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Abstract

In this paper we present the thoery of quantum holonomy and discuss its
application to Holonomic Quantum Computing with a goal of presenting the
material as geometrically as possible. In addition, we argue that the adiabatic
assumpting made in calculations of the connection in quantum holonomy
is equivalent to averaging a connection in the sense of the Hannay-Berry
connection.

1 Introduction

The realization that cyclic adiabatic variations of a quantum mechanical Hamilto-
nian (with a concurring cyclic evolution of the state) could lead to an observable
phase was made by Berry [1] in 1984. In the past several years, it has been dis-
covered that it is possible to generate, given a suitable family of Hamiltonians, a
complete set of unitary operators in a subspace of the full system Hilbert space,
allowing for the execution of quantum logic [2]. Whereas traditional quantum
computing executes quantum gates by allowing the system to evolve dynamically
under a (locally) time independent Hamiltonian, Holonomic Quantum Computa-
tion (HQC), as this technique is known, generates quantum gates by driving the
system state adiabatically through a loop. Indeed, the implementations suggested
in [2][3] perform computations on degenerate subspaces of the Hamiltonian family
and so dynamic phase may be neglected entirely.

HQC has several potential advantages over traditional quantum computing. The
fidelity of a quantum gate depends on the area of the loop of the holonomy (pro-
vided that the loop is restricted to the desired sub-manifold) and not on the specific
path taken to achieve the loop, and so a simple scaling argument shows that, for
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a circular loop, fluctuations of the Hamiltonian are suppressed as1/r wherer is
the radius of the loop, defined in suitable parameter coordinates. HQC is insen-
sitive to the time taken to traverse a computational loop provided the adiabatic
condition (see below) is met, which also implies that a system with very fast de-
grees of freedom may be used for computations with slowly varying Hamiltonians.
(Note however, that decoherence times often track system timescales, so in order
to build a realistic quantum computer, it may be necessary to perform operations
rapidly to avoid decoherence.) Finally, HQC offers a means of generating quantum
logic through a straightforward manipulation of the system Hamiltonian and does
not (for individual one- and two-qubit gates) require the ability to turn part of the
Hamiltonian on and off.

HQC is performed by realizing parallel transport through a fiber bundle with
a suitable non-abelian connection. This underlying geometric structure was first
elucidated in the highly readable paper of Simon in 1983 [4].1 Here, it is demon-
strated that Berry’s phase may be interpreted as the holonomy of a line bundle
over the parameter space. The realization that holonomy could be used to perform
quantum computations came with the study of more complicated connection struc-
tures, where the connection takes values in a non-abelian Lie algebra, typically
u(n) [2]. Indeed, while there was considerable debate surrounding the physicality
of Berry’s phase, the ability to generate relative phases and transfer populations
between states in the computational sub-manifold makes it clear that the geometric
effects in HQC are physical.

After the discovery and explanation of geometrical quantum phase, consider-
able progress was made in the development of a parallel theory for the classical
case (see [5] for a comprehensive summary). In particular, it was realized that a
key element of the classical theory is that averaging the connection over the rele-
vant group action to form the Hannay-Berry connection [6]. This incorporates the
fast degrees of freedom into the connection as we shall see below.

This paper will be organized as follows. We begin with an brief introduction
to the connection on fiber bundles including parallel transport and holonomy. We
next discuss the traditional adiabatic approach to quantum holonomy and include a
motivating example. We next introduce holonomic quantum computing and briefly
discuss the most promising proposal for its implementation [3]. This section will
be fairly brief, however, as the major ideas are developed in the section on quantum
holonomy. Finally, I introduce the new results of this paper, the relationship be-
tween the quantum adiabatic assumption and the averaging theorem of the classical
theory.

1That this was published before Berry’s paper [1] is due to length of review processes and con-
ference proceedings.
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2 The Connection, Fiber Bundles, and Holonomy

This section is intended to serve as a brief introduction to the relevant portions of
holonomy theory including some background in the theory of fiber bundles and
the connection. The discussion here is based largely on that of Nakahara [7] who
presents a unified and consistent discussion. Additional discussion of these topics
as they relate more directly to classical systems can be found in [8].

We begin with a principalG bundleP with a projectionπ : P → M such
thatG is the fiber, the bundle looks locally likeG × M , and the natural group
action which acts fiber-wise is compatible with the bundle structure. Aconnection
is a division ofTP into a vertical (tangent to the fibers)Vp and a horizontal part
Hp such thatTpP = VpP ⊕ HpP , any vector field can be naturally decomposed
into X = XV + XH , and the horizontal structure is invariant under the group
action. Vp is defined intrinsically as the space of tangents to curves that lie in a
fiber, that is, curvesc(t) such thatc : [0, 1] → P s.t. c(t) ∈ π−1(m). A general
fiber bundle lacks sufficient structure, however, to uniquely define the horizontal
direction. A connection provides the additional structure.2 An important point is
that the vertical subspace is naturally identified with the Lie algebrag of G since
Vπ−1(m)P is the tangent space to a fiber and hence isomorphic to the tangent space
of G. An element ofξ ∈ g naturally defines a v.f.ξ# ∈ X(P ) by ξ#[f(u)] =
d/dt|t=0f(u exp(ξt)).

As defined, the connection is an abstract factorization of theTP and is of little
use in calculation. To deal with the connection more concretely, we introduce the
connection valued one formω : TP → g. This form reconstructs the connection
in the following manner:ω is defined so thatω(ξ#) = ξ andR∗gω = Adg−1ω.
Given such a form, the horizontal subspace is defined to be the kernel ofω, so that
HuP = kerω(X)|X ∈ TuP .

In many cases, we will be working on the baseM . We can naturally define a
family of local connection one forms using sectionsσi : Ui → P,Ui ∈M such that
π(σ(m)) = m. This then naturally induces a connection one formAi : TUiM → g

byAi = σ∗i ω.3 From our perspective, the most important aspect of the connection
is that it leads naturally toparallel transportand consequently to thecovariant

2The notion of “vertical” is very natural. For exampleπ∗X = 0 whenX ∈ V so the vector
can be thought of as perpendicular to the base of the bundle. Care must be taken in interpreting this,
however, as the baseM is not naturally embedded intoP since general bundles do not admit global
sections.

3Although only peripherally relevant to the current discussion, the choice of sectionsσi cor-
responds to the choice of a gauge.Ai is thegauge potential. We see that gauge invariance is a
consequence of the fact that the overall structure of the dynamics is governed byω and the choice of
a specific section doesn’t effect the dynamics.
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derivative, D. To deal with parallel transport, we introduce thehorizontal lift.
Let γ : [0, 1] → M be a curve in the base manifold. A horizontal liftγ̃ is any
continuous curve such thatπ(γ̃(t)) = γ(t) and ˙̃γ(t) ∈ Hγ̃(T )P . That is, the
tangent to the curve is always in the horizontal subspace. If we choose a section
σi : Ui → P whereγ ∈ Ui the horizontal lift of the curve is described by curve in
G, g(t) : [0, 1] → G whereγ̃(t) = σi(γ(t))g(t). The differential equation for this
curve is

dg(t)
dt

= −ω(σi∗γ̇(t))g(t) = −Ai(γ̇(t))g(t). (1)

The solution for the horizontal lift starting atu0 ∈ π−1(γ(t)) is given by the path
ordered exponential

γ̃(t)(u0) = u0P exp
[
−

∫ t

0
(Ai(γ(s)))µ dx

µγ̇(s)ds
]

(2)

= u0P exp

[
−

∫ γ(t)

γ(0)
(Ai(γ(s)))µ dx

µ

]
, (3)

where the path ordering is required in the exponential because we are interested in
non-abelian Lie algebras. The final point of the curveγ̃(1) is theparallel transport
of u0 by the connection and the pathγ. This coincides with the intuitive notion of
parallel transport. Restricting̃̇γ to the horizontal subspace ensures that we don’t
make any changes “along the fibers”. Parallel transport is naturally associated with
a covariant derivative4 which is defined locally by

Dα(X0, . . . , XN ) = dα(Xhor
0 , . . . , Xhor

N ), (4)

whered is the normal exterior derivative,Xhor denotes the horizontal component
of X andα is anN -form.

We are now prepared to introduce the most important construction in this sec-
tion. Let us now consider closed paths such thatγ(0) = γ(1). What is important is
that in general̃γ(0) 6= γ̃(1). We can, however, write these in terms of each other.
We define the holonomy of the pathγ(t) to begγ whereγ̃(0)gγ = γ̃(1). From
eq. (3) it is clear that the holonomy is independent of the initial point on the hori-
zontal lift. The holonomies clearly form a subgroup ofG, known as the holonomy
group ofP . WhenP is connected, the holonomy group is easily seen to be the
same for the entire bundle.

When we are dealing with a closed path eq. (3) becomes a loop integral and
can be reduced to a surface integral using Stokes’s theorem, when the hypotheses

4In many texts, parallel transport is introduced largely in order to derive the covariant derivative
which requires the comparison of vectors that live on different fibers.
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of Stoke’s theorem are met,

gγ = P exp
[
−

∮
γ
(Ai(γ(s)))µ dx

µ

]
(5)

= P exp
[
−

∫∫
S
dAiµνdxµ ∧ dxν

]
, (6)

whereS is an oriented surface bounded by the loop. It is this latter expression that
will lead to the area dependence of the quantum holonomy. The quantitydA is
thefield strengthof the connection one-form and coincides with the field bilinears
which are familiar in physics. In coordinates, the field strength is written

dAµν = ∂µAν − ∂νAµ + [Aµ,Aν ]. (7)

For our purposes, the field strength is important for two reasons. First, it is crucial
for calculating the holonomy of a given loop. Second, the field strength provides a
means of determining whether the holonomy group is or is not a proper subgroup
of G. When the elements of the (g-valued) field strength span theg, the holonomy
group is the complete groupG (this is the Ambrose-Singer Theorem). This will
allow us, when performing HQC, to generate a universal set of quantum gates [2].

These are the basic mathematical facts which will be required to understand
quantum holonomies and HQC. A more complete treatment can be found in e.g.
[5][7][8].

3 Quantum Holonomies

We will now specialize to quantum mechanical systems. We begin with a formal
derivation of holonomies for adiabatic changes in the system Hamiltonian. We
will then back up and do a simple “brute force” calculation in an attempt to under-
stand the nature of the connection which arises in the adiabatic case. The formal
derivation will take elements from [2], [4] and [7] while the latter will follow the
discussion in [7]. An interesting discussion of a more general theory which re-
quires neither the adiabatic assumption or the assumption of a degenerate subspace
is presented in [9]. This theory is more general than is required for our purposes
and so will not be discussed further.

We consider a quantum mechanical system with a continuous family of Hamil-
toniansH(λ) which depend continuously onλ ∈ M whereM is a smooth man-
ifold of parameters. The experimenter has the ability to control these parameters
and drive the system through a trajectory in its state space. The state space for the
system consists of rays in a complex Hilbert spaceH. We will make the following
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assumptions regarding the system. The Hamiltonian has, for eachλ a degenerate
subspace of its (discrete) eigenspace with fixed dimensionn. There are no level
crossings (the energy of our eigenspace is separated by a finite energy from all other
eigenspaces of the Hamiltonians). A holonomy will be generated by traversing a
closed loopγ(t) : R →M so that the system evolves adiabatically.

Adiabatic evolution of the system occurs when the Hamiltonian varies slowly in
comparison to relevant dynamical timescales so that the system remains in a fixed
eigenstate of the Hamiltonian in the following sense:5 under an adiabatic evolution,
a system which begins in the nth eigenstate of the HamiltonianH(γ(0)), |n(γ(0))〉
will remain in that state. This eigenstate is well defined because we have assumed
that no level crossings take place. This description is valid in the case that the nth

eigenstate is degenerate. We thus write

H(γ(t)) |n(γ(t))〉 = En(γ(t)) |n(γ(t))〉 . (8)

We include the path dependence in the ket to indicate that the eigenstate is a func-
tion of the location in parameter space.

We now wish to construct the relevant fiber bundle upon which we will be
working. Although the Hamiltonian takes a central role in describing the how the
system will be manipulated, it is, in fact in the state space that we will construct
our fiber bundle. For a specificH(λ) we can choose a state vector|n(λ)〉 in this
eigenspace, which corresponds to choosing a section of the bundle. This will lead
to a natural projection for a fiber bundle.π : |n(λ)〉 7→ λ ∈ M is a reasonable
initial guess, however is not necessarily a single valued map and so is not a good
projection. We do see, however, that the fiber is naturally isomorphic to the set of
operators which leave the eigenspace invariant. If the dimension of the eigenspace
is n and dimH = N , then the bundle is [2]

P =
U(N)

U(N − n)
. (9)

This is understood as follows, the total set of unitaries acting onH isU(N). How-
ever, we are only interested in those unitaries that leave the subspace invariant, and
so take the quotient withU(N −n) which do not. The base of the manifold is now
defined by taking the quotient with the groupU(n) which acts on the degenerate
subspace. Thus, the principal bundle with which we work is defined by

π :
U(N)

U(N − n)
→ U(N)

U(N − n)× U(n)
. (10)

5We assume that the Hamiltonian has a countable set of eigenvectors, including degeneracies
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Notice that the fiber of this bundle is isomorphic to the space of allowable states in
the degenerate subspace.

Many interesting cases, including Berry’s Phase and the systems that have been
proposed for quantum computation, have a total Hilbert space dimension that is
one larger than the dimension of the computational subspace, or have a one dimen-
sional computational space. In either case, the base of this manifold is the complex
projective spaceCPn, and the bundle isSn+1. We shall return to this structure
later.

Unlike the abstract bundles discussed in the previous section, this bundle in-
herits additional Hermitian structure from the underlying Hilbert space. We can
use the Hermitian inner product to naturally define a connection on the space. To
see how, choose a basis for a specific degenerate subspace,|ni〉. The horizon-
tal subspace at|n〉 is defined to be the vector space spanned by|m〉 such that
〈m|ni〉 = 0∀ i.

What we have developed so far is sufficient to at least write down an equa-
tion for parallel transport. We can decompose the time derivative of an arbi-
trary state into vertical and horizontal components, in the one dimensional case
|ψ̇〉 = 〈ψ|ψ̇〉 |ψ〉 + |horψ〉, where this relationship defines|horψ〉. The parallel

transport is then given bỹ|ψ̇〉 = |horψ〉. However, for the general calculations, it
is useful to have an explicit expression for the connection one form. To find and
explicit expression for the connection, we note that, in coordinates, the covariant
derivative may be written

Dµ =
∂

∂λµ
+Aiµ

∂

∂ξi
, (11)

whereξ is a basis for the Lie algebra of the fiber. It is often more convenient to
expressA as a matrix, so that we find [2],

(Aµ)αβ = 〈ψα(λ)| ∂

∂λµ
|ψβ(λ)〉 . (12)

That is, we express theu(n) valuedA in the matrix basis ofu(n). |ψα(λ)〉 form
an orthogonal basis of the eigenspace at parameterλ. Given a choice|ψα(0)〉,
this basis is well defined because the geometric phase will preserve orthogonality.
From the connection, we can calculate the curvature and consequently calculate the
Lie algebra of the holonomy group using the Ambrose-Singer theorem discussed
above.

The holonomy can now be written by simply repeating the general formulas
eq. (5) and eq. (6). The group element that we find from these calculations is now
an element ofU(n) and performs a unitary rotation of the system. Since we are

7



considering a degenerate eigenspace, we can choose our energy levels so that there
is no dynamic phase. Thus, given a system which begins in state|ψ0〉, the final
state, after the cyclic evolution, will be given by

|ψ(T ), γ〉 = −P exp
[
−

∮
γ
Aµdλµ

]
|ψ0〉 (13)

= −P exp
[
−

∮
γ
〈ψα(λ)| ∂

∂λµ
|ψβ(λ)〉 dλµ

]
|ψ0〉 . (14)

This expression shows explicitly how the family of Hamiltonians determines the
structure of the connection through the dependence of the eigenstates|ψ(λ)〉 on
the specific HamiltonianH(λ).

We are now in a position to put the pieces together and understand geometri-
cally how the holonomy is generated. The fiber bundle in which we work has our
parameter space as a base, where we can naturally associate with a particular con-
figuration a degenerate eigenspace of the Hamiltonian. The fiber consists of the set
of unitary rotations which leave this subspace invariant in the larger Hilbert space.
How the eigenspace changes as we vary the Hamiltonian gives rise naturally to the
connection which we have discussed above. So, as we drive the system parameters
in a loop through the parameter space, the system is distorted geometrically in such
a way that upon return to the initial parameters, the system has been rotated by a
unitary. This rotation can be non-trivial in that it will have immediately observ-
able consequences provided the individual states in the degenerate subspace can be
probed.

Before moving on to HQC, it is instructive to consider a system which closely
models the classical ball-on-a-hoop example of holonomy and to see how the con-
nection arises as a consequence of the fast degrees of freedom. Consider a system
with a Hamiltonian

H =
p2

2m
+
P 2

2M
+ V (r,R), (15)

with r a fast degree of freedom andR a slow degree of freedom.p andP are the
corresponding conjugate momenta. Let us suppose that theR changes much more
slowly thanr so that we can considerR to be fixed locally. The state of the system
will depend parametrically on the slow degree of freedom and an approximate
solution will be|R〉 where

h(R) |R〉 =
(
p2

2m
+ V (r,R)

)
|R〉 = en(R) |R〉 . (16)

h(R) is the effective Hamiltonian. Because theR degrees of freedom are so slow,
we will assume that the state is always well described by|R〉 up to a phase. The
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total state becomes
|ψ(r,R)〉 = Φ(R) |R〉 . (17)

Substituting this into the Hamiltonian eigenvalue equation we find

H |ψ〉 =
[
−∇

2
r

2m
−
∇2
R

2M
+ V (r,R)

]
|ψ(r,R)〉 (18)

= Φ(R)
[
−∇

2
r

2m
+ V (r,R)

]
|R〉

− 1
2M

[
(∇2

RΦ(R)) + 2(∇RΦ(R))∇R + Φ(R)∇2
R

]
|R〉 . (19)

Multiplying both sides by〈R| on the left we find

En = en +
1

2M

(
∂

∂R
+Aµ

)2

, (20)

whereAµ = 〈R|∇R |R〉 appears as a connection! The fast degrees of freedom
have given rise to a non-trivial geometric connection which corresponds to a sym-
metry of the system. This is similar to the way in which the holonomy arises in
the example of the bead on a rotating hoop. Without the fast degree of freedom,
the we do not generate the same geometric phase. In order to have a consistent
holonomy which takes on global properties, it is necessary to explore the system
globally, this is accomplished by the fast degrees of freedom and is expressed in
an averaged connection [5]. If, for example, the bead is not moving on the rotating
hoop, it only explores the local geometry and the corresponding connection will
not reflect the global symmetry of the geometry. These notions will be explored
more completely in a later section.

4 Holonomic Quantum Computing

Although HQC has provided the motivation for this paper, it is a straightforward
result of the the theory developed above. Consequently, this section will provide
only a brief overview of the material and the interested reader is referred to [2]
and [10] for additional details and explicit computations of the holonomic and
computational structure a general class of Hamiltonian families.

Quantum computation is accomplished by performing a specific sequence (pos-
sibly continuous, as in our case) of unitary operations on a the entire Hilbert space
of a set of qubits. A quantum computer is referred to as universal if it is possible to
approximate an arbitrary unitary onH to arbitrary accuracy in a time which scales
polynomially with the desired accuracy. In this discussion we will limit ourselves
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to one and two qubit gates, since it is a well known result that the ability to perform
these two operations is sufficient for universality.

We have seen that adiabatic manipulation of the system Hamiltonian can gener-
ate unitary transformations on the computational subspace and that the set of uni-
taries which can be generated is given by the span of the field strength.6 A given
familyH(λ) will therefore allow for universal quantum computation exactly when
the field strength spans the full Lie algebrau(n). However, beyond the fact that the
gates are implemented through a holonomy, the remaining machinery of quantum
computing is unchanged. Quantum holonomy provides a novel and fundamentally
distinct means of implementing quantum logic.

An elegant example of a technique for implementing a holonomic quantum
computer was recently proposed [3] using multilevel atoms in a cavity. Consider
an atom withn ground states|gn〉 and one excited state|e〉 (a manifold of this
form is common in atomic physics) where each individual ground-excited state
transition is independently driven by a laser. In the rotating frame, the Hamiltonian
for this system can be written

H =
∑
i

(Ωi |e〉 〈gi|) + h.c. (21)

Ωi ∈ C is the Rabi frequency of the transition and is a function of a driving inten-
sity. Here the parameter manifold isRn. This Hamiltonian is readily diagonalized
(using, e.g. Mathematica) and we find that there is ann − 1 dimensional zero en-
ergy eigenspace. This space has no population in the excited state and will form
the computational subspace.

It is shown in [3] that the connection of this system is irreducible and so the
Hamiltonian family can be used to generate a universal set of quantum gates. Note
that is this system, the qubits are not distinct two level systems as in many pro-
posed quantum architectures, but instead are encoded in the degenerate eigenspace
by choosing a suitable basis. This means that the dimension of the computational
subspace is twice the number of qubits. However, realistic atomic systems are lim-
ited in that the number of qubits that can be encoded in a single atom is fundamen-
tally limited. For this type of HQC, it will be necessary to perform conventional
information transfer between distinct atoms to achieve a quantum computer with
more than 2 qubits. Various schemes for making this extension are evaluated in
[3]. Various schemes for HQC in semiconductor and NMR systems are explored
in [11] and [12].

6In fact, additional restraints will be imposed by physical restrictions on the variations of the
Hamiltonian which are possible and other physical constraints. This will not concern us.
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5 Averaging and Adiabaticity

Classically, two types of holonomy are encountered. Purely geometric holonomy,
which is a result of a natural global structure is encountered, occurs for example
when a coordinate system is transported on a curved Riemann manifold along a
non-geodesic path. Dynamical holonomy is encountered when a system with both
fast degrees of freedom dynamically generates a non-trivial connection which is
explored by a slow degree of freedom. The standard example of this is the ball-on-
a-hoop holonomy which is explored in detail in e.g. [8].

The question which naturally arises when considering quantum holonomy is
which, if either, of these two frameworks does quantum holonomy fit into. At
first glance, it is not immediately clear. Since we are working in a degenerate
eigenspace of the Hamiltonian, it seems as though fast dynamics can, in a certain
sense, be neglected. At the same time, the adiabatic condition is strikingly similar
to the condition that the hoop rotate slowly in comparison to the speed of the bead.

The connection that has been developed in this paper, however,is the Hannay-
Berry connection for the system.7 This is seen by considering what it is that
the Hannay-Berry connection accomplishes. The connection defines a connec-
tion which maintains the system in a G-invariant subset (in the classical literature
this set is a level set of the momentum map induced by the Hamiltonian family of
actions defined by G on the bundle). Classically, the Hannay-Berry connection is
calculated explicitly from the connection on the underlying bundle by averaging
the connection over the group G [6]. Quantum mechanically, we develop the con-
nection implicitly by making the adiabatic assumption. In section 3, we developed
the connection explicitly within the restricted subspace. However, it is quite con-
ceivable to begin in the fiber bundle defined over the entire Hilbert space and then
calculate the Hannay-Berry connection by averaging over coupled, non-degenerate
states. Thisshouldyield the same connection. We see hints that this is true when
we considered the simple model at the end of section 3. There, the overall dynam-
ics are averaged over the fast degrees of freedom while the evolution is restricted
to eigenstates of the reduced Hamiltonian. The averaging in this case is over the
orbit of the rapid variables which may be a complicated evolution.

7While I present this as a novel conclusion, I am hard pressed to believe that it is, especially
considering that it is in part attributed to Berry. I have not found this idea developed in the literature,
however. Anandan and Aharonov take steps in this direction in [13], but they predate the geom-
etry developed in [5]. Regardless, I think that it’s elaboration is important and leads to a deeper
understanding of the structure of Quantum Holonomy.
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6 Conclusion

In this paper we have presented the theory of quantum holonomies and HQC and
presented at least a qualitative argument for how quantum holonomy fits into the
rigorous framework developed for working with classical systems. It is clear that
the quantum case must fit into this framework in some sense, because quantum me-
chanics is a special case of general Hamiltonian dynamics. However, the approach
typically taken to studying quantum systems does not illuminate the underlying
parallel structure. As was argued in the final section, the classical theory for work-
ing with averaged holonomies is directly applicable to the quantum case, which is
nota priori the case.

There are a number of loose ends left by this paper, the largest of which would
be a rigorous statement of the ideas in section 5. There are a number of other ideas
which I believe are also of interest. First, it would be useful to develop a theory
of quantum holonomy which works with the C∗algebra of operators on the Hilbert
space instead of the Hilbert space itself. This would be necessary to incorporate
holonomy into the stochastic theories of filtering and measurement which would be
important for studying the noise characteristics of the system. It is not immediately
clear, however, what the natural geometric framework would be. It would also be
interesting to study if and how holonomy can be used to generate non-classical
states between non-degenerate subspaces. While it is clear that the adiabatic nature
would destroy the overall phase coherence of the two subspaces, it is not clear
that it should be impossible to create other correlations. Finally, there are only a
few cases where a realistic proposal has been made to take advantage of quantum
holonomy. It would be fruitful to study new model systems for HQC.
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