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1 The General Coadjoint Orbit Stable Equilibrium Search
Program

The general ideas surrounding the equilibria search algorithms discussed in this report are as
follows:

1. Consider only the isolated equilibria of Hamiltonian systems which are global extrema
of the Hamiltonian (energy)

2. From symplectic geometry we know that for Hamiltonian systems, a state starting on a
coadjoint orbit, will remain in that orbit for all time. We also know that the coadjoint
orbits are the level sets of Casimirs.

3. We know further that for Hamiltonian systems, the state evolves on the intersection of
a coadjoint orbit and a level set of the energy of the system.

4. Let us assume that (at least one) isolated extrema exist on the coadjoint orbit of choice.
5. Modify the equations of motion so that

(a) The system state does not leave its initial coadjoint orbit
(b) The system equilibria are preserved
(c) The energy of the system monotonically increases or decreases.

This implies that the Casimirs must be preserved by the modification of the Hamiltonian
dynamics (C = 0).

6. Following this program, the modified system will then evolve to an isolated extrema, of
energy on a chosen coadjoint orbit (level set of a Casimir).

7. The the procedure preserves coadjoint orbits, but in general it will change the topology
of the level sets of energy on the coadjoint orbit. (See Figure 1)

There are at least two good physically based examples for following this general coadjoint
orbit stable equilibrium search program:

1. Fluid Dynamics

In the case of fluid dynamics, it is desirable to identify equilibrium flow fields of a given
vortex topology, through the use of computer simulations. The equilibrium search must
then occur on a specified coadjoint orbit. (Kelvin 1887) (Vallis, Carnevale & Young
1989) (Vallis, Carnevale & Shepherd 1989) (Shepherd 1990) (Carnevale & Vallis 1990)
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Figure 1: Hamiltonian and Energy-Casimir Modified Dynamics for the Rigid Body

2. Rigid Body Dynamics

In the course of modeling quasi-rigidity (energy loss) for a freely rotation body in space,
it is necessary that any initial angular momentum of the body be preserved during the
energy loss process. It is then necessary to find a energy loss mechanism which preserves
the initial coadjoint orbit: The energy loss must proceed on the initial angular momen-
tum sphere. (Rimrott 1989) (Kammer & Gray 1993) (Vallis, Carnevale & Shepherd
1989) (Bloch, Krishnaprasad, Marsden & Ratiu 1991) (Coleman 1993)

We document the development of the research this area. The equilibrium search method
outline above, was motivated by the stability analysis program started by Arnold (Arnold
1965e) (Arnold 1965b) (Arnold 1966). It appears that the stable equilibrium search program
was originally developed by fluid dynamicists in an effort to search for stable two dimensional
flows (Vallis, Carnevale & Young 1989) (Carnevale & Vallis 1989) (Shepherd 1990) (Vallis,
Carnevale & Shepherd 1989) (Carnevale & Vallis 1990). It has since inspired applications in
finite dimensions to model dissipation of energy (Vallis, Carnevale & Shepherd 1989) (Bloch
et al. 1991) (Coleman 1993).

It is of historical interest to note that Kelvin knew, in the context of Hamiltonian fluids,
that stationary states are points for which the energy is stationary stationary with respect to
variations on a given coadjoint orbit (Vallis, Carnevale & Young 1989, p 134) (Kelvin 1887).
Specifically Kelvin knew that the first variation of the functional H + C must vanish at a
stationary point (Vallis, Carnevale & Young 1989, p 136).

Lagrange and Dirichlet knew that in order to analyze the stability of a Hamiltonian, it is
necessary to look at the second variation 62 of H (Marsden & Ratiu 1993, p 30). Arnold,
in some extending the stability work of Liapunov with the introduction of key convexity
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estimates, and in another sense extending the analytical program of Lagrange-Dirichlet, was
able to establish the concept of formal stability for two dimensional fluids, by analyzing
8(H + C).

It is interesting to note that more than 100 years after Kelvin’s observation, with the moti-
vation provided by work done Arnold over almost 30 years ago, contemporary researchers are
actively using computer computations to search for stationary flows.

2 Vallis, Carnevale & Young (1989)

Motivation

In finite dimensions, fairly straight forward algebraic calculations will yield the equilibrium
points of Hamiltonian systems. Once the equilibrium (stationary) points are known, one
can assess the stability of the equilibria by proceeding with the energy-Casimir-momentum
stability analysis proposed by Marsden & Ratiu (1993, pp 31-33), or with the energy-Casimir
stability analysis given in Holm, Marsden, Ratiu & Weinstein (1985, pp 7-11).

In infinite dimensions, such as Eulerian fluids, it is not easy to find a priori equilibrium flows.
With this fact in mind Vallis, Carnevale & Young (1989) were motivated to find a numerical
algorithm that would search for stationary points ! of perfect fluid flows.

Vallis, Carnevale & Young (1989) are in some sense aware of the fact that Eulerian fluid
flows evolve on the intersection coadjoint orbits (isovortical surfaces which preserve the vortex
topology), and level surfaces of constant energy. (See Figure 2)

With this knowledge, Vallis, Carnevale & Young (1989) embark on a program to find a way
of modifying the Eulerian equations of fluid flow such that

1. The modified dynamics are restricted to the initial coadjoint orbit.

2. Stationary points are preserved.

3. The energy of the system monotonically increases or decreases.

The modified dynamics should then evolve to stable stationary points using Arnold stability
arguments (Arnold 1965a) (Arnold 1965b) (Arnold 1966). There are many technical details
regarding equilibria, which have been left out in this short review of Vallis, Carnevale & Young
(1989), but they shall be addressed in Chapter 6.

'In the fluid mechanics literature equilibrium flow fields are sometimes called stationary states or stalionary
points and we will use this terminology interchangeably when referring to the equilibria of Eulerian fluid flows
in this report.
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FioukE 1. Schema of sheets in the Auid phase-space (after Arnol'd 1965b). Each sheet is isovortical, :
meaning that evolution on it conserves circulation. The lines are representations of energy surfaces, .
of lower dimension, embedded in the isovortical surfaces. Since the evolution of an Euler fluid is

confined to a particular energy aurface on a given sheet, extremum pointa (e.g. point A) are
stable.

Figure 2: Isovortical Surfaces, Level Sets of Energy and Equilibria
Modifying the Dynamics

Vallis, Carnevale & Young (1989) require modified dynamics in which the energy in monoton-
ically dissipated or generated. The simple use of viscosity is inappropriate, since the evolving
flow will not remain on its initial coadjoint orbit (isovortical sheet). Modified dynamics can
be done if the system is evolved by an advective process, since the original Hamiltonian sys-
tem evolves by an advective process which preserves topological invariants such as vorticity.
Modification of the original Hamiltonian advective velocity field u is suggested as the only
appropriate modification of the vorticity equation. Vallis, Carnevale & Young (1989, p 137)
propose and prove by shear calculation, that the modified vector field u, given by

- Ju

preserves topological invariants and monotonically dissipates or generates energy.

Carnevale & Vallis (1990) call the flow field @ pseudo-advective. The new advecting flow @
field is the sum of the original Hamiltonian flow field and a scalar factor of a times the time
rate of change of the original Hamiltonian flow field.

This seems to be the first appearance of modified dynamics, for Hamiltonian systems. And
Vallis, Carnevale & Young (1989) conjecture that their method is rather general as evidenced
by the following quote:

The method appears sufficiently general that application in other ficlds seems
likely. Consider, for example, any dynamical system

¢ = f({zi}) (7.1)




where z is a multi-dimensional state vector, z = (21,%2,...,2,). Suppose the
system has a conserved quantity ¥ z?, which we call energy, obtained by taking
the dot product of (7.1) with 2. Then to form a modified set of dynamics for the
system (7.1) we can replace the ith component of 2, namely z;, by z; + az; in all
the right-hand sides of the equations. Then, in general, the energy of the system
will change monotonically by az?. The trick, of course, is to choose the form of the
equations and the variable in such a way that other invariants remain preserved, so
that the solution may evolve to a stable steady state. (Vallis, Carnevale & Young
1989, pp 151-152).

No proof is this conjecture is offered in Vallis, Carnevale & Young (1989). Ultimately, Shepherd
(1990) will show that the general form of modified dynamics suggested by Vallis, Carnevale
& Young (1989), for any Hamiltonian system, is of the form:

U = Xg(u) + JaX”(u) (2)
oH oM
U = JE -+ JCYJE

where J is a skew-symmetric transformation from function space {u} to {u}, satisfying the
Jacobi and Leibniz identities; Xy = J %{1 are the Hamiltonian equations of motion of the sys-
tem; o is a symmetric transformation with (u, au) of definite sign for all u and the appropriate

inner product (-,-).

Not having the formal Hamiltonian structure developed by Shepherd (1990), Vallis, Carnevale
& Young (1989) have to show “by hand” that their proposed pseudo-advective flow accom-
plishes the objectives of their equilibrium search program.

Example: Modifying the Advecting Velocity Field

To illustrate the application of the pseudo-advection modified dynamics proposed by Vallis,
Carnevale & Young (1989), the method is applied to the dynamics of incompressible flow
(Vallis, Carnevale & Young 1989, pp 137-138).

Assume an incompressible flow of constant (unity) density. The Euler equations of motion of
the fluid are

%—?—uxw:-Vb (3)

with

Viu = 0 (4)




w = Vxu
b = p+-;-u2

Assume that 3 and 5 are valid in a domain D which may be finite or infinite, but in which
there is, in any case, no contribution to any of the integrals in the following manipulations
from the boundaries or from infinity.

Energy conservation follows by taking the dot product with w and integrating over D. The
nonlinear term vanishes, and the term u - Vb = V - (ub), similarly disappears provided there
are no boundary contributions. Therefore

=17,

E_2/Dudv (5)
E _

dt

Consider the following equations describing the evolution of the pseudo-advective modified
dynamics:

— —uxw=-~-YVb (6)

where

. Ou
u=u+a—(-9—t— (7)

Upon substituting 6 into 7 one finds

t=u+aVxVx(uxw) (8)
where b= p + ja?
Close the set of equations by adding
w = Vxu (9)
V-« = V-u=0

The energy budget of the closed set 6, 7, 8 and 10 is obtained by taking the dot product of 6
with @ for 7, or u for 8, and integrating over D. The nonlinear terms vanish and we have
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E_Q/DudV (10)

dE
- = —a/Du,dV

or

&< - _a /D [V(u x w)]2dV (11)

Since the integral in 11 is definite, the energy in the u-field monotonically decreases, or in-
creases, depending on the sign of a. The energy will change monotonically until a steady state
is reached. Whenever there is unsteady motion, energy changes monotonically. If and when a
steady state is reached, the modified dynamics become identical to the original Hamiltonian
dynamics as the extra terms of the pseudo-advective field vanish.

Steady solutions (equilibrium states) of 6 satisfy
uxw=-Vbh
with the constraints w = Vu and V. u = 0.

Because of the monotonic change in energy, whenever there is motion, the fluid must either
tend toward a state of rest or infinite energy, or to a non-trivial solution of the Euler equations.
This motion is achieved with conserved circulation, helicity and potential vorticity as shown
in Vallis, Carnevale & Young (1989, §3,pp 138-141). Therefore, the mapping from initial to
final state is isovortical: The mapping stays on the initial coadjoint orbit as is required by the
general coadjoint orbit equilibrium search program.

Other Examples

Vallis, Carnevale & Young (1989) literally repeat the above illustrated process, of substituting
a pseudo-advective flow field

- u
u=u+a—

ot
into the equations of motion and analyzing the energy budget, for the following flows:
1. Two-Dimensional Flows (Vallis, Carnevale & Young 1989, pp 141-142)
2. Quasi-Geostrophic Flows (Vallis, Carnevale & Young 1989, pp 142-143)

3. Stratified Flow and the Shallow-Water Equations (Vallis, Carnevale & Young 1989, pp
143-144)




A numerical example of a two-dimensional, irregular shaped patch of constant vorticity is
shown to evolve to its stable maximum energy configuration, a circle. Of course, the original
shape of the vortex patch was topologically equivalent to a circular patch, since the connec-
tivity, boundary and area are topological invariants which must remain unchanged in the flow
in finite time (See Figure 3).
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Figure 3: Pseudo-Advective Relaxation to Equilibrium

Moffatt’s Approach

The equilibrium search program given in Moffatt (1985) is similar in philosophy to that given
in Vallis, Carnevale & Young (1989). However the Vallis, Carnevale & Young (1989) procedure
preserves vortex topology (coadjoint orbits), whereas the Moffatt (1985) procedure preserves
streamline topology (the topology of the energy orbits on the coadjoint orbit). The Moffatt
(1985) procedure both finds stable and unstable solutions. The Vallis, Carnevale & Young
(1989) program will generally ignore saddle points. Moffatt’s method s useful because un-
stable solutions are sometimes of interest (Vallis, Carnevale & Young 1989, p 136). Moffatt’s
approach is not reviewed in this document, but is it of future research interest to the author
of this report!

3 Shepherd (1990)

Shepherd (1990) generalizes and extends the work of Vallis, Carnevale & Young (1989), by
stating and using a general energy-Casimir-momentum method. Shepherd’s Hamiltonian for-
malism appears to be inspired in part by Holm et al. (1985).




Non-canonical Hamiltonian dynamical systems generally possess integral invariants known
as Casimir functionals. In the case of the Euler equations for a perfect fluid, the Casimir
functionals correspond to the vortex topology, whose invariance derives from the particle
relabeling symmetry of the underlying Lagrangian equations of motion 2

Vallis, Carnevale & Young (1989) present a specific algorithm for finding steady states of
the Euler equations that represent extrema of energy subject to a given vortex topology
(coadjoint orbit/isovortical surface). Shepherd (1990) presents a general method for modifying
any Hamiltonian dynamical systems which will systematically increase or decrease the energy
of the system while preserving all of the Casimir invariants. Incorporating momentum into
the extremization procedure allows the algorithm to find find steadily-translating as well as
steady stable states.

Hamiltonian Dynamical Systems

Consider a general continuous Hamiltonian dynamical system, whose governing equations are
written in symplectic form as

oH
U = JE‘ (12)

The dependent variable u is a function of time ¢ and of position z with some domain D. In
finite dimensions u is a function of ¢ only. In general, u, is the partial derivative of u with
respect to t; H(u) is the Hamiltonian functional, which is usually the total energy of the
system. 6H/6u is the (Fréchet) functional or variational derivative of M, defined as usual by

§H = H(u + bu) — H(u) = (%,&1) + O(6u?) (13)

for admissible and arbitrary variations éu which vanish at the domain boundary. (-,-) is the
relevant inner product for the functions space {u}. J is a skew-symmetric transformation
from {u} to {u}, satisfying

(quv) = —(JU,U) (14)

as well as the Jacobi and Leibniz identities.

Integral Invariants of Hamiltonian Systems

The Hamiltonian dynamical system described by 12 generally possesses the following three
integral invariants:

1. The Hamiltonian H
2. Momentum Invariants

3. Casimir Invariants associated with the kernel of the operator J

2See Marsden & Ratiu (1993, §1.4, p 13) for a discussion on particle relabeling symmetry.




The Hamiltonian Invariant

The Hamiltonian functional is an integral invariant. This is shown by calculating the time
derivative of H:

dH oH LY A Y
W = (‘E, u,) = (E,JE) = 0 (15)

which is true by by the skew-symmetry of J.

Momentum Invariants

Momentum invariants are related by Noether’s theorem to the spatial (translational) sym-
metries of the Hamiltonian. If A is invariant under translations in z then the associated
momentum functional M is defined (to within a Casimir) by

—uz=JE- (16)

The momentum functional M is conserved by the dynamics of the Hamiltonian system de-
scribed by 12. This is shown by calculating the time derivative of M:

dM 6M M _H M §H 6H
& (E) = (E"’E) == (‘IW’E) = (T) =0 an

Casimir Invariants

Casimir functionals C(u) are associated with the kernel of the operator J. Casimirs are
solutions of the equation

Je = (18)

Casimirs are conserved by the dynamics of the Hamiltonian system 12.
dc é6C oC _6H 6C §H oH
- = (E,ut) = (ZJ’JE) = - (JE’W) = (0, E) =0 (19)

For fluid systems the Casimir invariants include ‘topological invariants’ such as helicity as well
as entropy, vorticity and potential vorticity. Casimirs can also include the mass of the system,
where appropriate (Moffatt 1989) (Zagdeev, Tur & Yanovsky 1989).

The existence of non-trivial Casimirs depends on the non-canonical nature of the Poisson
bracket for the Hamiltonian system (Littlejohn 1982). The Eulerian representation of fluids
with its particle relabeling symmetry associated with the passage from material (Lagrangian)
to spatial (Eulerian) coordinates, is in general non-canonical, and therefore will generally
possess non-trivial Casimirs.




There are exceptional Hamiltonian fluids systems which possess no Casimir invariants. Irro-
tational water wave can be written in canonical Hamiltonian form, and therefore the system
possesses no Casimir invariants (Shepherd 1990, p 585).

Poisson Brackets and Hamiltonian Systems

The Hamiltonian system 12 can equivalently be represented by the following Poisson bracket

system:
dF

where F is any functional of u whose functional derivative is well-defined, and {-,-} is the
generally non-canonical Poisson bracket defined by

5F 69)

{f, G} = (E,Ja (21)

With this definition the Poisson bracket inherits the needed skew, Jacobi and Leibniz prop-
erties.

In the Poisson structure formulation of Hamiltonian systems, a Casimir C is any functional
which satisfies

{¢,6}=0 (22)

for all admissible functionals G. It is easy to see that in this formulation, Casimirs are
associated with the degeneracy of the Poisson bracket, but from 21 we see that this js equivalent
to asserting that Casimirs are intimately associated with the kernel of the operator J.

Modified Dynamics: Energy-Casimir Method

Consider the modification of the Hamiltonian system 12

oH oH
u¢~JE+JaJ-E (23)

where a is a symmetric transformation with (u, au) of definite sign for all u.

Notes on the Form of o

The factor a may be taken to be a constant, single-signed diagonal matrix who entries will
generally have differing dimensions. More general forms are possible, such as the iterated
Laplacian forms given in Vallis, Carnevale & Young (1989, pp 142-143).




Notes on Xy = J%
The first term of 23

M
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which represents the original Hamiltonian vector field, is not needed to ensure preservation
of the coadjoint orbit and monotonic increase or decrease of energy. This will be illustrated
through the energy budget and Casimir preservation calculations to be performed shortly.
Nonetheless, for clarity and generality, it is maintained through the rest of this analysis.

Casimirs are Preserved Under the Modified Dynamics

The Casimir invariants of the original Hamiltonian system 12 are also Casimir invariants of
the modified system 23.

dc é6C 6C _H oH
E = (E,u‘) = (E’JE-I.JQJE) (24)
6C &M H dH Y
- (JE,E-{-GJE) = (O,E‘FO’JE)
= 0

The Hamiltonian Monotonically Increases or Decreases and Steady
Solutions are Preserved

Under the modified dynamics 23 the Hamiltonian is no longer an invariant.

dH oM dH M oH H _&H
d_t_(E’u‘)_ (E’JE-'-JQJE)__(J&—‘U.’QJE) (25)
The right hand side of 25 is of definite sign, and is non-zero unless
oH
J T = 0 (26)

We conclude from 25 and 26, that the energy of the modified system increases or decreases
monotonically deperiding on the sign of alpha, and that the steady solutions (equilibria) of
the modified systems are those of the original Hamiltonian system.




Modified Dynamics: Energy-Casimir-Momentum Method

If the Hamiltonian dynamical system 12 is invariant under translations in z, the one may
expect the existence of steadily-translating solutions of the form u = U (z = ct) The other
spatial variables are implicit, and ¢ is the translation velocity in the z-direction. These

solutions satisfy

Allowing J to operate on 27 we derive the expression

SH M
(-E - CE) o=z =0 (28)

The energy-Casimir modified dynamics algorithm 23 is generalized to the energy-Casimir-
momentum method, which is capable of finding steadily-translating states, by the following
modified dynamics:

é é
U¢=JE(H—CM)+JQJE(H—CM) (29)

with ¢ specified. Under evolution of the energy-Casimir-momentum modified dynamics 29,
all the Casimirs of the original Hamiltonian system 12 are left invariant. The functional
H—cM will monotonically increase or decrease under the energy-Casimir-momentum modified
dynamics, as illustrated by the calculation below:

L4 ey = - (JS%(’H - eM), ad - (H - cM)) (30)

The evolution process under the energy-Casimir-momentum modified dynamics will only stop
if the system converges to a steadily translating state, satisfying 28. As with steady solutions,
steadily translating solutions of 12 are necessarily conditional extrema of H — cM for Casimir-
preserving (coadjoint orbit preserving) variations. By construction, they may be true extrema.

By treating c as a Lagrange multiplier, such states may also be regarded as extrema of M for
fixed M and C.

With the Hamiltonian structure and analysis given by Shepherd (1990), it is no longer nec-
essary to conduct the explicit energy dissipation and Casimir preservation calculations per-
formed in Vallis, Carnevale & Young (1989). One simply chooses either the energy-Casimir
method or the energy-Casimir-momentum method, and calculates the appropriate modified
dynamics using the (non-canonical) Poisson bracket of the system, and possibly a momentum
functional.

Since the direct calculations in Vallis, Carnevale & Young (1989) can be tedious and are ap-
plication specific. The formalism presented by Shepherd (1990) provides a clear, and perhaps




elegant, setting for the analysis. The dependence of energy dissipation mechanism on the
Hamiltonian/Poisson bracket structure of the equations of motion is made readily apparent.

Examples

Shepherd (1990) applies the energy-Casimir-momentum method to the following perfect-fluid
systems:

1. Two-Dimensional Euler Flow

2. Three-Dimensional Euler Flow

3. Baroclinic Quasi-Geostrophic Flow Over Topography
Two-Dimensional Stratified Boussinesq Flow

Rotating Homogeneous Shallow-Water Flow

S &

Three-Dimensional Rotating, Stratified, Compressible Flow of an Ideal Gas (the Mete-
orological Primitive Equations)

Although not explicitly stated, a comment by Shepherd (1990) suggests that the energy-
Casimir-Momentum method could be applied to the finite dimensional example of a rigid
body to find stable rotating states.

It is obvious that the same approach, using a combination of energy and angu-
lar momentum, would similarly identify stable rotating states (details left to the
reader). (Shepherd 1990, p 584)

4 Vallis, Carnevale & Shepherd (1989)

Vallis, Carnevale & Shepherd (1989) is an amalgamation of the work presented in Vallis,
Carnevale & Young (1989) and Shepherd (1990). The general Hamiltonian formalism of the
energy-Casimir method presented in Shepherd (1990) is restated; and the finite dimensional
analogue of energy-Casimir method the appears explicitly (Vallis, Carnevale & Shepherd 1989,
Pp 430-432). The finite dimensional energy-Casimir modified dynamics appear below:

@ = JVH+JaJVH (31)

where H is the Hamiltonian; J is a skew-symmetric operator (which may be a matrix) satis-
fying (a, Jb) = —(Ja,d); and V is the gradient operator.

-




Energy-Casimir modified dynamics are explicitly written for the dynamics of the rigid in body
(Lagrangian) angular momentum coordinates. In notation consistent with Marsden & Ratiu
(1993), the energy-Casimir modified dynamics for free rigid body appear as

II = Ox0N+oll x (I x 0) (32)

in Equation (3.6) of (Vallis, Carnevale & Shepherd 1989, p 434).

The incompressible flow example given in Vallis, Carnevale & Young (1989, pp 137-138) is
presented once again. However, in this instance, instead of assuming a pseudo-advective flow
field of the form

. Ou

t=u+ s (33)
and proceeding with the analysis illustrated in Chapter 2, the Eulerian equations of motion are
immediately placed into Hamiltonian form, and the modified dynamics are produced through
the formal manner given in Shepherd (1990). Energy budgets and Casimir preservation follow
immediately from the general analysis of modified dynamics presented in Shepherd (1990).
(Vallis, Carnevale & Shepherd 1989, pp 435-437)

In Vallis, Carnevale & Shepherd (1989), it is suggested that energy-Casimir modified dynamics
for the rigid body may be useful for modeling energy loss in real physical systems:

It is interesting to speculate whether the above modified system has any physical
significance other than being a means to evolve to a stable solution. If a spinning
rigid body is released into superficially free motion, there are in practice likely to
be dissipative mechanisms acting on the body, due for example to straining and
flexing of its parts. Hence its kinetic energy may fall (the energy being converted
to heat and radiated away), although its angular momentum is conserved, so that

the body evolves to a state of minimum possible kinetic energy. (Vallis, Carnevale
& Shepherd 1989, p 435)

One finds that in the field of spacecraft dynamics, energy loss in rotating satellite systems
is modeled through the use of energy-sinks which dissipate kinetic energy while preserving
angular momentum (Rimrott 1989) (Kammer & Gray 1993). This suggest that the energy-
Casimir modified dynamics for the rigid body may have practical application.

The energy-Casimir modified dynamics for the free rigid body where known to Marsden
through a communication from Krishnaprasad. * Marsden suggested to Coleman that these
modified dynamics be compared to the energy-sink method given by Kammer & Gray (1993).
Coleman verified that the energy-Casimir modified dynamics satisfy the energy-sink criteria

3Personal communication: Thursday, 12 May 1994




specified in Rimrott (1989), showing that the modified dynamics are a valid energy sink for
modeling energy loss in rotating spacecraft systems (Coleman 1993). The original Hamiltonian
and the energy-Casimir modified dynamics for the free rigid body are sketched in Figure 1.

Energy-sinks are factor added to the Hamiltonian equations of motion. The energy-sink
given in Kammer & Gray (1993) and the term is not of the same form as that given by the
energy-Casimir modified dynamics. This provides evidence that there may be a large class of
modified dynamics which preserve coadjoint orbits while breaking constant energy symmetries
and preserving equilibria.

In the next chapter it is shown that that energy-Casimir modified dynamics, as outlined in
Shepherd (1990), belong to a class of double bracket energy dissipating systems.

5 Double Bracket Dissipative Systems

For finite dimensional systems, the energy-Casimir modified dynamics in Poisson bracket form,
given by Vallis, Carnevale & Shepherd (1989, p 432) appear as

F = {F,H}+(VF,JaJVH) (34)

where (:,-) is the appropriate inner product, and {:,-} is the Poisson bracket defined by
{F,G} = (VF,JVG).

Vallis, Carnevale & Shepherd (1989) note the symmetric nature of the factor (VF, JaJVH)
in the modified dynamics. There is no further discussion of this fact, other than stating

The second term on the right hand side of [34] cannot generally be put in to a true
Poisson bracket form because the operator JaJ is symmetric whereas J is skew
symmetric. Vallis, Carnevale & Shepherd (1989, p 432)

However, it turns out that the energy-Casimir modified dynamics of Shepherd (1990) and
Vallis, Carnevale & Shepherd (1989) do fit into the framework of double bracket dissipative
systems of the form

F = {F, H}skcw + {F, H}aymmetric (35)

In finite dimensional case 34, {,},kew is the (skew symmetric) Poisson bracket {-,-} de-
fined above; {F, H}symmetric is the symmetric Poisson bracket defined by {F,G}symmetric =
(VF,JaJVG). Double bracket dissipative dynamical systems are further discussed in Bloch,
Krishnaprasad, Marsden & Ratiu (1994).




6 Technicalities of Equilibria

Within this report, we should point out some of the technicalities surrounding equilibria which
are raised in Vallis, Carnevale & Young (1989) and Carnevale & Vallis (1990).

It is geometrically possible that a system perturbed from an equilibrium will not necessarily
stay close to the equilibrium unless the stationary point is ars6 an extrmum.of energy, and
not a saddle point. (See Figure 4)
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Figure 4: Non-Isolated and Isolated Extrema

However, if the stationary point is an extremum (and not a saddle), then the flow is stable in
the sense of Liapunov. That is the size of the perturbation is bounded by the size of the initial
perturbation for all time. This is the argument made rigorous for two-dimensional fluids by
Arnold (1965e) Arnold (1965b). (Vallis, Carnevale & Young 1989, p 134)

There are cases when an energy extremum may not be stable. This occurs when an equilibrium
is not isolated (See Figure 4). Then perturbations of the system around the maximum can
cause it to move, along an energy contour, and the distance it can move may not be bounded.
The second variation of the energy at these points is a singular quadratic form, since the
variation of energy in the set of non-isolated equilibria is constant. (Vallis, Carnevale &
Young 1989, p 134)

Unless stated, to avoid these pathologies, we restrict ourselves in this report to the analysis
and discussion to equilibria which are non-singular, isolated, extrema of energy. In cases where
isolated energy extrema exist, a stable steady flow or equilibrium can be found.

In two dimensions, Vallis, Carnevale & Young (1989, pp 147-148) show that the modified
dynamics will lead to at least one non-trivial stationary, generally stable, solution of the Euler
equations of fluid motion from any initial conditions. This is shown as follows:




In two-dimensions consider the case where a is chosen so that energy increases. For all time,
the enstrophy is still conserved. That is

Q = % /D F?dA (36)
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is invariant, where D is our domain, and where ¥ is a stream function such that w = (—¥,, ¥_).
The energy of the flow is given by
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Although the energy monotonically increases until a solution is reached, its value is bounded
from above by Poincaré’s inequality

/ (V) > C / (VU)2dA (38)

where C is some constant and V¥ vanishes on the boundary of the integral.

The energy of the flow is bounded above, so the process of energy growth must eventually
stop. Thus for any two-dimensional flow, there exist at least one stationary solution of the
Euler equations accessible by rearrangement of the vorticity field (while maintaining its initial
topology/coadjoint orbit!) Excepting special cases, this state will be stable.

The above proof does not show that every stable solution on a given isovortical sheet (coadjoint
orbit) may be found, even if there exists more than one. Also, the method may take an infinite
time to reach a stable solution, especially if the solution has different topological properties.
In that case vorticity reconnection can occur (See Figure 5 )

Carnevale & Vallis (1990) extend the above result for two-dimensional flows and show that
there can be at most two Arnold stable states per isovortical sheet (Carnevale & Vallis 1990,
pp 553-554). The proof shows that there must exist at most two stable states which satisfy
Arnold’s convexity estimates. The convexity estimates are constructed using the energy of
the flow and the generalized enstrophy

Qrl¥] = [ F(g)da

which is conserved for any function F.
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Figure 5: Vortex Reconnection

The existence proof of Carnevale & Vallis (1990) does not preclude the existence of other
stable states. In particular, it does not preclude the existence of nonlinearly stable states,
which do not satisfy Arnold’s rather strict convexity criteria.

Carnevale & Vallis (1990, p 55) note that there is a link between their result an a generaliza-
tion of Andrews (1984) theorem. Andrews’s theorem states that solutions satisfying Arnold
(1966) stability criteria must have the same symmetries as the physical specifications (bound-
ary conditions, topography, Coriolis parameter) of the problem. Because of the uniqueness
arguments given in the proof in Carnevale & Vallis (1990), a state satisfying Arnold’s crite-
ria cannot be used to create a family of equal-energy solutions by shifts in the direction of
symmetry of the problem. Thus, the stable solutions must have the same symmetry of the
problem.

In the case of flow over topography, the Arnold stable states have the same symmetries as
the topography. For situations with no topography there is nothing to fix the phase, except
perhaps other invariants which cannot be expressed as functionals of the vorticity. There may
be a continuum of nonlinearly stable equal-energy states with the members differentiated by
the specification of another invariant not accounted for in the Arnold stability proof (Carnevale
& Vallis 1990, p 555). For further discussion on this topic, the reader is referred to Chern &
Marsden (1990).

It is stated that Kelvin ran the modified dynamics equilibrium search algorithm as a thought
experiment over 100 years ago. It is interesting to note that his thought experiment is being
actively carried out by contemporary researchers using computer computations.
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