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Invariant manifolds of the planar circular restricted 3-body problem are used to
design initial guess trajectories from the Earth to the Moon which are then opti-
mized using the optimal control algorithm DMOC (Discrete Mechanics and Op-
timal Control). The first approach focuses on patching invariant manifolds of the
Sun-Earth and Earth-Moon 3-body systems together to create a trajectory in the 3-
body problem and then modifying it to fit 4-body dynamics. The second approach
selects endpoints on the manifolds near the Earth and Moon, and then locates
intersections of trajectories originating at these endpoints in the 4-body problem
directly. DMOC optimization of trajectories generated with the two methods gen-
erate very different trajectories while minimizing the necessary ∆V .

INTRODUCTION

Many techniques focus on the design of spacecraft trajectories. For example, invariant manifolds
of the planar circular restricted 3-body problem (PCR3BP) can be used to find energy efficient
trajectories that follow the natural dynamics of the solar system from one region of space to another.
The 3-body problem is well understood and allows for the design of complicated trajectories not
possible using patched conics. What about the design of a trajectory in the 4-body problem? Since
the N -body problem is notoriously difficult to solve, much work has focused on patching multiple 3-
body systems together, which typically include impulsive control at the intersection of the invariant
manifolds of the two systems. The work of this project aims to extend this method, to solve the
problem using 4-body dynamics and to apply local optimal control throughout the trajectory, instead
of impulsive control concentrated at the intersection. Does the application of small ∆V throughout
the trajectory, designed using an optimal control scheme, minimize the total ∆V ? This project
seeks to answer that question by combining invariant manifold techniques in the PCR3BP with the
optimal control algorithm DMOC (Discrete Mechanics and Optimal Control) in two different ways.

Invariant Manifolds

Invariant manifolds are tube-like structures along which a spacecraft may travel using no energy.
The manifolds can lead, for example, to periodic orbits around the Lagrange points of the PCR3BP.
Conley (1968)1 and McGeehee (1969)2 were the first to study the orbit structures around the L1

and L2 Lagrange points. The transport made possible by invariant manifolds has been exploited
for several different trajectories. For example, the work of Belbruno and Miller (1993)3 presents
the idea of patching these invariant manifold tubes together to effect transfer between the Earth
and the Moon. Gómez et al. (1993)4 studies transfer from the Earth to a Halo orbit about the L1

equilibrium point of the Sun-Earth 3-body system. This project focuses on the trajectory studied in
Koon et al. (2001 and 2000)5, 6 and Belbruno and Miller (1993)3 which follows invariant manifolds
to transfer from the Earth to the Moon.

Invariant manifold techniques usually only provide trajectories for uncontrolled spacecraft. Rather
impulsive control is used at the intersection between different invariant manifolds. An extension of
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invariant manifold techniques in order to account for a continuously applied control force is pre-
sented in Dellnitz et al. (2006)7 and applied to design a trajectory from Earth to Venus and from
Earth to L2,8 respectively. However, so far these techniques are only computationally reasonable
for a constant one-dimensional control force. Instead we are interested in a time-dependent control
law influencing all degrees of freedom of the spacecraft in each time point that are optimal w.r.t. a
certain goal. Therefore, the application of a local optimal control scheme is indispensible for the
design of trajectories with more complex control laws. Thereby, the computed thrustless trajectories
designed with the help of invariant manifold techniques serve as initial guess for the optimization
of the controlled model.

Local Optimal Control

The optimization for this project is performed using DMOC (Discrete Mechanics and Optimal
Control) (Ober-Blöbaum (2008)9 and Junge et al. (2005)10) which is based on the discretization
of the variational structure of the mechanical system directly. The discretization of the Lagrange-
d’Alembert principle11 leads to structure preserving time stepping equations which serve as equality
constraints for the resulting finite dimensional nonlinear optimization problem. This problem can
be solved by standard nonlinear optimization techniques such as sequential quadratic programming
(see e.g. Gill et al. (1997),12 Gill et al. (2000),13 Powell (1978)14 and Han (1976)15).

Shoot the Moon

The Shoot the Moon problem, presented by Koon, Lo, Marsden and Ross,6 computes a trajectory
which begins in low Earth orbit, travels along the invariant manifolds of the Sun-Earth and Earth-
Moon PCR3BPs, and ends in orbit about the Moon. Moore et al. (2009)16 describes how the Shoot
the Moon trajectory is modified to fulfill the dynamics of the 4-body problem and optimized using
DMOC, reducing the ∆V . The DMOC results are locally optimal and very dependent on initial
guess, so this project re-examines that work and explores a different way to design the initial guess
trajectory. Two different initial guess trajectories are designed and then optimized using DMOC.

PROBLEM FORMULATION AND METHODS

The fundamental theory and the problem description that form the basis for this work are pre-
sented in this section including invariant manifolds of the planar restricted 3-body problem, the
bicircular 4-body model, and DMOC.

Invariant Manifolds of the 3-Body Problem

The Shoot the Moon problem begins with two coupled planar circular restricted 3-body prob-
lems.6 The geometry of the PCR3BP is shown in Figure 1. For each PCR3BP, the motion of a body
is described under the influence of two main bodies, either the Sun and the Earth in the Sun-Earth
system or the Earth and the Moon for the Earth-Moon system. Each system is described in a rotating
coordinate frame and mass is normalized with the mass parameter

µ =
M2

M1 + M2
(1)

where M1 > M2. For example, in the Sun-Earth 3-body system, M1 denotes the mass of the
Sun and M2 denotes the mass of the Earth. The normalized mass of the larger body is denoted by

2



m1 = 1 − µ, and the normalized mass of the smaller body is m2 = µ. The two primary bodies
rotate in circular, planar orbits about their common center of mass at the origin. The third body, the
spacecraft, is assumed to have infinitesimal mass. The primary bodies, m1 and m2, are positioned
at (−µ, 0) and (1− µ, 0), respectively. The equations of motion for the PCR3BP are

ẍ− 2ẏ =
∂Ω
∂x

(2)

ÿ + 2ẋ =
∂Ω
∂y

(3)

where

Ω =
x2 + y2

2
+

1− µ√
(x + µ)2 + y2

+
µ√

(x− 1 + µ)2 + y2
(4)

The system, Eq. (2)-(4), has five equilibrium points L1, . . . , L5 (cf. Figure 1); the unstable L2 point
is of interest for this work.

Figure 1 Geometry of PCR3BP in Sun-Earth rotating frame with two primary
masses, m1 and m2, and Lagrange points {Li}5

i=1.

Stable and unstable manifolds emanate from the periodic orbit of the L2 Lagrange point, shown
in Figure 2. These manifold tubes control transport into and out of the region around m2.6 The
unstable manifold of the Sun-Earth system leads away from the periodic orbit around L2, while the
stable manifold leads towards the periodic orbit.

The equations of motion for the PCR3BP are Hamiltonian and time independent, so there exists
the following energy integral.

E =
1
2
(ẋ2 + ẏ2)− Ω(x, y) (5)

The phase space of the PCR3BP may be divided into regions of possible and forbidden motion based
on this energy.17 There are five possible cases, with the first four cases shown in Figure 3. Each plot
shows the Hill’s region, a projection of the energy surface M(µ, e) = {(x, y, ẋ, ẏ)|E(x, y, ẋ, ẏ) =
e} onto configuration space, for a particular energy level. The cases are distinguished by the critical
energy {Ei}5

i=1, which represents the energy of a particle at rest at the Lagrange point{Li}5
i=1. For

example, if the energy of the spacecraft is greater than E2 but less than E3, it is energically possible
for the spacecraft to move through the manifold tubes from the region surrounding m2 to an exterior
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Figure 2 Manifolds emanate from the periodic orbit about L2 (a) Stable and Unstable
manifolds of the Sun-Earth L2 Lagrange point. (b) Stable and unstable manifolds of
Earth-Moon L2 Lagrange point.

region and vice versa, as shown in plot (c) of Figure 3. Furthermore, this energy is important for
transfer between manifolds of different PCR3BPs.

Bicircular 4-Body Model

DMOC will optimize initial guess trajectories that obey the dynamics of the 4-body problem.
The bicircular 4-body model describes the dynamics of the Sun, Earth, Moon, and spacecraft as
follows. The Earth and Moon rotate in planar circular motion about their common center of mass.
Then, the barycenter of the Earth-Moon system and the Sun rotate in planar circular motion about
the common center of mass of the three bodies. As before, the mass of the spacecraft is negligible.
Figure 4 shows the geometry of this 4-body model. The equations of motion for this model in
Sun-Earth rotating coordinates are17

ẍ− 2ẏ =
∂Ω
∂x

(6)

ÿ + 2ẋ =
∂Ω
∂y

(7)

where

Ω =
x2 + y2

2
+

µS√
(x− xS)2 + y2

+
µE√

(x− xE)2 + y2
+

µM√
(x− xM )2 + (y − yM )2

(8)

and µS , µE , and µM are the normalized mass of the Sun, Earth, and Moon, respectively, given by

µS = 1− µ (9)
µE = µ (10)

µM =
MM

MM + ME + MS
= 3.734 · 10−8 (11)

and
µ =

ME + MM

ME + MM + MS
= 3.036 · 10−6 (12)

4



(a) E < E1 (b) E1 < E < E2

(c) E2 < E < E3 (d) E3 < E < E4 = E5

Figure 3 Regions of possible motion: (a) P cannot move between m1 and m2 (b) P
can move between m1 and m2 via L1 (c) P may move from m1 to m2 to exterior
region via L1 and L2 (d) P may travel past m1 to exterior region via L3. Case 5,
E > E5, is not shown: P may move freely in x-y plane.

Note that Mi, i = E,M,S, denotes the body’s mass in kg. Also, xS , xE , and xM represent the
x-position of the Sun, Earth, and Moon respectively, and yM is the y-position of the Moon (the Sun
and Earth lie on the x-axis). The position of the Moon is a function of time given by

θM = ωM t + θM0 (13)
xM = aM cos θM (14)
yM = aM sin θM (15)

where t is time, θM0 is the initial angle of the Moon with respect to the x-axis in the Sun-Earth
rotating frame, aM = 2.573 · 10−3 is the normalized radius of the Moon’s circular orbit, and
ωM = 12.369 is the normalized rotation rate of the Moon.

Discrete Mechanics and Optimal Control

In order to compute a trajectory with minimal fuel consumption, we make use of local optimal
control techniques. DMOC10, 9 is an optimal control scheme that is based on a direct discretization
of the Lagrange-d’Alembert principle of the mechanical system. The discretization leads to the
forced discrete Euler-Lagrange equations which are used as optimization constraints for a given
cost function. The resulting restricted optimization problem is solved with an SQP solver.

Consider a mechanical system to be moved along a curve q(t) ∈ Q during the time interval
t ∈ [0, T ] from an initial state (q0, q̇0) to a final state (qT , q̇T ) under the influence of a force
f(q(t), q̇(t), u(t)) where u(t) ∈ U is a control parameter. The curves q and u are chosen to mini-
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Figure 4 Bicircular 4-Body Model: geometry in the Sun-Earth rotating frame with
three primary masses, mS , mE , and mM , and spacecraft, P . The Moon rotates
relative to the Sun-Earth rotating frame, which is stationary.

mize a given cost functional

J(q, q̇, u) =
∫ T

0
C(q(t), q̇(t), f(q(t), q̇(t), u(t))) dt (16)

subject to the condition that the system satisfies the Lagrange-d’Alembert principle, which states
that

δ

∫ T

0
L(q(t), q̇(t)) dt +

∫ 1

0
f(q(t), q̇(t), u(t)) · δq(t) dt = 0 (17)

for all variations δq with δq(0) = δq(T ) = 0, where L : TQ → R is the Lagrangian consisting of
the kinetic minus potential energy of the system.

The optimal control problem stated in Eq. (16) and Eq. (17) is now transformed into a finite
dimensional constrained optimization problem using a global discretization of the states and the
controls. We replace the state space TQ by Q × Q and consider the grid ∆t = {tk = kh | k =
0, . . . , N}, Nh = T , where N is a positive integer and h the stepsize. We replace a path q :
[0, T ] → Q by a discrete path qd : {tk}N

k=0 → Q, where we view qk = qd(kh) as an approximation
to q(kh).11, 9 Similarly, we replace the control path u : [0, T ] → U by a discrete one. To this end,
we consider a refined grid ∆t̃, generated via a set of control points 0 ≤ c1 < · · · < cs ≤ 1 as
∆t̃ = {tk! = tk + c!h | k = 0, . . . , N − 1; % = 1, . . . , s}. With this notation, the discrete control
path is defined to be ud : ∆t̃ → U . We define the intermediate control samples uk on [tk, tk+1]
as uk = (uk1, . . . , uks) ∈ U s to be the values of the control parameters guiding the system from
qk = qd(tk) to qk+1 = qd(tk+1), where ukl = ud(tkl) for l ∈ {1, . . . , s}.

Using an approximation of the action integral in Eq. (17) by a discrete Lagrangian Ld : Q×Q →
R,

Ld(qk, qk+1) ≈
∫ (k+1)h

kh
L(q(t), q̇(t)) dt

and discrete forces

f−k · δqk + f+
k · δqk−1 ≈

∫ (k+1)h

kh
f(q(t), q̇(t), u(t)) · δq(t) dt
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where the left and right discrete forces f±
k now depend on (qk, qk+1, uk), we obtain the discrete

Lagrange-d’Alembert principle, Eq. (18). Therefore, it is necessary to consider discrete paths
{qk}N

k=0 such that for all variations {δqk}N
k=0 with δq0 = δqN = 0, it is true that

δ
N−1∑

k=0

Ld(qk, qk+1) +
N−1∑

k=0

(
f−k · δqk + f+

k · δqk+1

)
= 0 (18)

In the same manner, we obtain via an approximation of the cost functional Eq. (16), discrete cost
functions Cd and Jd, respectively.

Then, the goal of the discrete constrained optimization problem is to minimize the discrete cost
function

Jd(qd, ud) =
N−1∑

k=0

Cd(qk, qk+1, uk) (19)

subject to the constraints

q0 = q0 (20)
qN = qT (21)

D2L(q0, q̇0) + D1Ld(q0, q1) + f−0 = 0 (22)
D2Ld(qk−1, qk) + D1Ld(qk, qk+1) + f+

k−1 + f−k = 0 (23)

−D2L(qT , q̇T ) + D2Ld(qN−1, qN ) + f+
N−1 = 0 (24)

with k = 1, ..., N − 1. The first two constraints require that the initial and final discrete positions
match the continuous positions. The third and final constraints are the discrete momentum boundary
conditions, and the fourth condition is the forced discrete Euler-Lagrange equation resulting from
Eq. (18). Balancing accuracy and efficiency, we approximate the discrete cost function, Cd, the
discrete Lagrangian, Ld, and the discrete forces with the midpoint rule and assume constant control
parameters on each time interval with l = 1 and c1 = 1

2 as

Cd(qk, qk+1, uk) = hC

(
qk+1 + qk

2
,
qk+1 − qk

2
, uk

)
(25)

Ld(qk, qk+1) = hL

(
qk+1 + qk

2
,
qk+1 − qk

h

)
(26)

f−k = f+
k =

h

2
f

(
qk+1 + qk

2
,
qk+1 − qk

2
, uk

)
(27)

Eq. (19)-(24) describe a nonlinear optimization problem with equality constraints, which can be
solved by standard optimization methods like SQP. Optionally, we can also include inequality con-
straints on states and controls.

TRAJECTORY DESIGN USING INVARIANT MANIFOLDS

This project focuses on two different methods that use invariant manifolds for trajectory design.
Method 1, detailed in Moore et al. (2009),16 utilizes the unstable Sun-Earth manifold and the stable
Earth-Moon manifold and begins by designing a trajectory in the 3-body problem before modifying
it for the 4-body problem. Method 2 focuses on the stable Sun-Earth manifold and the unstable
Earth-Moon manifold and directly generates a trajectory in the 4-body problem.
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Method 1

To achieve transfer between the Earth and Moon using the invariant manifolds, the first step is to
locate the intersection of the unstable Sun-Earth manifold with the stable Earth-Moon manifold. A
Poincaré section is used to find this intersection in the Sun-Earth rotating frame. The phase of the
Earth-Moon frame with respect to the Sun-Earth frame can be adjusted until a suitable intersection
is found.
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Figure 5 (a) Intersecting Earth-Moon and Sun-Earth manifolds in Sun-Earth ro-
tating coordinates. (b) Poincaré section showing the intersection of the stable Earth-
Moon manifold with the unstable Sun-Earth manifold. The patch point is chosen
inside stable Earth-Moon manifold and outside the unstable Sun-Earth manifold.

Using the Poincaré section, shown on the right hand side of Figure 5, a patch point is selected that
falls within the stable manifold of the Earth-Moon system and outside the unstable manifold of the
Sun-Earth system. From the Poincaré section, the patch point includes x, y, and ẏ. The x-velocity,
ẋ, is selected so that the energy integral at the patch point equals that of the desired manifold.
Forward integration of the conditions at the patch point (x, y, ẋ, ẏ) leads to a trajectory that flows
through the stable Earth-Moon manifold and ends near the Moon. The same initial conditions are
modified slightly in ẋ and ẏ and integrated backwards, generating a trajectory that hugs the unstable
Sun-Earth manifold and then twists, targeting back to the Earth. The modification in the velocity
ensures that the energy of the spacecraft is at the appropriate level to travel along the Sun-Earth
manifold in the desired manner. The Sun-Earth and Earth-Moon trajectories are patched together
to form a trajectory which begins at the Earth and ends at the Moon. Note that at the patch point,
the energy is discontinuous; therefore, a ∆V is necessary to jump from the energy level of the
Sun-Earth manifold to the energy of the Earth-Moon manifold. For mathematical details about this
process, we refer to Koon et al. (2001)6 and Ross (2004).17 The trajectory is shown in Figure 6;
it begins in an 315 km radius circular orbit about the Earth and ends in an 3.82 · 105 km circular
orbit about the Moon. An initial thrust of 3,246.9 m/s is required to escape Earth orbit along the
trajectory, a mid-course ∆V of 124.3 m/s is applied at the patch point, and a final ∆V of 3,024.0
m/s is required to settle into a permanent circular orbit at the Moon.

Now we want to modify this trajectory to fulfill the dynamics of the 4-body problem. Beginning
with the same initial conditions from the patch point, ẋ and ẏ are modified slightly and integrated
using the bicircular 4-body model. The modification is necessary due to the differences between
the dynamics of the PCR3BP and the bicircular 4-body problem. The point is modified differently
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Figure 6 Trajectory in 3-body problem (in Sun-Earth Rotating coordinates): be-
gins near the Earth, hugs the Sun-Earth unstable manifold towards the periodic orbit
of L2. It twists and then intersects the stable manifold of the Earth-Moon system,
following that manifold to the realm of the Moon.

for the Sun-Earth section and the Earth-Moon section because of the energy differences between
the manifolds of the two systems. Thus, the initial conditions denoted by ICSE and ICEM , respec-
tively, can be expressed as

ICSE =
[

x y ẋ + ∆ẋSE ẏ + ∆ẏSE
]

(28)
ICEM =

[
x y ẋ + ∆ẋEM ẏ + ∆ẏEM

]
(29)

ICSE is integrated backwards to generate the Sun-Earth portion of the trajectory, and ICEM is
integrated forwards to generate the Earth-Moon portion of the trajectory. Note that the ∆’s are
adjusted until a good trajectory is found: a trajectory which begins and ends at a desired radius
about the Earth and Moon, respectively. Note that the initial and final momentum values may not be
favorable. DMOC adjusts these momentum values according to the specified constraints and cost
function during optimization. This trajectory serves as the initial guess for DMOC, IG1.

Method 2

To design a trajectory valid for the 4-body problem, start with the unstable Earth-Moon manifold
and stable Sun-Earth manifold. Select an end point on each manifold a desired distance from the
Moon and Earth, respectively. For example, ICM is selected such that the distance from the Moon
is 554.5 km, and ICE gives a distance from the Earth of 210 km. Now integrate the conditions
at ICM (transformed from Earth-Moon rotating coordinates to Sun-Earth rotating coordinates) and
ICE backwards and forwards, respectively, in the 4-body problem to generate TrajM and TrajE .
Figure 7(a) shows TrajM transformed back to Earth-Moon rotating coordinates, and Figure 7(b)
shows TrajE .

Next, find the intersection of the resulting trajectories - this is the patch point, shown in Fig-
ure 7(c). Using the conditions of TrajM at the patch point, integrate forwards in the 4-body problem
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to create TrajM2 (identical to TrajM , but it flows in the opposite direction, towards the Moon instead
of away from it). Note that even though the trajectories intersect in x-y space, they don’t actually
intersect in time. Therefore, the Moon is in a different position for TrajM and TrajE . This is a
problem. So, the conditions of TrajE at the patch point are modified slightly and integrated using a
consistent Moon position to give TrajE2, which is similar to TrajE and ends in the desired location.
Figure 7 shows the trajectory combining TrajM2 and TrajE2 joined by an impulsive force at the
patch point.
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Figure 7 Process for method 2: (a) Integrate point on Earth-Moon unstable manifold
backwards in 4-body problem. (b) Integrate point on Sun-Earth stable manifold for-
wards in 4-body problem. (c) Locate intersection of the two trajectories (d) Connect
the trajectories.

OPTIMIZATION PROCEDURE

The optimization method can be broken into three parts: creation of the initial guess trajectory
in the 4-body problem, computation of a feasible trajectory, and DMOC optimization. Each step of
the process is performed using Matlab, and the SQP solver fmincon runs the optimization.
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Creation of Initial Guess

For an initial guess trajectory, we use a constant step size between nodes for DMOC. However,
the nonlinearity of the dynamics poses a problem. If a single step size is used throughout the tra-
jectory, two scenarios are possible. First, if a medium step size is used, e.g. O(10−2), there are not
enough nodes near the Earth and Moon to accurately capture the dynamics. On the other hand, if a
sufficiently small step size is used, e.g. O(10−5), there are too many nodes for a reasonable compu-
tation time. To solve this problem, the trajectory is broken into m separate sections of uniform step
size hi with discrete paths (qi)d and discrete control paths (ui)d, i = 1, . . . ,m. Then, when DMOC
is applied, the position and velocity at the boundaries are enforced as additional constraints for the
optimization problem. For example, the position and velocity of the final node of section 1 must
equal that of the first node of section 2. Four sections are chosen as the ideal number to capture the
dynamics in the fewest number of nodes. Figure 8 shows IG1, the initial guess trajectory created
using method 1 with sections. The step sizes for IG1 are h1 = 1 ·10−5, h2 = 2 ·10−3, h3 = 2 ·10−2,
h4 = 1 · 10−4, respectively.

Figure 8 Sections of guess for Method 1. The trajectory is divided into four sections
of uniform step size ensuring that the trajectory consists of sufficient nodes near the
Earth and Moon to capture the dynamics but few enough total nodes for reasonable
computation time using Matlab.

This initial guess created using method 1 is called IG1. An initial guess with sections is also
generated using method 2, termed IG2. Both trajectories are plotted in Figure 9, demonstrating
the differences between the two trajectories. IG2 takes roughly half the time to reach the Moon
compared to IG1, and the final position of the Moon is different for the two trajectories. Table 1
displays the trajectory details including initial altitude at the Earth, final altitude at the Moon, the
total ∆V which is broken into: ∆VE (the ∆V necessary to leave circular Earth orbit), ∆VM (the
∆V necessary to inject the spacecraft into a circular orbit at the Moon), ∆Vtraj (the ∆V applied at
the patch point), and the number of nodes. Figure 10 shows the control magnitude for IG1 and IG2,
demonstrating the impulsive nature of the ∆V .
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Table 1. Details of Initial Guess Trajectories

IG1 IG2

Initial Earth Orbit Altitude (km) 207 210
Final Moon Orbit Altitude (km) 326.8 554.5

Time of Flight (days) 175 96.9
Total ∆V (m/s) 5,305.9 9,065.1

∆VE (m/s) 3,216.0 7,817.5
∆VM (m/s) 1,943.5 1,056.1
∆Vtraj (m/s) 146.4 191.5

Number of nodes 271 489
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Figure 9 Initial guess trajectories: (a) Initial guess created using method 1. (b) Initial
guess created using method 2.

Feasible Trajectories

For DMOC, the state q includes (x, y) and represents the x- and y-position of the trajectory. The
Lagrangian describing the bicircular 4-body model is

L =
1
2

(
ẋ2 + ẏ2

)
+

1
2

(
x2 + y2

)
+ xẏ − yẋ +

µE√
(x− xE)2 + y2

+
µS√

(x− xS)2 + y2
+

µM√
(x− xM )2 + (y − yM )2

(30)

The control force, f(q, q̇, u) = u, consisting of the control parameters (ux, uy) represents the con-
trol force in the x- and y-direction, respectively. The next step before the optimization is the for-
mulation of a feasible trajectory. By definition, a feasible trajectory is a solution that satisfies the
dynamics of the system and desired boundary conditions but is not optimal. To create a feasible
trajectory, DMOC is applied with the cost function set to one, allowing DMOC to adjust the opti-
mization variables to fulfill the constraints. The constraints require that the forced discrete Euler-
Lagrange equations, derived from the above Lagrangian, are fulfilled (enforcing the dynamics), the
initial and final radius about the Earth and Moon, respectively, must match the initial guess. Also,
the initial and final radial velocity must be zero. This constraint reduces the ∆VE and ∆VM .

Note that even though IG1 and IG2 both have impulsive control applied at the patch point, when
input into DMOC, the control force is assumed to be zero throughout the trajectory. This allows
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Figure 10 Initial guess control magnitude: (a) Control magnitude for IG1. (b) Con-
trol magnitude for IG2.

DMOC to find a smooth control profile that fulfills the Euler-Lagrange equations. If the impulsive
force is included, DMOC returns a control profile with an impulse and much higher ∆V . Figure 11
shows the feasible trajectories, and Figure 12 shows the time evolution of the control magnitude
U =

√
u2

x + u2
y, for each trajectory. Note that the control profile does not include ∆VE and ∆VM .

Table 2 displays the flight time and ∆V for each of the feasible trajectories.
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(a) Feasible 1 (b) Feasible 2
Figure 11 DMOC feasible trajectories: (a) Feasible trajectory for IG1. (b) Feasible
trajectory for IG2.

Optimization

Now, the feasible trajectories are used as initial guesses for the full DMOC optimization. For
optimization, the discrete cost function is

Jd(ud) = h1‖(u1)d‖2 + h2‖(u2)d‖2 + h3‖(u3)d‖2 + h4‖(u4)d‖2 (31)

where (ui)d = {(ux,i, uy,i)k}Ni−1
k=0 is a vector of length 2Ni with Ni + 1 being the number of

discretization points in section i, i = 1, . . . , 4, ‖ ·‖ denotes the 2-norm. The ∆V applied throughout
the trajectory, based on the control forces computed with DMOC, is computed as follows:

∆Vtraj = αV (h1‖(u1)d‖+ h2‖(u2)d‖+ h3‖(u3)d‖+ h4‖(u4)d‖) (32)
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Figure 12 DMOC feasible control magnitude: (a) Feasible control magnitude for
IG1. (b) Feasible control magnitude for IG2.

Table 2. Details of Feasible Trajectories

Feasible 1 Feasible 2

Flight Time (days) 175 96.6
Total ∆V (m/s) 3,567.3 3,822.0

∆VE (m/s) 2,931.4 3,201.0
∆VM (m/s) 632.4 619.4
∆Vtraj (m/s) 3.5 1.6

where αV scales the velocity to m/s units. The constraints are the same as for the feasible trajecto-
ries.

OPTIMIZATION RESULTS

DMOC is run using the feasible trajectories Feasible 1 and Feasible 2 as initial guesses, leading
to the locally optimal trajectories Optimal 1 and Optimal 2, respectively. The trajectories are shown
in Figure 13, the control magnitudes, excluding ∆VE and ∆VM , are shown in Figure 14, and the
flight time and ∆V are shown in Table 3.

Table 3. Details of Optimal Trajectories

Optimal 1 Optimal 2

Flight Time (days) 175 96.9
Total ∆V (m/s) 3,566.8 3,823.3

∆VE (m/s) 2,931.5 3,200.9
∆VM (m/s) 632.4 621.8
∆Vtraj (m/s) 2.9 0.6

Comparison of the DMOC optimal results with the initial guess trajectories clearly displays
DMOC’s power. While IG1 requires an impulsive ∆Vtraj of 146.4 m/s to travel from the Earth
to the Moon, DMOC generates a trajectory requiring just 2.9 m/s. DMOC also reduces the ∆V
necessary to leave and enter circular orbits at the given start and end positions (∆VE and ∆VM ).
Optimization of IG2 yields even better results with a reduction of ∆Vtraj from 191.5 m/s to just 0.6
m/s.
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Figure 13 DMOC optimal trajectories: (a) Optimal trajectory for IG1. (b) Optimal
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Figure 14 DMOC optimal control magnitude: (a) Optimal control magnitude for
IG1. (b) Optimal control magnitude for IG2.

As shown in Figure 14, the optimal control magnitude is slightly more jagged than the corre-
sponding feasible control magnitude, Figure 12. The cause is unknown at this time. However, upon
close examination of both optimal and feasible control magnitude, small discontinuities occur in the
control at the section boundaries. These discontinuities are the result of the change in step size at
the boundary.

Further examination of the optimal control magnitude reveals very small oscillation for section
1 at the beginning of the trajectory, shown in Figure 15 for Optimal Control Magnitude 1. This
oscillation occurs in the optimal control in section 1 for both methods 1 and 2. However, the control
magnitude for sections 2-4 is fairly smooth and continuous. In the Euler-Lagrange equations, the
discrete control force appears as h·u

2 , and for section 1, that quantity is less than the tolerance of the
algorithm. As far DMOC is concerned, the control force for that section is effectively zero, despite
the oscillation that is seen in the figure. Clearly, a higher tolerance value is needed, but experience
demonstrates that DMOC struggles to converge for tolerances smaller than 10−11, the value used
to obtain the result shown in Figure 15. Note that this oscillation does not occur for the control
magnitude of the feasible trajectories.
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It is useful to compare the initial guess, feasible, and optimal trajectories on one plot. As shown
in Figure 16, the optimal and feasible trajectories are very similar for both method 1 and 2. For
method 1, the feasible and optimal trajectories smooth out the kink at the patch point. The trajec-
tories generated by methods 1 and 2 are optimized using identical Euler-Lagrange equations and
very similar constraints, and the vast difference between the results demonstrates the local nature
of DMOC optimization. This point is further emphasized when comparing the variable time results
from Moore et al. (2009)16 with the results of method 2. It is possible to add an additional variable
that allows DMOC to adjust the final time, which adjusts the final position of the Moon. Optimiza-
tion of IG1 with the flight time included in the cost function leads to trajectory results very similar
to Optimal 1 with a smaller ∆VM , but the flight time is reduced by less than a day. Using method
2, the flight time is nearly 80 days less than the trajectory generated with method 1. Therefore, even
though DMOC strives to minimize the flight time, without an appropriate initial guess, it finds only
a local minimum.
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Figure 16 Comparison of initial guess, feasible, and optimal trajectories for: (a)
method 1 (b) method 2

Additionally, the chosen cost function can lead to very different control results. In Moore et al.
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(2009),16 the following cost function is used.

Jd(ud) = h1‖(u1)d‖+ h2‖(u2)d‖+ h3‖(u3)d‖+ h4‖(u4)d‖ (33)

Optimization of the Feasible 1 trajectory using this cost function, results in a trajectory very similar
to Optimal 1 shown in Figure 13(a), but the resulting control profile is very different. As shown in
Figure 17, the control is not continuous and the magnitude is larger. In fact, the optimal ∆V of 6.6
m/s is actually larger than the feasible ∆V of 3.5 m/s. This result demonstrates the importance of a
proper cost function.

0 50 100 150 2000

1

2

3

4

5

6x 10−3

Time (days)

Co
nt

ro
l M

ag
ni

tu
de

ΔV = 6.6 m/s

Figure 17. DMOC optimal control magnitude for different cost function.

CONCLUSION AND FUTURE WORK

Invariant manifolds may be used in two different ways to design trajectories for DMOC opti-
mization, as demonstrated by methods 1 and 2. The optimized trajectories of both methods greatly
reduce not only the ∆V throughout the trajectory, but also the ∆V necessary to leave and enter
circular orbit at the endpoints. The vastly different results of the two methods clearly demonstrate
the local nature of DMOC and the possibility that there exists a globally optimal solution. Also, the
new cost function, Jd = h||u||2, yields much better results than the cost function previously used,
Jd = h||u||. Finally the results reveal some interesting artifacts of the discretization and a need for
further error analysis.

For the shoot the moon problem, an adaptive time-stepping strategy for DMOC would provide a
huge benefit and is also essential for other problems in space mission design, e.g. the trajectories
require a finer time-stepping near planets due to the strong influence of gravity, while for a transfer
in nearly free space, only a few discretization points are necessary to accurately reflect the dynamics
of the system. Here, different strategies such as error control based on the discretization grid under
consideration18 and variational approaches19 could be investigated.

In addition, since DMOC results are locally optimal, dependent on initial guess, further inves-
tigation leading to globally optimal solutions is desirable. Kobilarov (2008)20 combines DMOC
with sampling-based roadmaps to compute near globally optimal solutions for various problems
including a helicopter traveling through an urban environment towards a goal state. This motion
planning method begins by compiling a library of DMOC primitives (short, optimal paths from
a start state to an intermediate goal state). Then, a sampling-based roadmap strategy (e.g. proba-
bilistic roadmaps) combines these DMOC primitives into a full trajectory that reaches the goal state.
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The use of DMOC primitives depends on the invariance of the dynamics under some group action.20

Due to the time-dependent nature of the dynamics of the 4-body problem, DMOC primitives most
likely will not be applicable for this problem. However, a similar strategy may successfully lead to
globally optimal trajectories in the 4-body problem. One idea is to apply probabilistic roadmaps to
create a mesh along the state space of the invariant manifolds of the PCR3BP, and then DMOC will
be used to connect points on the mesh from the start state to goal state, minimizing the necessary
control.
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