cluster.” [8] An easiest example is  
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 It is obvious that Jacobi coordinates are invariant to translation of the original 
coordinates. If an extra vector of the position of centre of total mass 3 is added as Nρ , 
there is a diffeomorphism between { , | 1,2,..., }i i i N=ρ ρ  and { , | 1,2,..., }i i i N=r r . 3 DOF 
will be reduced. 

On the other hand, how to construct coordinates of 2M  (called as shape 
coordinates) in the general n-body problem is a more intricate question. Eckart 
coordinates could be used, and some more recent literature studied this question too [9, 
10]. For the N=3 case, there is a special set of coordinates (called shape coordinates) 
which treats the kinetic energy in a symmetrical way [7, 8]: 

2 2
1 1 2w = −ρ ρ , 
2 12w ⋅= ρ ρ2 , 
3 12w = ×ρ ρ2 . 

Inner product and therefore the new shape coordinates are invariant to rotation. 
But this time it is not always true that 3 DOF could be reduced. We have shown this by a 
geometrical point of view, and we will see the same conclusion again in a second. 

 
Using Jacobi vector, the kinetic energy could be written as: 
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−

= =

= +∑ ∑μ ρ . 

However, one will find out it is impossible to write the kinetic energy as a 
function of shape coordinates when 2 0≠μ , although it is possible when . For N=3, 

 case, we need one more variable which will help to construct the gauge potential 
part (defined in [8].) For N=3, 

2 0=μ
2 0≠μ

2 0=μ  case, the kinetic energy is: 
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In this case, if the constant translational energy part is excluded, the kinetic 

energy could be written as g q qμ ν
μν , where :i

iq w= , 
1 0 0

1( ) 0 1 0
4

0 0 1
g

w
μν

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

, 

2 2
1 2 3w w w w= + + 2 . Therefore, trajectories could be viewed as in Riemann space. 

Equation of motion could be written with a term of connection: 

( ) Vg q q q
q

ν ν κ λ
μν κλ μ

∂
+ Γ = −

∂
, where 1 ( )

2
g g gg
q q q
μκ μλ κν νμ

κλ
λ

λ κ μ

∂ ∂ ∂
Γ = + −

∂ ∂ ∂
 is the 

Christoffel symbol. 
 
The task of writing potential energy lies in finding the relationship between 

,1ij i j N≤ < ≤r  and shape coordinates while no tangent (velocity) term is involved. The 
strategy is to use translational and rotational symmetries to simply calculation. 

When N=3, there are 3 inter-particle distances and 3 shape coordinates. Suppose 
the coordinates for the 3 particles are respectively (0,0,0), (a,b,0) and (c,0,0), one could 
then calculate out both  and 1 2 3, ,w w w 12 23 31, ,r r r  as functions of a,b,c. After 
eliminating a,b,c, one could obtain the mapping. The computation is very lengthy, but 
possible. The result when 1 2 3: : 1:1: 0.1m m m =  is: 
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r
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42

w w w w w
r

+ + + +
=

2
3 . 

Therefore, potential as a function of inter-particle distances can be written as a 
function of shape coordinates. 

When N=4, there are 6 inter-particle distances and 6 shape coordinates. When 
N=5, there are 10 inter-particle distances and 9 shape coordinates. This is not a 
confliction, because since all particles lie in 3D Euclidean space, the 10 inter-particle 
distances are not all independent. Imagine Particle No.4’s distances to particle No.1,2,3 
are known, then Particle No.4 is fixed. Same for Particle No.5. Then there is no freedom 
in choosing Particle No.4 and No.5’s distance. Of course, we omit all singular cases here. 

 
In addition, other than direct calculation, we could also use chain rule to 

implicitly calculate V
w
∂
∂

 and obtain the dynamics. 

 
3. Reduction of 2-body problem 

The dimension of the unreduced phase space in 2-body problem is 12. Suppose 
the same argument for 3-body problem applies, then 6 variables could be reduced due to 



translational symmetry, and the other 6 variables could be reduced by rotational 
symmetry if total angular momentum is 0, which will result in no degree of freedom! 
This is of course absurd, since it is by no means guaranteed that the distance between two 
particles is fixed. 

Before studying this seemingly paradox, let us review the traditional way of 
solving Kepler’s problem [11], which is a 2-body problem with potential energy of 

1 2

1 2

Gm m
−

−r r
. By fixing the center of mass to the origin, one obtains 

2
1 2 1 2
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m m m m

1m−
= = − = =
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p p p p r r r r , and the problem has been transformed into 

a 1-body problem: 

1 2

1 1( ) Td
dt m m
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1 2
3

T Gm md
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= −
p r

r
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Then by using the conservation of angular momention 2
T μ× =r p , one could 

introduce local coordinates ( , )ρ θ  by 
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And new equations of motion will be: 
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Most undergraduate-level textbooks will now conclude the problem saying the 
original system has been reduced to a four-dimensional system. But this is not end of the 
story. 

The angular momentum 2μ  is a constant due to rotational symmetry. Suppose 

2 1 2 3( , , )c c cμ = . By 2
T μ× =r p  we obtain: 

2
1 2 3( , , ) (0,0,1)c c c ρ θ=  (*) 

Hence  3
2

cθ
ρ

=  and 3
32 cd

dt
θ ρ

ρ
= − , and there are only 2 variables (i.e. 1 DOF) in 

the further reduced system. 



Although translational reduction always works without singularity for any value 
of N, we again observe that rotational reduction doesn’t. Why are 4 variables reduced by 
rotational symmetry, but not 6? An intuitive understanding could be obtained from (*), 
which tells  and  must be 0. Hence 1c 2c 2μ  being a constant vector could only give us one 
constraint instead of three constraints. 

Notice different from N=3 case, only 4 variables could be reduced if the total 
angular momentum is 0. This is because 0 is not a regular value of the reduced 

 (since translation is excluded, this is the total angular momentum of 1-
body problem), although 

3
2 :J T g→ *

2Gμ  are the same as in N=3 case. Regular symplectic reduction 
theorem’s premise is not satisfied, and singular symplectic reduction is needed [5]. For 
reader’s information, regular symplectic reduction theorem is listed here [4]: 

Theorem: Let ( , )P ω  be a (weak) symplectic manifold on which the Lie group G 
acts symplectically and let  be an *:J P g→ *Ad -equivariant momentum mapping for 
this action. Assume  is a regular value of J and that the isotropy group G*gμ∈ μ  under 

the *Ad  action on  acts freely and properly on *g 1( )J μ− . Then 1( ) /P J Gμ μμ−=  has a 

unique (weak) symplectic form μω  with the property * iμ μ μ
*π ω = ω

P

, where 
1: ( )Jμ μπ μ− →  is the canonical projection and  is the inclusion. 1: ( )i J Pμ μ− →
Rotational reduction of non-zero total angular momentum case works exactly the 

same for N=2 and N=3. 
 
4. 6-body problem 
 Same reduction as N=3 applies to N>3 cases, i.e. 12 / 10 dimensions could be 
reduced when total angular momentum is zero / non-zero. When N is large, we still need 
to face the high dimensionality (6N-12 or 6N-10) of the phase space. 
 Yanao et al. [6] proposed a way to deal with this problem. Although the M6 
cluster they focused on is 6-body problem with Morse potential, their method could be 
used for any N>3. After decomposing the 3 ( 1)N× − -dimensional matrix 

 by singular-value decomposition into the product of three matrices 

, where , , 

, the authors showed that 3 singular values  serving as 
collective variables could largely characterize the dynamics features of six-atom Morse 
cluster.  coincide with gyration radii and are related to the principle moments 
of inertia 

( 1 ( 1)NW −= ρ ρ )

0

3

1

TW RNU= ( 1, 2, 3)R = e e e
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0 0 0 0
0 0 0
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a
N a

a

⎛ ⎞
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⎜ ⎟
⎝ ⎠

1 2 3 4 1( , , , , )nU −= u u u u u 1 2 3, ,a a a

1 2a a a≥ ≥

3 2M M M≥ ≥  by 2 2 2 2 2
1 2 3 2 3 1 3 1 2, , 2M a a M a a M a a= + = + = + ! The matrix R 

coincides with the principle-axis frame and thus specifies the instantaneous orientation of 
the system, while N and U determine the internal structure (size and symmetry). Other 
3N-6-3 or 3N-5-3 shape coordinates obtained from U plus  characterize the 
internal space. 

1 2 3, ,a a a



 Notice that when N=3, there are only two collective variables, which stand for a 
compression of information contained in  obtained from reduction with respect 
to rotational symmetry. The rest of information is contained in U. 

1 2 3, ,w w w

 Although there is no geometrical explanation of this “reduction” so far, this 
heuristic way of reducing dimension is inspiring and has rich applications. 
 
5. Applications to molecular systems and future directions 
 One important application is shown in Yanao et al. [6, 7], that is to use the 
reduced system to study the dynamics of molecule conformation switching under zero 
angular momentum assumption. To mimic Lennard-Jones potential, pairwise Morse 
potential is used: 
 0 02( ) ( )[ 2i j i jd d

p
i j

E e e− − − − − −

<

= −∑ r r r r ] . 

 One microcanonical, constant energy simulation of the M6 cluster shows that 
certain conformation with higher potential energy is more favored than another 
conformation with lower potential energy [7] [FIG. 1,2].  

 

 
FIG. 1. Isomerization scheme of the six-atom Morse cluster. The cluster has two geometrically distinct 
isomers, OCT and CTBP. The potential energy curve along the steepest descent path connecting the 
saddle point and the two potential minima is shown. The potential energy of the OCT isomer at the 
minimum point is V=−12.49e, while that of the CTBP isomer is V=−12.13e. These minima are 
connected through a saddle point whose potential energy is V=−11.83e. [7] 



 

 
FIG. 2. Energy dependence of the residence probabilities of the M6 cluster in the two isomers. Open 
squares represent the residence probability for the OCT isomer, while the open triangles represent the 
residence probability for the CTBP isomer. [7]

Another simulation of a tri-atomic system rediscovers that certain reaction 
pathways are more favored than other pathways [6] [renumbered as FIG. 3, FIG. 4; FIG. 
1, FIG. 4 in [6]]. 

 

 
FIG. 3. The isomerization scheme of the modified M3 cluster. Atoms 1 and 2 have the same mass 
parameter m1=m2=1, and atom 3 has the mass parameter m3=0.1. This cluster has two locally 
equilibrium structures, (a) and (b), which are equilateral triangle and permutationally distinct. The 
potential energy of these two structures is V=−3.00e. The cluster has three permutationally distinctive 
saddle structures, which are collinear, while the potential energy of these saddle structures is 
V=−2.005e. The number of the reaction channel is defined by the number of the atom in the middle at 
the saddle structure. Channel 1 and channel 2 are essentially equivalent and channel 3 is qualitatively 
different from other two channels. [6] 

 



 These two phenomena could be explained by the intrinsic geometry of the internal 
space. This is a mass effect, because the interal space geometry is related to the mass 
distributions. After averaging the force field, geodesics in the internal space are shown to 
favor these preferences! [renumbered FIG. 5, FIG. 6; FIG.4 in [6] and FIG. 6 in [7]]. 

 
FIG. 4. Energy dependence of relative reaction frequency for channel 1 (open squares), channel 2 (open 
triangles), and channel 3 (open circles). The frequencies are normalized among the three channels based 
on Eq. (10). 

. 

 
FIG. 5. (a) Averaged field of internal centrifugal force in the space of gyration radii. The arrows 
represent the directionality and the magnitude of the averaged internal centrifugal force at respective 
points. The thick solid curve is the projected steepest descent path in the space of gyration radii for 
comparison. (b) Thin solid curves are the geodesics in the internal space projected onto the space of 
gyration radii. The geodesics start at the vicinity of the point corresponding to the saddle point of the 
system with random initial velocities. 



 

 
FIG. 6. (a) Geodesics in the internal space randomly started at the two points, (w1 ,w2 ,w3)=(15.429,0, 
±13.607), which correspond to the equilibrium points of the modified M3 cluster. (b) is a top view of 
(a). Cross marks in (a) and (b) represent the origin, (w1 ,w2 ,w3)=(0,0,0). 

Indeed, N-body reduction and internal space geometry provides a possible way to 
study molecules especially complex bio-molecules by first-principle. Ambitious topics 
include why suboptimal (and lethal!) but not optimal (in potential energy sense) 
conformation is preferred in prion protein (i.e., an explanation of mad cow disease), 
preference and switching within 3 different DNA helixes, and much more. Yanao et al.’s 
work might just be the first step. In order to go along this road, many issues need to be 
studied. 

One is the issue of numerical simulation. Since studied molecule might be very 
complex, the time span used in the simulation perhaps needs to be large, and numerical 
error might accumulate significantly. Variational integrator which preserves the 
symplectic structure could be employed given the Hamiltonian essence of the problem to 
attack. 

Another direction is to relieve the unguaranteed assumption of zero total angular 
momentum. One extra DOF will be introduced, and quadratic cross terms between 
velocities and gauge potential will be added into the expression of kinetic energy, 
resulting in totally different Riemannian metric and geometry of the internal space. 

Beside, complexity is a problem as crucial as the above ones, if not more. When 
N is large, translational and rotational reductions only helped a little and shape space is 
still of high dimension. On the other hand, three gyration of radii collective variables 
might be too coarse to depict fine structures of molecules. One approach is to generalize 
the singular value decomposition procedure used in extracting gyration of radii variables. 
More collective variables could be obtained if one heuristically embeds the Jacobi vectors 



in higher dimension Euclidean spaces. However, it is hard to make any conclusion on the 
power of such “reduction” before doing experiments, since there is no geometrical or any 
other rigid explanation of such methodology so far. 

On the other hand, probability and non-equilibrium statistical physics might play 
an important role in this subject. Besides working on the above issues, I am also verifying 
the hypothesis that certain conformation is favored because probability measure is 
concentrated there. This is not against Gibbs distribution, because other than the factor 
exponential to scaled minus potential energy, there is another factor measuring volume in 
the internal space. 

Furthermore, concentration of measure phenomenon might provide a way to 
extract collective variables that could largely depict the internal spaces. This rigid 
interplay between analysis and geometry might shed new light on the reduction of N-
body problem with large N. 
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