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The motion of a single charged particle in a magnetic field is one of the oldest problems in
plasma physics. Such motion typically consists of helical motion around magnetic field lines
and a slow drift across field lines. For example, Fig. 1 depicts an electron orbiting a straight
current-carrying wire. The wire, not shown, lies along the z-axis, the magnetic field lines wrap
around the wire in an angular sense, and the electron drifts both along the field lines in a
angular sense and across field lines in the negative z-direction. The main motivation of this
write-up is to determine whether this motion can be formulated as a geometric phase. As this
is a first attempt, a relatively simple class of magnetic fields with a high degree symmetry
will be considered. These magnetic fields support a class of planar particle orbits on which we
shall focus; Fig. 2 depicts a planar orbit of an electron orbiting a current-carrying wire. After
discussing whether the drift is a geometric phase, we then focus on several other geometric
aspects of this motion.

Sec. 1 describes the magnetic fields under consideration. Sec. 2 then attempt to formulate
the drift as a geometric phase. The Lagrangian approach does not appear suitable for the
motion of paticles in a magnetic field, but we succeed with the phase space approach in the
case of planar orbits. In Sec. (3), we introduce the radial action variable and show that various
orbit properties can be obtained by differentiating this variable. Sec. (4) applies this principle
in regards to the flux enclosed by a trajectory. Finally, in Sec. 5, we apply a technique developed
by Montgomery to obtain a relationship between various trajectory properties. In hindsight,
this result can be obtained by considering Euler’s theorem of homogenous functions.

1 The Magnetic Field and Vector Potential

We consider a restricted class of toroidal magnetic fields which, in cylindrical geometry, have
both both axial and azimuthal symmetry:

~B = B(r)φ̂. (1)

Such a magnetic field arises from a current density that is axial and a function of r alone

~J = J(r)ẑ. (2)

Examples of such situations include straight current-carrying wires and charge-neutralized
particle beams.

The vector potential, in magnetostatic situations, is defined by ∇× ~A = ~B. The φ compo-
nent of this equation is ∂zAr − ∂rAz = Bφ, from which

~A(r) = A(r)ẑ = −
(∫ r

r0

B(r′)dr′
)
ẑ. (3)

1



Figure 1: An electron in a toroidal magnetic field executes helical motion around the field lines
while slowly drifting in the z-direction.

r0 is an arbitrary radius which affects ~A only by a constant. Of course, we can add to ~A the
gradient of any scalar function, but the gauge of Eq. (3) is actually the most convenient gauge
for mechanics since it is independent of z.

2 Reduction Approach to the Drift

The downward drift ∆z can be computed using the equation of motion. We seek a geometric
approach using the language of symmetry groups and fiber bundles. The Lagrangian approach
to reduction introduced difficulties which I could not overcome. The phase space approach,
however, admitted a connection in which the entire translation ∆z could be considered a
geometric phase.

All of the following work is done for planar orbits unless otherwise specified. Our config-
uration manifold Q will thus be the rz-plane. The symmetry group under consideration is
translations in the z-direction. This is a one-dimensional abelian Lie group isomorphic to the
real line, and the Lie algebra is likewise one-dimensional. Let ζ be the element of the Lie
algebra such that ζQ = ∂

∂z
, and let µ ∈ g∗ be dual to ζ.

2.1 Difficulties in the Lagrangian Approach

The symmetry group is a symmetry of the configuration space alone, so the problem seems
amenable to Lagrangian reduction, which is a reduction of the configuration space. However,
I encountered difficulties in this approach.

In Lagrangian reduction, one usually defines a metric on TQ such that the inner product
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Figure 2: Particle trajectories with zero angular momentum are confined to a plane. The semi-
period nature of the orbit is obvious in this diagram, and the axial shift ∆z can be formulated
as a geometric phase.

of the velocity vector of a trajectory with itself is the kinetic energy. Such a metric is usually
constructed via the Legrendre transform:

FL : TQ→ T ∗Q (4)

g(~v, ~u) := 〈FL(~v), ~u〉 (5)

The metric has to be bilinear and symmetric, meaning the Legendre transform must be self-
dual. For the Lagrangian given by Eq. (58), the Legendre transform

~P (~v) = m~v + q ~A (6)

does not produce a valid metric, as g(~u,~v) =
〈
m~u+ q ~A,~v

〉
is neither symmetric nor bilinear.

A similar problem arises when considering the momentum map on Q. The momentum map
JL : TQ→ g∗ is defined by

〈JL(~vq), ζ〉 = g(~vq, ζQ(q)). (7)

However, the righthand side is linear in (~vq)z since ζQ is in the z-direction. Glancing at the
canonical z-momentum defined by Eq. (61), the momentum map of Eq. (7) cannot support the
magnetic term, which is not linear in any velocity component.

I cannot successfully incorperate the magnetic field into either the configuration manifold
metric nor the configuration manifold momentum map. Accordingly, when constructing the
locked inertia tensor and mechanical connection, I can only obtain the trivial versions of these
objects.
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2.2 Phase-Space Reduction and Magnetic Terms

While the symmetry of the system is indeed a symmetry of the configuration space, the mag-
netic terms seem to defy the linearity demanded by Lagrangian reduction. We turn to a phase
space approach and establish a trivial fiber bundle on a submanifold of constant Pz. By in-
troducing an appropriate connection, we show that the shift ∆z can be interpreted as the
anholonomy of the bundle.

2.2.1 Phase Space Reduction

Phase space reduction requires a momentum map associated with the symmetry. To reproduce
the momentum of Eq. (61), we must treat the magnetic field and vector potential as a two-form
and one-form respectively and add them to the canonical two- and one-forms. This is known
as a momentum shift [3, p. 176] and, with the Hamiltonian of kinetic energy, reproduces the
same equations of motion as Eqs. (63)-(68).

We start by ”moving” the vector potential and magnetic field into the canonical one- and
two- forms. The two-form version of the magnetic field is defined as B = i ~Bvol, where vol =

rdr ∧ dφ ∧ dz. Keeping in mind that rφ̂ is the vector dual to dφ,

B = −B(r)dr ∧ dz (8)

To compute A, we convert the vector statement ~B = ∇× ~A into the equivalent statement for
forms: B = dA. One solution to this equation is

A = A(r)dz. (9)

with A(r) defined as in Eq. (3). Of course, we can add the differential of any function we please
to A, but we shall stick to this gauge as it is the most convenient for mechanics. We then add
these forms to the canonical one- and two-form

Θ → Θ + A (10)

= mvrdr +mvzdz + qA(r)dz (11)

= mvrdr + Pzdz (12)

Ω → Ω−B (13)

= mdr ∧ dvr +mdz ∧ dvz + qB(r)dr ∧ dz (14)

The magnetic terms in Eqs. (11) and (14) give rise to a non-trivial momentum map. The ac-
tion of G on phase space is Hamiltonian; that is, we can find a function J(ζ) whose Hamiltonian
vector field is equal to ζQ:

dJ(ζ) = i ∂
∂z

Ω = mdvz − qB(r)dr, (15)

J(ζ) = mvz + qA(r). (16)

From J , we construct the momentum map J : T ∗Q→ g∗ by stipulating

〈J(x), ζ〉 := J(ζ)(x). (17)

Since µ is dual ζ,
J(x) = (mvz + qA(r))µ,

which agrees with Eq. (61). The phase space momentum map of Eq. (17) contains the magnetic
terms that were not supported by the configuration space momentum map given by Eq. (7).
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Trajectories lie on submanifolds of constant Pz given by the inverse of the momentum map:

J−1(Pzµ) =

{(
r, vr, z, vz =

Pz − qA(r)

m

)
∈ T ∗Q

}
.

The submanifold is isomorphic to R3 and imbeds in T ∗Q by chosing vz such that the momentum
is Pz. We then view such submanifolds as trivial fiber bundles with the z-direction as the fiber
direction and the rPr-plane as the base space.

2.3 Reconstruction: Geometric Phases for Planar Orbits

For planar orbits, we can chose a connection form on the total space such that the horizontal
lift of the reduced trajectories is the actual unreduced trajectories. Therefore, the anholonomy
of the connection is ∆z given by Eq. (32), which can thus be considered a geometric phase.
Moreover, the connection form depends solely on the magnetic field and not on the energy and
z-momentum of the trajectory.

The connection form A takes values in the Lie algebra and must have the form

A = α⊗ ζ = [αrdr + αPrdPr + dz]⊗ ζ (18)

where α is a real-valued one-form. The coefficient of unity in front of the dz term is chosen
so that A(ζQ) = ζ. The coefficients αr and αPr will be chosen such that the horizontal lift
of the reduced trajectory (r(t), Pr(t)) is the full trajectory (r(t), Pr(t), z(t)). For the curve
(r(t), Pr(t), z(t)) to be horizontal, its tangent vector must vanish when operated on by the
connection. The tangent vector of (r(t), Pr(t), z(t)) is the Hamiltonian vector field given by
Eqs. (70), (71), and (72):

XH =
Pr
m

∂

∂r
− qB(r) (Pz − qA(r))

∂

∂Pr
+
Pz − qA(r)

m

∂

∂z
(19)

Stipulating that A[XH ] = 0 and using Eq. (18),

0 = A [XH ] = αr
Pr
m
− αPrqB(r)

Pz − qA(r)

m
+
Pz − qA(r)

m
(20)

This does not completely define A. We further stipulate that the vector ∂
∂r

be a horizontal
vector, as the r and z directions are orthogonal in Euclidean space. This imposes αr = 0, and
hence

A =

[
1

qB(r)
dPr + dz

]
⊗ ζ. (21)

The curvature two-form is defined by the covariant exterior derivative of the connection form

F (v1, v2) = dA (horv1, horv2) (22)

F = − dB(r)

qB(r)2
∧ dPr ⊗ ζ (23)

= −∂B
∂r

1

qB(r)2
dr ∧ dPr ⊗ ζ (24)

Neither the connection nor the curvature depend on H or Pz, and I believe that this means
that the phase of this connection is geometric. It is not difficult to show that this curvature
reproduces the well-known ”grad-B” drift of the guiding center approximation; see App. (D).
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2.4 Attempts to Incorperate Angular Motion

It is tempting to see whether the connection of Eq. (21) can be developed to incorperate non-
zero angular momentum. The symmetry group is now the direct product of axial translations
and azimuthal rotations. Denote the generator for rotations as η, with ηQ = ∂

∂φ
. In this case,

the general form of the connection is

A = α⊗ ζ + β ⊗ η (25)

= [αrdr + αPrdPr + dz]⊗ ζ + [βrdr + βPrdPr + dφ]⊗ η (26)

so that A[ζQ] = ζ and A[ηQ] = η.
If we demand once again that the full trajectory be horizonal and αr = βr = 0, we would

have

αPr = − Pz − qA
P 2
φ/r

3 − qB(Pz − qA)
(27)

βPr = −− Pφ/r
3

P 2
φ/r

3 − qB(Pz − qA)
(28)

These connection coefficients are not as pretty as Eq. (21), although they reduce to Eq. (21)
in the case Pφ = 0. They also contain the conserved momenta Pz and Pφ. I do not know if
this implies that the phase of such a connection is not geometric, as the connection depends
on the trajectory parameters.

3 The Radial Action Variable

The motion of a charged particle in the magnetic fields given by Eq. (1) is semi-periodic. The
particle returns to its initial starting radius with its initial velocity but at a different axial
and angular position. Put another way, the projection of the phase space trajectory onto the
rPr-plane is closed, even though the full phase space trajectory and the trajectory in physical
space are not. This claim has the implicit assumption that such orbits have two radial turning
points; this is not generically true and must be checked by attempting to solve the equation

Pr = 0 = ±
√

2mH − P 2
φ/r

2 − (Pz − qA(r))2. (29)

Since the trajectory is closed in the rPr-plane, we can define the radial action variable J as
the area enclosed by the trajectory in the rPr-plane. This is typically expressed as an integral
over r:

J(H,Pz, Pφ) =

∫ ∫
drdPr =

∮
Prdr =

∮
±
√

2mH − P 2
φ/r

2 − (Pz − qA(r))2dr (30)

For planar orbits, we set Pφ = 0

J(H,Pz) = J(H,Pz, Pφ = 0) =

∮
±
√

2mH − (Pz − qA(r))2dr (31)

We denote the period of motion as ∆t, the distance traveled in the z-direction as ∆z, and
the change in azimuthal angle by ∆φ. Such quantities characterize the average motion of the
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particle; for instance, the drift velocity in the z direction is ∆z/∆t = limt→∞ z(t)/t. These
quantities can be computed from Eqs. (63)-(66):

∆z =

∮
dz =

∮
ż

ṙ
dr =

∮
Pz − qA(r)√

2mH − P 2
φ/r

2 − (Pz − qA(r))2
dr = − ∂J

∂Pz
, (32)

∆t =

∮
dt =

∮
1

ṙ
dr =

∮
m√

2mH − P 2
φ/r

2 − (Pz − qA(r))2
dr =

∂J

∂H
, (33)

∆φ =

∮
dφ =

∮
φ̇

ṙ
dr =

∮
Pφ/mr

2√
2mH − P 2

φ/r
2 − (Pz − qA(r))2

dr = − ∂J

∂Pφ
. (34)

The final equalities of each line can be verified by direct differentation of Eq. (30) or more
generally (using Pz as an example),

∂J

∂Pz
=

∮
∂Pr
∂Pz

dr =

∮
−
(
∂Pr
∂H

)
Pz

(
∂H

∂Pz

)
Pr

dr =

∮
− ż
ṙ
dr = −∆z. (35)

This second proof is independent of the particular Hamiltonian and shows that the shift in a
cyclic variable over one period is given by differentating the action variable with respect to the
associated conserved momentum. If the Hamiltonian included additional cyclic coordinates,
their shifts over a radial excursion would be given by analogous derivatives. It is a well-known
fact that differentiating J with respect to H yields the period of motion [1, p.461], but I cannot
find any mention of the above generalization in any classic text. The only example I have found
is for the toroidal drift in a axisymmetric magnetic field [2], and the principal is not proved in
general there.

4 Flux Enclosed by an Orbit

The magnetic flux enclosed by a trajectory is of interest because, when the magnetic field
strength changes in time, the particle’s energy increases in proportion to the change in flux.
The calculation is surprising delicate and can be found in App. (C); the result is:

Φ =
∂J

∂q
− 1

q

(
Pz −m

∆z

∆t

)
∆z (36)

The second term tends to vanish for Larmor-like (e.g. nearly circular) orbits, in which case the
flux is given by the partial derivative of J with respect to charge q.

Kaluza-Klein theory postulates that q is a conserved canonical momentum conjugate to a
cyclic variable. The presence of the term ∂J/∂q in Eq. (36) is curious in light of Eq. (35).
Could magnetic flux be the cyclic coordinate associated with q? The possibility is spoiled by
the presence of the additional terms in Eq. (36). I have attempted to formulate Eq. (36) as a
covariant derivative of J ,

Φ = ∇J =
∂J

∂q
+ ΓJ (37)

This would require the connection coefficient to

Γ = −1

q

(
Pz −m

∆z

∆t

)
∆z

J
, (38)

which looks rather strange and has no natural explanation or motivation.
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We could define a cyclic coordinate χ conjugate to q such that the change in χ over one
gyration is ∂J/∂q.

∆χ =
∂J

∂q
=

∮
~A · d~l (39)

χ̇ = −∂H
∂q

= A
Pz − qA

m
(40)

χ is the ”magnetic action” (the contribution to the action from the magnetic term q~v · ~A)
divided by q; we can see this by integrating the Lagrangian over one period of motion:

∆S =

∮
Ldt (41)

=
1

2
mv2∆t+ q∆χ (42)

I am still exploring the relationship bewteen χ and Φ; I suspect the two might be related by
changing from the lab frame to the drift frame.

5 Montgomery’s Circuit and Euler’s Theorem

Montgomery derived a formula for the phase acquired by a rigid body by considering the
integral of the canonical one-form over a special contour in phase space [4]. By considering
an analogous contour, we arrive at Euler’s theorem of homogenous functions for the action
variable and a formula that relates the action variable to the flux, energy, and period of an
orbit.

Montgomery considered the following contour. The contour first follows the trajectory over
one ’period’ of motion: the body angular momentum has returned to its original value but
the whole body has undergone a net rotation. The second half of the contour travels back to
the starting point by ’unrotating’ the body. This second step does not follow the equations
of motion but instead travels fiberwise. Montgomery then integrates the canonical one-form
along this path and invokes Stoke’s theorem to obtains the formula for the geometric phase.

By analogy, we consider a contour that follows the trajectory over one gyration and then
travels in the z-direction to rejoin the starting point. We will integrate the one-form θ over
this contour. For the first part, kinetic energy is constant, so∫

I

θ =

∫
I

[mvrdr +mvzdz + +qA(r)dz] (43)

=

∫
I

m
[
v2
r + v2

z

]
dt+

∫
I

qA(r)dz (44)

= 2H∆t+ q
∂J

∂q
(45)

We now integrate over the second branch, for which r is constant.∫
II

θ =

∫
II

[mvrdr +mvzdz + qA(r)dz] (46)

=

∫
II

[mvzdz + qA(r)dz] (47)

=

∫
II

Pzdz = −Pz∆z (48)
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The minus sign occurs because we are travelling backwards (in the sense opposite to ∆z).
Since the total contour is closed, we apply Stoke’s theorem. The contour lies entirely on a
submanifold of constant Pz, so d (mvzdz + qA(r)dz) = d (Pzdz) = 0. We are left with∫

dθ =

∫
mdr ∧ dvr = J(H,Pz) (49)

Equating the line integral, Eqs. (45) and (48) and the surface integral given by Eq. (49) gives,

J(H,Pz, q) = 2H∆t+ q
∂J

∂q
− Pz∆z (50)

= mv2 ∂J

∂H
+ β

∂J

∂β
+ Pz

∂J

∂Pz
(51)

J(v, Pz, q) = v
∂J

∂v
+ q

∂J

∂q
+ Pz

∂J

∂Pz
(52)

We could have arrived at this formula by Euler’s theorem of homogenous functions, for J is
indeed a homogenous function of degree one when we take its variables to be v, β, and Pz.

Figure 3: The phase space contour under consideration.

The flux enclosed by a gyro-orbit is given by Eq. (36), rewritten here:

qΦ = q
∂J

∂q
+ Pz

∂J

∂Pz
+mv2

d

∂J

∂H
. (53)

Using Eq. (53) in Eq. (52),

J = Φ + 2

(
H − 1

2
mv2

d

)
∆t (54)
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In the guiding center limit, J becomes proportional to the first adiabatic invariant µ, and the
drift velocity energy is negligible to the total energy H, so we get

−2π
m

q
µ = Φ + 2H∆t (55)

6 Conclusions and Directions for Future Work

The Lagrangian approach to reduction could not be completed, but the phase space approach
successfully produced a connection for planar orbits such that ∆z is a geometric phase. This
procedure can be extended to include angular motion as well, but I am not sure whether the
anholonomies are purely geometric. All of the averaged orbit properties such as ∆t, ∆z and Φ
can be derived from partial derivatives of J . The expression for Φ contains a partial derivative
of J with respect to q, which is reminiscent of Kaluza-Klein theory. Finally, by considering a
phase space contour akin to that considered by Montgomery, a new relationship can be derived
for orbit properties.

The following are several ideas on how to pursue the subject further:

• Is the connection derived for angular motion geometric? Can we just keep defining
whatever connection is needed to make the phase geometric?

• The Lagrangian approach failed because the magnetic terms could not be incorperated
into a configuration manifold metric. If, however, we follow Kaluza-Klein theory and
allow an extra dimension, then the Hamiltonian in Eq. (62) can be written in metric
form:

H =
1

2m

(
Pr Pz q

) 1 0 0
0 1 A
0 A 0

 Pr
Pz
q

 , (56)

and the same can be done with the Lagrangian. Perhaps, then, one could formulate a
Lagrangian approach starting from the higher dimensional space. Maybe the order of
reduction is significant?

• Why is Φ is so much more difficult to calculate than other orbit properties such as ∆z
or ∆t?

• What is the connection between the flux Φ and ∂J/∂q? I suspect that they might be
related by a canonical transform from the lab frame to the drift frame.

• We were able to obtain the flux Φ in two different ways: one by averaging, and again by
changing to the drift frame. Is there a connection between the two?

• Eq. (53) seems to me to be a reshuffling of terms that go like canonical momentum times
shift is conjugate coordinate. Am I really just unknowingly re-expressing the canonical
one-form in a new set of variables?

A Standard Analysis of Motion

In this section, we employ the usual approach to analyzing particle motion in a magnetic field.
We write down the Lagrangian, canonical momenta, Hamiltonian, and equations of motion and
show the existence of a planar orbits.
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A.1 Lagrangian and Hamiltonian

The Lagrangian for charged particles in a magnetic field described by Eq. (1) is

L =
1

2
mv2 + q~v · ~A (57)

=
1

2
mṙ2 +

1

2
mr2φ̇2 +

1

2
mż2 + qA(r)ż, (58)

and the canonical momenta are

Pr =
∂L

∂ṙ
= mṙ (59)

Pφ =
∂L

∂φ̇
= mr2φ̇ (60)

Pz =
∂L

∂ż
= mż + qA(r). (61)

Since the Lagrangian is independent of z and φ, both Pz and Pφ are conserved along trajectories.
The Hamiltonian is obtained by the usual Legendre transform and is just the kinetic energy

expressed in terms of the canonical momenta:

H =
P 2
r

2m
+

P 2
φ

2mr2
+

(Pz − qA(r))2

2m
. (62)

This Hamiltonian is independent of time and thus is conserved along trajectories.

A.2 Phase Space Equations of Motion

The phase space equations of motion follow from Hamilton’s equations. Since H, Pφ, and
Pz are all conserved along a trajectory, we can solve Eq. (62) for Pr in terms of r and these
conserved quantities.

φ̇ =
Pφ
mr2

(63)

ż =
Pz − qA(r)

m
(64)

ṙ =
Pr
m

(65)

= ±

√
2mH − P 2

φ/r
2 − (Pz − qA(r))2

m
(66)

Ṗr = −∂H
∂r

=
P 2
φ

mr3
+
Pz − qA(r)

m
q
dA

dr
(67)

=
P 2
φ

mr3
− qB(r)

Pz − qA(r)

m
(68)

Most notable is that fact that all these velocities depend only on r and conserved quantities.
Therefore, should the particle return to a particular radius, it will have the same velocity it
originally had at that radius. This gives rise to the semi-periodic nature of the orit.
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A.3 Planar Orbits

The magnetic fields described by Eq. (1) support a class of planar orbits. These orbits have
Pφ = 0, so that, by Eq. (63), φ̇ = 0. There is no angular motion, and the trajectory is confined
to a plane containing the z-axis. The Hamiltonian and equations of motion for such orbits are
obtained by setting Pφ = 0 above:

H =
P 2
r

2m
+

(Pz − qA(r))2

2m
(69)

ż =
Pz − qA(r)

m
(70)

ṙ =
Pr
m

= ±

√
2mH − P 2

φ/r
2 − (Pz − qA(r))2

m
(71)

Ṗr = qB(r)
Pz − qA(r)

m
(72)

B Relationship between J and µ

Our goal is to show that the radial action variable J reduces to the first adiabatic invariant
µ [5, p. 16] in the guiding center approximation. J is the signed area of projection of the
trajectory into the rPr-plane and is usually written as

J =

∮
Prdr =

∮
±
√

2mH − (Pz − qA(r))2dr. (73)

This form does not admit a useful expansion of the integrand, as (Pz − qA(r))2 varies from
0 to 2mH over the range of integration. We shall take a different tack and integrate over Pr
instead.

J =

∮
Prdr = −

∮
rdPr = −

∮
A−1

(
1

q
Pz −

1

q

√
2mH − P 2

r

)
dPr (74)

where we have solved Eq. (69) for r as a function of Pr. A
−1 represents the inverse function

of the vector potential. We can perform a Taylor expansion of the integrand. Let rgc =
A−1(Pz/q); this is the guiding center radius (center of the gyro-orbit) and is, for these magnetic
fields, a constant of motion. Then

J ≈ −
∮ [

A−1

(
1

q
Pz

)
−
(

1

dA/dr

)
1

q

√
2mH − P 2

r

]
dPr (75)

= −
∮ [

rgc −
(
− 1

B(rgc)

)
1

q

√
2mH − P 2

r

]
dPr (76)

= 0− πm2v2

qB(rgc)
= −2π

m

q

(
mv2

2B(rgc)

)
= −2π

m

q
µ. (77)

The rgc term vanishes as the integral of a constant over a closed contour. The second integral
is evaluated by identifying it as the area enclosed by a circle of area π(mv)2.

C Magnetic Flux

In this section, we derive Eq. (36) for the flux enclosed by one gyration of motion. A priori, the
flux appears to be ill-defined: the trajectory does not fully close on itself, so there is no definite
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surface through which to measure flux. There is, however, a chosen ’correct’ value of flux, for
if one changes the magnetic field strength in time, the particle’s kinetic energy changes in a
way that depends on the flux enclosed by a gyration. This value of flux, derived here, yields
theoretical predictions that agree with numerical simulations of a particle in a time-dependent
magnetic field.

Figure 4: The flux through a gyro-orbit depends on where one starts the gyration.

To start, one could compute the flux by artificially close the trajectory by connecting the
end points with a straight line in the z-direction with length ∆z. If we begin the gyration at
radius r0, then the connecting path goes from r = r0, z = z0 to r = r0, z = z0 + ∆z, and the
flux is

Φ =

∮
~A · dl =

∮
trajectory

~A · dl +

∮
connecting

~A · dl (78)

=

∮
trajectory

A(r)dz − A(r0)∆z (79)

=

∮
A(r)

Pz − qA(r)√
2mH − (Pz − qA(r))2

dr − A(r0)∆z (80)

=
∂J

∂q
− A(r0)∆z (81)

This flux clearly depends on r0, and r0 is arbitrary. Any of my attempts to chose a ’special’ r0
does not give agreement with numerical simulations.

To derive Eq. (flux) from Eq. (81), one has to average Eq. (81). Noting that qA(r) = Pz−mż
and that the average of ż is ∆z/∆t, we have

Φ =
∂J

∂q
− 1

q

(
Pz −m

∆z

∆t

)
∆z (82)
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Alternatively, one could move to the drift frame in which the orbit is closed. If the transforma-
tion is done properly, the flux integral evaluates to Eq. (36). It is this expression that agrees
with numerical simulations of a particle in a changing magnetic field.

D Relating Curvature to the Grad-B Drift

In the standard guiding center approximation, the grad-B drift estimates the drift velocity of a
particle in a magnetic field with a gradient in the field strength. The expression for the grad-B
drift is

~v∇B = −mv
2
L

2qB3
∇B × ~B. (83)

For the magnetic fields we are considering, ∇B is in the r-direction while ~B is in the φ-direction.
Also, the Larmor speed vL is the full trajectory speed v. This gives

v∇B = − mv2

2qB2

∂B

∂r
ẑ. (84)

This formula only applies to trajectories that resemble Larmor (i.e. nearly circular) orbits. For
such trajectories, we estimate the quantity ∆z by integrating the curvature form. We assume
that the change in the field is small over such an orbit and treat the magnetic field and its
gradient as constants over the integration:

∆z =

∫
−∂B
∂r

1

qB2
dr ∧ dPr (85)

≈ −∂B
∂r

1

qB(rgc)2

∫
dr ∧ dPr (86)

= −∂B
∂r

1

qB(rgc)2
J (87)

We now use Eq. (77) to estimate J . We also assume that the angular frequency is given by the
cyclotron frequency ωc = qB(rgc)/m, so the period is ∆t = 2πm/(qB(rgc)). When we put it
all together,

∆z

∆t
≈

(
−∂B
∂r

1

qB(rgc)2
J

)
·
(

2πm

qB(rgc))

)−1

(88)

=

(
−∂B
∂r

1

qB(rgc)2

πm2v2

qB(rgc)

)
·
(
qB(rgc)

2πm

)
(89)

= −∂B
∂r

1

qB(rgc)2

1

2
mv2 (90)

which agrees with Eq. (84).
Interestingly, for a vacuum field B(r) = µ0I/(2πr), the curvature form is constant, and

the approximation of pulling the magnetic field terms out of the integral is actually exact. ∆z
is then proportional to J for all orbits, not just Larmor-like ones. Since ∆z = −∂J/∂Pz, we
could guess that J is an exponential function of Pz, which is indeed that case if one evaluates
the integral for J .

References

[1] Herbert Goldstein. Classical Mechanics. Addison-Wesley, 1980.

14



[2] R.B. White and M.S. Chance. Hamiltonian guiding center drift orbit calculation for plasmas
of arbitrary cross section. Phys. Fluids, 27(10):2455–2467, October 1984.

[3] Jerrold E. Marsden and Tudor S. Ratiu. Introduction to Mechanics and Symmetry. 2
edition, 2008.

[4] Richard Montgomery. How much does the rigid body rotate? a berry’s phase from the 18th
century. Am. J. Phys., 59(5):394–398, May 1991.

[5] H. Alfven. Cosmical Electrodynamics. The International Series of Monographs on Physics.
Oxford, first edition, 1950.

15


