Optimization of Space Trajectories:

Invariant Manifolds + DMOC

> Ashley Moore July 8,2008

Outline

- Introduction
- DMOC
- Overview
- Motivating Example
- DMOC + Invariant Manifolds
- Invariant Manifolds
- Basic idea and details
- "Shoot the Moon"
- Bicircular Model of Four Body Problem
- Overview
- Equations of motion
- Results
- DMOC details for "Shoot the Moon"
- DMOC Results
- Future Work
- References

Introduction

- Objective: Design a low energy space trajectory
- Use Invariant Manifold techniques to determine initial trajectory
- Apply DMOC to generate an optimal solution
- "Shoot the Moon"
- Test method by designing trajectory from Earth to Moon
- Split problem into two coupled planar circular restricted 3-body systems and patch them together
- Sun - Earth - Spacecraft (SE)
- Earth - Moon - Spacecraft (EM)
- Based on PhD thesis of Shane Ross and "Shoot the Moon" paper by Koon, Lo, Marsden, and Ross

DMOC Overview

- DMOC is based on a direct discretization of the Lagrange-d'Alembert principle for a dynamical system
- Produces the forced discrete Euler-Lagrange equations
- Serve as optimization constraints given a cost function
- Need good initial guess that obeys dynamics to work successfully

DMOC

Motivating Example

- Orbit Problem
- Goal: Optimally move a spacecraft from circular orbit $r=5$ to $r=10$ with 2 revolutions around the earth.
- Minimize the control effort
- Lagrangian
- Force

$$
L(q, \dot{q})=\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\varphi}^{2}\right)+\frac{G M m}{r}
$$

$$
f=\binom{0}{r u}
$$

- Cost function

$$
J(q, u)=\int_{0}^{T} u(t)^{2} d t
$$

DMOC

Optimal Trajectory

DMOC Motivating Example

- What if the desired trajectory looks like this:

- DMOC will need an excellent initial guess

DMOC + Invariant Manifolds

- Invariant Manifold method generates initial condition (patch point)
- Integrate patch point in Bicircular 4 body model for initial trajectory
- Apply initial trajectory to DMOC using same model
- What should be minimized?
- Depends on payload
- If people - minimize time or distance
- If supplies/robotics - minimize fuel
- Constraints
- Euler-Lagrange equations
- Initial position and momentum
- Final position and momentum
- What do we expect?
- Perhaps DMOC will generate trajectory with gradual $\Delta \mathrm{V}$ instead of concentrated ΔV at patch point
- Shorter flight time or distance

Invariant Manifolds Basic Idea

- Stable and unstable manifolds emanate from the periodic orbits of Lagrange points of the PCR3BP
- Manifold tubes connect regions of space
- Spacecraft may travel from one region to another through tubes

x (rotating frame)

Ross, S.D., "Cylindrical Manifolds and Tube Dynamics in the Restricted Three-Body Problem" (PhD Thesis, California Institute of Technology, 2004), pp. 121.

Invariant Manifolds Details

- Use rotating coordinate system centered on barycenter of m_{1} and m_{2}.
- Normalize system using mass parameter

$$
\mu=\frac{m_{2}}{m_{1}+m_{2}} \text { where } m_{1}>m_{2}
$$

- Neglect spacecraft mass
- PCR3BP equations

$$
\ddot{x}-2 \dot{y}=\Omega_{x}
$$

$$
\ddot{y}+2 \dot{x}=\Omega_{y}
$$

$$
\Omega=\frac{x^{2}+y^{2}}{2}+\frac{1-\mu}{r_{1}}+\frac{\mu}{r_{2}}
$$

Invariant Manifolds Details

Hill's Regions

- Energy Integral

$$
\begin{aligned}
& E(x, y, \dot{x}, \dot{y})=\frac{1}{2}\left(\dot{x}^{2}+\dot{y}^{2}\right)+\bar{U}(x, y) \\
& \bar{U}(x, y)=-\frac{1}{2}\left(\mu_{1} r_{1}^{2}+\mu_{2} r_{2}^{2}\right)-\frac{\mu_{1}}{r_{1}}-\frac{\mu_{2}}{r_{2}} \\
& \mu_{1}=1-\mu, \quad \mu_{2}=\mu
\end{aligned}
$$

- Energy divides the phase space into regions
- The energy restricts the motion of a spacecraft

Invariant Manifolds "Shoot the Moon"

" Locate L2 Lagrange point for the SE and EM systems

- Compute periodic orbit and ‘grow’ manifolds

Sun-Earth Manifolds

Earth-Moon Stable Manifold

Invariant Manifolds "Shoot the Moon"

- Transform EM manifold into SE rotating coordinates and plot manifolds together

Invariant Manifolds "Shoot the Moon"

- Compute Poincaré Sections and select 'patch' point
- Select point just outside Sun-Earth manifold and inside Earth-Moon manifold

Invariant Manifolds "Shoot the Moon"

- Use selected point as initial condition

- Integrate forwards on Earth-Moon stable manifold
- Integrate backwards on Sun-Earth unstable manifold

Invariant Manifolds "Shoot the Moon"

- Capture at Moon occurs naturally

EM Trajectory in EM Rotating Coordinates

Bicircular Model

- Create similar trajectory using the Bicircular Model of the four body problem (BCM4)
- M_{1} and M_{2} rotate in circular motion about their barycenter
- M_{0} and $\mathrm{M}_{1}-\mathrm{M}_{2}$ barycenter rotate in circular motion about their common center of mass

Bicircular Model

- Sun Earth Rotating system:

$$
\begin{aligned}
& \dot{x}=u \\
& \dot{y}=v \\
& \dot{u}=x+2 v-\frac{\mu_{E}\left(x-x_{E}\right)}{\left(\left(x-x_{E}\right)^{2}+y^{2}\right)^{3 / 2}}-\frac{\mu_{S}\left(x-x_{S}\right)}{\left(\left(x-x_{S}\right)^{2}+y^{2}\right)^{3 / 2}}-\frac{\mu_{M}\left(x-x_{M}\right)}{\left(\left(x-x_{M}\right)^{2}+\left(y-y_{M}\right)^{2}\right)^{3 / 2}} \\
& \dot{v}=y+2 u-\frac{\mu_{E} y}{\left(\left(x-x_{E}\right)^{2}+y^{2}\right)^{3 / 2}}-\frac{\mu_{S} y}{\left(\left(x-x_{S}\right)^{2}+y^{2}\right)^{3 / 2}}-\frac{\mu_{M}\left(y-y_{M}\right)}{\left(\left(x-x_{M}\right)^{2}+\left(y-y_{M}\right)^{2}\right)^{3 / 2}} \\
& \mu=\frac{M_{E}}{M_{E}+M_{S}}=3.0035 \times 10^{-6} \\
& a_{M}=2.573 \times 10^{-3} \\
& \mu_{S}=1-\mu \\
& \omega_{M}=12.369 \\
& \mu_{E}=-\mu \\
& \mu_{M}=3.734 \times 10^{-8} \\
& \theta_{M}=\omega_{M} t+\theta_{M 0} \\
& x_{S}=-\mu \\
& x_{E}=1-\mu \\
& x_{M}=a_{M} \cos \left(\theta_{M}\right) \\
& y_{M}=a_{M} \sin \left(\theta_{M}\right)
\end{aligned}
$$

Bicircular Model

- Trajectory
- Start at 800 km circular Earth orbit
- $\Delta \mathrm{V}=175.8 \mathrm{~m} / \mathrm{s}$

Initial Guess: Control Force

Trajectory Sensitivity

$\Delta V=207 \mathrm{~m} / \mathrm{s}$

$\Delta V=196 \mathrm{~m} / \mathrm{s}$

$\Delta V=191 \mathrm{~m} / \mathrm{s}$

$\Delta V=193 \mathrm{~m} / \mathrm{s}$

$\Delta V=188 \mathrm{~m} / \mathrm{s}$

DMOC+IM

- Lagrangian is derived from BCM4 in SE rotating coordinates

$$
L=\frac{1}{2}\left(\dot{x}^{2}+\dot{y}^{2}\right)+\frac{1}{2}\left(x^{2}+y^{2}\right)+x \dot{y}-y \dot{x}+\frac{\mu_{E}}{\sqrt{\left(x-x_{E}\right)^{2}+y^{2}}}+\frac{\mu_{M}}{\sqrt{\left(x-x_{M}\right)^{2}+\left(y-y_{M}\right)^{2}}}+\frac{\mu_{S}}{\sqrt{\left(x-x_{S}\right)^{2}+y^{2}}}
$$

- DMOC equations

$$
q_{0}=q^{0} \quad q_{N}=q^{1}
$$

$$
\begin{gathered}
D_{2} L\left(q_{0}, \dot{q}_{0}\right)+D_{1} L_{d}\left(q_{0}, q_{1}\right)+f_{0}^{-}=0 \\
D_{2} L_{d}\left(q_{k-1}, q_{k}\right)+D_{1} L_{d}\left(q_{k}, q_{k+1}\right)+f_{k-1}^{+}+f_{k}^{-}=0 \text { for } k=1, \ldots, N-1 \\
-D_{2} L\left(q_{N}, \dot{q}_{N}\right)+D_{2} L_{d}\left(q_{N-1}, \dot{q}_{N}\right)+f_{N-1}^{+}=0
\end{gathered}
$$

- Minimize control effort $J(q, u)=\int_{0}^{T} u_{x}(t)^{2}+u_{y}(t)^{2} d t$
- Control Force

$$
u_{x}=\frac{\Delta V_{x}}{\Delta t}, \quad u_{y}=\frac{\Delta V_{y}}{\Delta t}
$$

DMOC Results

DeltaV $(\mathrm{m} / \mathrm{s})$	
IG	175.8273
DMOC 1	2.1374
DMOC 2	0.6105
DMOC 3	0.2342
DMOC 4	0.2331

DMOC Results

Delta V (m/s)		
	Initial Guess	DMOC
case 1	175.8273	0.2331
case 2	178.5763	0.4452
case 3	172.7951	0.0672
case 4	171.3516	0.0902
case 5	177.8498	0.4386

DMOC Result

Comparison

- How does this compare with a Hohmann Transfer?
- Case 1: trajectory begins in $\sim 800 \mathrm{~km}$ altitude circular orbit.
- Starting velocity of trajectory $=6.24 \mathrm{~km} / \mathrm{s}$
- circular velocity of parking orbit $=7.4 \mathrm{~km} / \mathrm{s}$
- Initial $\Delta \mathrm{V}=1.17 \mathrm{~km} / \mathrm{s}$
- $\Delta \mathrm{V}=0.2331 \mathrm{~m} / \mathrm{s}$ for trajectory portion
- Total $\Delta \mathrm{V}=1170.23 \mathrm{~m} / \mathrm{s}$
- Hohmann Transfer from 800 km circular orbit to Moon
- Total $\Delta \mathrm{V}=3812.6 \mathrm{~m} / \mathrm{s}$

DMOC + Invariant Manifolds Future Work

- Optimize for time and control
- Enforce momentum boundary conditions to ensure capture
- Solve same problem using JPL's MYSTIC
- compare with DMOC+IM method
- Use method to generate trajectory to Titan
- Also include fly-by of Enceladus
- May require additional maneuvers

References

- Gomez, G., Koon, W.S., Lo, M.W., Marsden, J.E., Masdemont, J., and Ross, S.D. "Invariant Manifolds, the Spatial Three-Body Problem and Space Mission Design." AAS 01-301.
- Junge, O., Marsden, J.E., and Ober-Blöbaum, S. "Discrete Mechanics and Optimal Control."
- Koon, W.S., Lo, M.W., Marsden, J.E., and Ross, S.D. "Dynamical Systems, the Three-Body Problem and Space Mission Design." www.esm.vt.edu/~sdross/books
- Koon, W.S., Lo, M.W., Marsden, J.E., and Ross, S.D. "Shoot the Moon." AAS 00-166.
- Koon, W.S., Lo, M.W., Marsden, J.E., and Ross, S.D.
"Heteroclinic Connections Between Periodic Orbits and Resonance Transitions In Celestial Mechanics." Chaos 10 (2000): 427-469.
- Ross, S.D., Koon, W.S., Lo, M.W., and Marsden, J.E. "Design of a Multi-Moon Orbiter." AAS 03-143.
- Ross, S.D. "Cylindrical Manifolds and Tube Dynamics in the Restricted Three-Body Problem." PhD thesis, California

Questions?

