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Motivating Example: Alice (2004-2007)
Alice 
• 300+ miles of fully 

autonomous driving 
• 8 cameras, 8 

LADAR, 2 RADAR 
• 12 Core 2 Duo 

CPUs + Quad Core 
• 3 Gb/s data network 
• ~75 person team 

over 18 months (x 2) 

Software 
• 25 programs with 

~200 exec threads 
• 237,467 lines of 

executable code 

Networked Control 
System
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How should we design systems of this complexity? 
How do we make sure they function as desired?
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Level Model Specification

Abstractions for Networked Control System Design
min J =

Z T

0
L(x, u,↵)dt+ V (x(T ))

�init ^ ⇤�env =) ⇤�safe ^ ⇤⌃�live,

Feedback 
Control 
(PID)

y = Pyu(s)u+ Pyd(s) d
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System  
Dynamics 

(ODE)
Process

Operating Envelope 
Energy Efficiency 
Actuator Authority

ẋ
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x 2 X , u 2 U , d 2 D

(�init ^⇤�env) =)
(⇤�safe ^⇤⌃T�live)

  Supervisory 
 Control  
  (FSM)

Decision- 
Making

ẋ = f↵(x, u, d)

g(x,↵) =) ↵

0 = r(x,↵)

Continuous:

Discrete: if X then Y, never Z, always W, …

Logical constraints (MLD) 
Regular languages (DES) 
Temporal logic (LTL, STL)

Online  
Optimization  

(RHC)

min J =

Z T

0
L↵(x, u) dt

+ V (x(T ))

Trajectory
ẋ = f↵(x, u)

g↵(x, u, z)  0
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Outline for remainder of today’s talk 
• Formal specification using temporal logic (LTL, STL) 
•  “Design then verify”: modeling checking and abstraction 
•  “Correct-by-construction" synthesis of controllers 
•  Final thoughts: where we have been, where we might go
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Specifying Discrete Behavior Using Temporal Logic
Linear temporal logic (LTL) 

 ◊    “eventually”  - a property is  
   satisfied at some point in  
      the future 
 ¨  “always”  - a property is  
       satisfied now and forever  
       into the future

 ◯   “next” - true at next step 

Signal temporal logic (STL) 
• Allow predicates that compare 

values (via subsets of state space) 
• Allow bounds on temporal 

operators
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• p → ◊q    p implies eventually q (response) 

• p → q U r   p implies q until r (precedence) 

• ¨◊p    always eventually p (progress) 

• ◊¨p    eventually always p (stability) 

• ◊p → ◊q        eventually p implies eventually q  
    (correlation)

• V < Vmax   V(t) less than threshold (Vmax) 

• ¨[t1,t2] p    p true for all time in [t1, t2] 

• p → ◊ [0,t] q  if p occurs, q will occur w/in time t

Baier and Katoen, Principles of Model Checking, 2007
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Model Checking: Design and Verify

Approach: enumeration of all possible execution sequences (!) 
• Can test systems with up to 1011 states

5

Baier and Katoen, Principles of Model Checking, 2007
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Discrete Abstractions for (Hybrid) Dynamical Systems
Continuous models to discrete abstractions 

Formal tools available to create abstractions 
• Use reachability analysis (trajectory gener-

ation) to compute regions, transitions 
• Account for disturbances, uncertainty, 

failures (using, for example, MPT toolbox)
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formal 
specifications

system/env 
model

Formal Methods for System Verification & Synthesis
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requirements 
(on the system  

behavior)

assumptions  
(on the unknowns, e.g.,  
environment behavior)

system 
model

synthesisverification

controller that  
satisfies  

the specs

no such  
controller  

exists

satisfied 
(+ certificate)

violated 
(+ counterexample)
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“Correct-by-Construction” Controller Synthesis
Reactive Protocol Synthesis 
• Find control action that insures that 

specification is always satisfied 
• Complexity is doubly exponential (!) in 

size of the system specification 

GR(1) synthesis for reactive protocols 
• Piterman, Pnueli and Sa’ar, 2005 
• Assume environment fixes action 

before controller (breaks symmetry) 
• For certain class of specifications, 

get complexity cubic in # of states (!) 

• GR(1) = general reactivity formula 
• Assume/guarantee style specification
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Simple two person game 
• Runner attempts to reach goal w/

out being blocked 
• Blocker has limited motion 
• Each player must move  

each turn 
• Back out strategy from seq- 

uence of winning sets

Example: Runner Blocker System
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R0

R B G

R1

R3

A. Pnueli, 2005

win

lose lose

init

R2
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Example: Autonomous Navigation in Urban Environment
Traffic rules 
• No collisions with other vehicles 
• Stay in the travel lane unless there is an  

obstacle blocking the lane 
• Only proceed through an intersection  

when it is clear 

Assumptions 
• Obstacle may not block a road 
• Obstacle is detected before vehicle gets too close 
• Limited sensing range 
• Obstacle does not disappear when the vehicle  

is in its vicinity 
• Obstacles may not span more than a certain  

number of consecutive cells in the middle of  
the road 

• Each intersection is clear infinitely often 
• Each of the cells marked by star and its  

adjacent cells are not occupied by an obstacle  
infinitely often
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Example: Autonomous Navigation in Urban Environment

Use response mechanism to replan if no feasible solution exists 
• Trajectory planner sees blockage and fails to find strategy satisfying 

specification 
• Trajectory planner reports failure to goal generator 
• Goal generator re-computes a (high level) path to the goal state
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Path 
Planner

Path 
Follower

Actuation 
Interface

Traffic 
Planner

Mission 
Planner

Vehicle

• Solved using receding horizon 
temporal logic planning 

• TuLiP returns 900 state FSA 
in about 1.5 seconds 
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Receding Horizon Control for Linear Temporal Logic
Find planner (logic + path) to solve general control problem 

• For discrete system, can find automaton to satisfy this formula in O((nm|Σ|3) time (!) 

Basic idea 
• Discretize state space into regions {    } + interconnection graph 
• Organize regions into a partially ordered set {     };  
⇒ if state starts in      , must transition through      on way to goal 

• Find a finite state automaton      satisfying 

- Φ describes receding horizon invariants (eg, no collisions) 
- Automaton states describe sequence of regions we transition 

through;                      is intermediate (fixed horizon) goal 
- Planner generates trajectory for each discrete transition 
- Partial order condition guarantees that we move closer to goal 

Properties 
• Provably correct behavior according to spec
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(�init ⇥ ��e) =� (��s ⇥ ⇥�g)
• φinit = init conditions 

• φe = envt description 
• φs = safety property 

• φg = planning goal

⇥i =((v ⇥Wi) ⌅ � ⌅ ��e) =� (��s ⌅ ⇥(v ⇥Wgi) ⌅ ��)

W1

W2

W3

W4Wi

Vi

Ai

Wj ��g Wi

Wi Wj

Wgi ��g Wi

Wongpiromsarn, Topcu and M  
IEEE TAC 2012
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Temporal Logic Planning (TuLiP) toolbox 
http://tulip-control.org

Python Toolbox 
• GR(1), LTL specs 
• Nonlin dynamics 
• Supports discret- 

ization via MPT 
• Control protocol 

designed using JTLV 
• Receding horizon 

compatible 

Applications of TuLiP 
• Autonomous vehicles - traffic planner (intersections and roads, with other vehicles) 
• Distributed camera networks - cooperating cameras to track people in region 
• Electric power transfer - fault-tolerant control of generator + switches + loads
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System 
Model

System 
Spec

Proposition 
Preserving 
Partition

Finite  
Transition 

System

Continuous 
State Space 

Discretization

Digital
Design 

Synthesis

Continuous 
controller 

Supervisory 
control  

Continuous 
State Space 
Partition

Env 
Spec
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Approaches for Correct-By-Construction Synthesis
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requirements 
(on the system  

behavior)
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(on the unknowns, e.g.,  
environment behavior)

system 
model
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Layered architecture

• Break problem into 
separate layers of 
abstraction

• Use best tools at 
each layer 

• Modularity

• Requires manual de-
composition of layers 

• No formal proofs of 
correctness (yet) 

Mixed integer solver

• Convert temporal 
logic into integer 
constraints

• Exploit MILP solvers 
• Rich specification 

semantics

• Can get large number 
of integer variables 

• Difficult to encode 
reactivity (& GR(1))

Discrete abstraction

• Continuous dyna-
mics → discrete 
transition system 

• Exploit SAT, SMT, etc 
• Compatibility with 

model checkers

• Get very large dimen-
sional state spaces 

• Harder to encode 
optimality specs

Type

Prop-
erties

Pros

Cons
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Summary and Future Research
Networked control of 
autonomous systems 
• Requires integration of control, 

computer science, networking 
technologies 

• Specific focus on robustness 
(to environment, to faults) 

• Move from design-then-verify 
to specify-then-synthesize 

Many open problems remain 
• Decomposition of specs 

between subsystems/agents 
• Design of abstraction layers + 

interfaces 
• Extension to more descriptive 

classes of specifications: 
timed, probabilistic, etc
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