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Introduction

 Objective: Design a low energy space 
trajectory
 Use Invariant Manifold techniques to determine 

initial trajectory
 Apply DMOC to generate an optimal solution

 “Shoot the Moon”
 Test method by designing trajectory from Earth 

to Moon
 Split problem into two coupled planar circular restricted 

3-body systems and patch them together
 Sun - Earth - Spacecraft (SE)
 Earth - Moon - Spacecraft (EM)

 Based on PhD thesis of Shane Ross and “Shoot 
the Moon” paper by Koon, Lo, Marsden, and Ross



DMOC 
Overview

 DMOC is based on a direct discretization of the 
Lagrange-d’Alembert principle for a dynamical system
 Produces the forced discrete Euler-Lagrange 

equations
 Serve as optimization constraints given a cost 

function
 Need good initial guess that obeys dynamics to work 

successfully

Junge, O., Marsden, J.E., and Ober-
Blöbaum. “Discrete Mechanics and 
Optimal Control.” 



DMOC 
Motivating Example

 Orbit Problem
 Goal: Optimally move a spacecraft from circular orbit r = 5 

to r = 10 with 2 revolutions around the earth.
 Minimize the control effort

 Lagrangian

 Force

 Cost function€ 

L q, ˙ q ( ) =
1
2

m ˙ r 2 + r2 ˙ ϕ 2( ) +
GMm

r

€ 

f =
0
ru
 

 
 

 

 
 

€ 

J q,u( ) = u t( )2dt
0

T
∫ Junge, O., Marsden, J.E., and Ober-

Blöbaum. “Discrete Mechanics and 
Optimal Control.” 



DMOC

Optimal Trajectory



DMOC 
Motivating Example

 What if the desired trajectory looks like this:

 DMOC will need an excellent initial guess

Earth

Moon’s Orbit



DMOC + Invariant Manifolds

 Invariant Manifold method generates initial condition (patch point)
 Integrate patch point in Bicircular 4 body model for initial trajectory
 Apply initial trajectory to DMOC using same model
 What should be minimized?

 Depends on payload
 If people - minimize time or distance
 If supplies/robotics - minimize fuel

 Constraints 
 Euler-Lagrange equations
 Initial position and momentum
 Final position and momentum

 What do we expect?
 Perhaps DMOC will generate trajectory with gradual ΔV instead of 

concentrated ΔV at patch point
 Shorter flight time or distance



Invariant Manifolds
Basic Idea

 Stable and unstable manifolds emanate from 
the periodic orbits of Lagrange points of the 
PCR3BP

 Manifold tubes connect regions of space 
 Spacecraft may travel from one region to another 

through tubes

Ross, S.D., “Cylindrical Manifolds and Tube Dynamics in the Restricted 
Three-Body Problem” (PhD Thesis, California Institute of Technology, 
2004), pp. 121.



Invariant Manifolds
Details

 Use rotating coordinate system centered on 
barycenter of m1 and m2.  

 Normalize system using mass parameter

 Neglect spacecraft mass
 PCR3BP equations

€ 

µ =
m2

m1 + m2

  where m1 > m2

€ 

˙ ̇ x − 2 ˙ y =Ωx

˙ ̇ y + 2 ˙ x =Ωy

€ 

Ω =
x 2 + y 2

2
+
1−µ
r1

+
µ
r2

Ross, S.D., “Cylindrical Manifolds and Tube Dynamics in the Restricted 
Three-Body Problem” (PhD Thesis, California Institute of Technology, 
2004), pp. 8.



Invariant Manifolds
Details

€ 

U x,y( ) = −
1
2

µ1r1
2 + µ2r2

2( ) − µ1

r1
−

µ2

r2

  

µ1 =1−µ,    µ2 = µ € 

E x, y, ˙ x , ˙ y ( ) =
1
2

˙ x 2 + ˙ y 2( ) + U x,y( )

Hill’s Regions

Ross, S.D., “Cylindrical Manifolds and Tube Dynamics in the Restricted 
Three-Body Problem” (PhD Thesis, California Institute of Technology, 
2004), pp. 14.

 Energy Integral

 Energy divides the phase space 
into regions
 The energy restricts the motion 

of a spacecraft



Invariant Manifolds
“Shoot the Moon”

 Locate L2 Lagrange point for the SE and EM systems  
 Compute periodic orbit and ‘grow’ manifolds

Sun-Earth Manifolds Earth-Moon Stable Manifold

Moon

Earth



Invariant Manifolds
“Shoot the Moon”

 Transform EM manifold into SE rotating coordinates and 
plot manifolds together



Invariant Manifolds
“Shoot the Moon”

 Compute Poincaré Sections and select ‘patch’ point
 Select point just outside Sun-Earth manifold and inside 

Earth-Moon manifold 



Invariant Manifolds
“Shoot the Moon”

 Use selected point as initial condition
 Integrate forwards on Earth-Moon stable manifold
 Integrate backwards on Sun-Earth unstable manifold



Invariant Manifolds
“Shoot the Moon”

 Capture at Moon occurs naturally
EM Trajectory in EM Rotating Coordinates



Bicircular Model

 M1 and M2 rotate in 
circular motion about 
their barycenter

 M0 and M1-M2 
barycenter rotate in 
circular motion about 
their common center 
of mass

 Create similar trajectory using the Bicircular Model of 
the four body problem (BCM4)



Bicircular Model

 Sun Earth Rotating system:

€ 

˙ x = u
˙ y = v

˙ u = x + 2v −
µE x − xE( )

x − xE( )2
+ y 2( )

3
2
−

µS x − xS( )

x − xS( )2
+ y 2( )

3
2
−

µM x − xM( )

x − xM( )2
+ y − yM( )2( )

3
2

˙ v = y + 2u − µE y

x − xE( )2
+ y 2( )

3
2
−

µS y

x − xS( )2
+ y 2( )

3
2
−

µM y − yM( )

x − xM( )2
+ y − yM( )2( )

3
2

€ 

µ =
ME

ME + MS

= 3.0035 ×10−6

µS =1−µ            
µE = −µ

µM = 3.734 ×10−8

xS = −µ            
xE =1−µ

€ 

aM = 2.573×10−3

ωM =12.369
θM =ωM t + θM 0

xM = aM cos θM( )
yM = aM sin θM( )

www.esm.vt.edu/~sdross/books



Bicircular Model

 Trajectory 
 Start at 800 km 

circular Earth orbit
 ΔV =175.8 m/s

Initial Guess: Trajectory

Initial Guess: Control Force



Trajectory Sensitivity

ΔV = 207 m/s ΔV = 196 m/s ΔV = 193 m/s

ΔV = 192.8 m/s ΔV = 191 m/s ΔV = 188 m/s



DMOC+IM

 Lagrangian is derived from BCM4 in SE rotating 
coordinates

 DMOC equations

 Minimize control effort

 Control Force

€ 

L =
1
2

˙ x 2 + ˙ y 2( ) +
1
2

x 2 + y 2( ) + x˙ y − y˙ x + µE

x − xE( )2
+ y 2

+
µM

x − xM( )2
+ y − yM( )2

+
µS

x − xS( )2
+ y 2

€ 

                                           q0 = q0 qN = q1

                D2L q0, ˙ q 0( ) + D1Ld q0,q1( ) + f0
− = 0

D2Ld qk−1,qk( ) + D1Ld qk,qk +1( ) + fk−1
+ + fk

− = 0   for  k =1,...,N −1

     −D2L qN , ˙ q N( ) + D2Ld qN−1, ˙ q N( ) + fN−1
+ = 0

€ 

ux =
ΔVx

Δt
,     uy =

ΔVy

Δt€ 

J(q,u) = ux t( )2 + uy t( )2dt
0

T
∫



DMOC Results

Trajectory Control Force

IG 175.8273
DMOC 1 2.1374
DMOC 2 0.6105
DMOC 3 0.2342
DMOC 4 0.2331

DeltaV (m/s)



DMOC Results

Initial Guess DMOC
case 1 175.8273 0.2331
case 2 178.5763 0.4452
case 3 172.7951 0.0672
case 4 171.3516 0.0902
case 5 177.8498 0.4386

Delta V (m/s)

Initial Guess DMOC Result



Comparison

 How does this compare with a Hohmann Transfer?
 Case 1: trajectory begins in ~800 km altitude circular 

orbit.
 Starting velocity of trajectory = 6.24 km/s 
 circular velocity of parking orbit = 7.4 km/s

 Initial ΔV = 1.17 km/s
 ΔV = 0.2331 m/s for trajectory portion
 Total ΔV = 1170.23 m/s 

 Hohmann Transfer from 800 km circular orbit to Moon
 Total ΔV = 3812.6 m/s



DMOC + Invariant Manifolds
Future Work

 Optimize for time and control
 Enforce momentum boundary 

conditions to ensure capture 
 Solve same problem using JPL’s 

MYSTIC
  compare with DMOC+IM method

 Use method to generate trajectory to 
Titan
 Also include fly-by of Enceladus

 May require additional maneuvers
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Questions?


