
Richard M. Murray
Control & Dynamical Systems

California Institute of Technology

 Tichakorn (Nok) Wongpiromsarn Ufuk Topcu .
Ministry of Science and Technology Aerospace Engineering 

 Thailand U. Texas

IEEE International Conference on  
Automation Science and Engineering (CASE)  

26 August 2015

http://www.cds.caltech.edu/~murray/wiki/CASE2015

Research support by AFOSR, Boeing, DARPA (FCRP), IBM and United Technologies Corp.

Specification and Synthesis of Networked Control
Systems with Application to Autonomous Vehicles

Richard M. Murray, Caltech CDSIFAC World Congress 2014

Motivating Example: Alice (2004-2007)
Alice
• 300+ miles of fully

autonomous driving
• 8 cameras, 8

LADAR, 2 RADAR
• 12 Core 2 Duo

CPUs + Quad Core
• 3 Gb/s data network
• ~75 person team

over 18 months (x 2)

Software
• 25 programs with

~200 exec threads
• 237,467 lines of

executable code

Networked Control
System

2

How should we design systems of this complexity?
How do we make sure they function as desired?

Richard M. Murray, Caltech CDSIFAC World Congress 2014 Richard M. Murray, Caltech CDSIFAC World Congress, Aug 2014

Level Model Specification

Abstractions for Networked Control System Design
min J =

Z T

0
L(x, u,↵)dt+ V (x(T))

�init ^ ⇤�env =) ⇤�safe ^ ⇤⌃�live,

Feedback 
Control
(PID)

y = Pyu(s)u+ Pyd(s) d

kW (s)d(s)k 1
kW1S +W2Tk1 < �Tracking

System  
Dynamics

(ODE)
Process

Operating Envelope 
Energy Efficiency 
Actuator Authority

ẋ

i = f↵(x
i
, u

i
, d

i)

x 2 X , u 2 U , d 2 D

(�init ^⇤�env) =)
(⇤�safe ^⇤⌃T�live)

 Supervisory
 Control  
 (FSM)

Decision- 
Making

ẋ = f↵(x, u, d)

g(x,↵) =) ↵

0 = r(x,↵)

Continuous:

Discrete: if X then Y, never Z, always W, …

Logical constraints (MLD)
Regular languages (DES)
Temporal logic (LTL, STL)

Online  
Optimization  

(RHC)

min J =

Z T

0
L↵(x, u) dt

+ V (x(T))

Trajectory
ẋ = f↵(x, u)

g↵(x, u, z) 0

3

Outline for remainder of today’s talk
• Formal specification using temporal logic (LTL, STL)
• “Design then verify”: modeling checking and abstraction
• “Correct-by-construction" synthesis of controllers
• Final thoughts: where we have been, where we might go

Richard M. Murray, Caltech CDSIFAC World Congress 2014

Specifying Discrete Behavior Using Temporal Logic
Linear temporal logic (LTL)

 ◊ “eventually” - a property is  
 satisfied at some point in  
 the future
 ¨ “always” - a property is  
 satisfied now and forever  
 into the future

 ◯ “next” - true at next step

Signal temporal logic (STL)
• Allow predicates that compare

values (via subsets of state space)
• Allow bounds on temporal

operators

4

• p → ◊q p implies eventually q (response)

• p → q U r p implies q until r (precedence)

• ¨◊p always eventually p (progress)

• ◊¨p eventually always p (stability)

• ◊p → ◊q eventually p implies eventually q  
 (correlation)

• V < Vmax V(t) less than threshold (Vmax)

• ¨[t1,t2] p p true for all time in [t1, t2]

• p → ◊ [0,t] q if p occurs, q will occur w/in time t

Baier and Katoen, Principles of Model Checking, 2007

Richard M. Murray, Caltech CDSIEEE CASE 2015

Model Checking: Design and Verify

Approach: enumeration of all possible execution sequences (!)
• Can test systems with up to 1011 states

5

Baier and Katoen, Principles of Model Checking, 2007

Richard M. Murray, Caltech CDSIFAC World Congress 2014

Discrete Abstractions for (Hybrid) Dynamical Systems
Continuous models to discrete abstractions

Formal tools available to create abstractions
• Use reachability analysis (trajectory gener-

ation) to compute regions, transitions
• Account for disturbances, uncertainty,

failures (using, for example, MPT toolbox)

6

?
⌫⇤

Supervisory  
Controller

Continuous
Controller

response

X

⌫6 ⌫7 ⌫8 ⌫9 ⌫10

⌫1 ⌫2 ⌫3 ⌫4 ⌫5

⌫1 ⌫2 ⌫3 ⌫4 ⌫5

⌫6 ⌫7 ⌫8 ⌫9 ⌫10

X
ẋ = f↵(x, u)

g↵(x, u, z) 0

min J =

Z T

0
L↵(x, u) dt

+ V (x(T))

Richard M. Murray, Caltech CDSIEEE CASE 2015

formal 
specifications

system/env 
model

Formal Methods for System Verification & Synthesis

7

requirements
(on the system  

behavior)

assumptions  
(on the unknowns, e.g.,  
environment behavior)

system
model

synthesisverification

controller that  
satisfies  

the specs

no such  
controller  

exists

satisfied 
(+ certificate)

violated 
(+ counterexample)

Richard M. Murray, Caltech CDSIEEE CASE 2015

“Correct-by-Construction” Controller Synthesis
Reactive Protocol Synthesis
• Find control action that insures that

specification is always satisfied
• Complexity is doubly exponential (!) in

size of the system specification

GR(1) synthesis for reactive protocols
• Piterman, Pnueli and Sa’ar, 2005
• Assume environment fixes action

before controller (breaks symmetry)
• For certain class of specifications, 

get complexity cubic in # of states (!)

• GR(1) = general reactivity formula
• Assume/guarantee style specification

8

E

PC

E PC

E PC

E PC

(�e

init

^⇤�e

safe

^⇤⌃�e

prog

) ! (�s

init

^⇤�s

safe

^⇤⌃�s

prog

)

Environment assumption System guarantee

Richard M. Murray, Caltech CDSIFAC World Congress 2014

Simple two person game
• Runner attempts to reach goal w/

out being blocked
• Blocker has limited motion
• Each player must move  

each turn
• Back out strategy from seq- 

uence of winning sets

Example: Runner Blocker System

9

R0

R B G

R1

R3

A. Pnueli, 2005

win

lose lose

init

R2

Richard M. Murray, Caltech CDSIEEE CASE 2015

Example: Autonomous Navigation in Urban Environment
Traffic rules
• No collisions with other vehicles
• Stay in the travel lane unless there is an  

obstacle blocking the lane
• Only proceed through an intersection  

when it is clear

Assumptions
• Obstacle may not block a road
• Obstacle is detected before vehicle gets too close
• Limited sensing range
• Obstacle does not disappear when the vehicle  

is in its vicinity
• Obstacles may not span more than a certain  

number of consecutive cells in the middle of  
the road

• Each intersection is clear infinitely often
• Each of the cells marked by star and its  

adjacent cells are not occupied by an obstacle  
infinitely often

10

E

PC

(�e

init

^⇤�e

safe

^⇤⌃�e

prog

)

! (�s

init

^⇤�s

safe

^⇤⌃�s

prog

)

Richard M. Murray, Caltech CDSIFAC World Congress 2014

Example: Autonomous Navigation in Urban Environment

Use response mechanism to replan if no feasible solution exists
• Trajectory planner sees blockage and fails to find strategy satisfying

specification
• Trajectory planner reports failure to goal generator
• Goal generator re-computes a (high level) path to the goal state

11

Path
Planner

Path
Follower

Actuation 
Interface

Traffic
Planner

Mission
Planner

Vehicle

• Solved using receding horizon 
temporal logic planning

• TuLiP returns 900 state FSA 
in about 1.5 seconds

Richard M. Murray, Caltech CDSEXCAPE, 13 Jun 2013

Receding Horizon Control for Linear Temporal Logic
Find planner (logic + path) to solve general control problem

• For discrete system, can find automaton to satisfy this formula in O((nm|Σ|3) time (!)

Basic idea
• Discretize state space into regions { } + interconnection graph
• Organize regions into a partially ordered set { };  
⇒ if state starts in , must transition through on way to goal

• Find a finite state automaton satisfying

- Φ describes receding horizon invariants (eg, no collisions)
- Automaton states describe sequence of regions we transition 

through; is intermediate (fixed horizon) goal
- Planner generates trajectory for each discrete transition
- Partial order condition guarantees that we move closer to goal

Properties
• Provably correct behavior according to spec

12

(�init ⇥ ��e) =� (��s ⇥ ⇥�g)
• φinit = init conditions

• φe = envt description
• φs = safety property

• φg = planning goal

⇥i =((v ⇥Wi) ⌅ � ⌅ ��e) =� (��s ⌅ ⇥(v ⇥Wgi) ⌅ ��)

W1

W2

W3

W4Wi

Vi

Ai

Wj ��g Wi

Wi Wj

Wgi ��g Wi

Wongpiromsarn, Topcu and M  
IEEE TAC 2012

Richard M. Murray, Caltech CDSIFAC World Congress 2014

Temporal Logic Planning (TuLiP) toolbox
http://tulip-control.org

Python Toolbox
• GR(1), LTL specs
• Nonlin dynamics
• Supports discret- 

ization via MPT
• Control protocol 

designed using JTLV
• Receding horizon 

compatible

Applications of TuLiP
• Autonomous vehicles - traffic planner (intersections and roads, with other vehicles)
• Distributed camera networks - cooperating cameras to track people in region
• Electric power transfer - fault-tolerant control of generator + switches + loads

13

System
Model

System
Spec

Proposition 
Preserving 
Partition

Finite  
Transition 

System

Continuous 
State Space 

Discretization

Digital
Design 

Synthesis

Continuous 
controller 

Supervisory 
control  

Continuous 
State Space
Partition

Env
Spec

Richard M. Murray, Caltech CDSIEEE CASE 2015

Approaches for Correct-By-Construction Synthesis

14

requirements
(on the system  

behavior)

assumptions  
(on the unknowns, e.g.,  
environment behavior)

system
model

J =
� T

0
L(x,�, u) dt + V (x(T),�(T)),

ẋ

i = f

i(xi
,↵

i
, y

⇠i
, u

i) x

i 2 Rn
, u

i 2 Rm

y

i = h

i(xi
,↵

i) y

i 2 Rq
('init ^ ⇤'e) =) (⇤'s ^ ⌃T 'g)

Layered architecture

• Break problem into
separate layers of
abstraction

• Use best tools at
each layer

• Modularity

• Requires manual de-
composition of layers

• No formal proofs of
correctness (yet)

Mixed integer solver

• Convert temporal
logic into integer
constraints

• Exploit MILP solvers
• Rich specification

semantics

• Can get large number
of integer variables

• Difficult to encode
reactivity (& GR(1))

Discrete abstraction

• Continuous dyna-
mics → discrete
transition system

• Exploit SAT, SMT, etc
• Compatibility with

model checkers

• Get very large dimen-
sional state spaces

• Harder to encode
optimality specs

Type

Prop-
erties

Pros

Cons

Richard M. Murray, Caltech CDSIEEE CASE 2015

Summary and Future Research
Networked control of
autonomous systems
• Requires integration of control,

computer science, networking
technologies

• Specific focus on robustness
(to environment, to faults)

• Move from design-then-verify
to specify-then-synthesize

Many open problems remain
• Decomposition of specs

between subsystems/agents
• Design of abstraction layers +

interfaces
• Extension to more descriptive

classes of specifications:
timed, probabilistic, etc

15

Path
Planner

Path
Follower

Actuation 
Interface

Traffic
Planner

Mission
Planner

Vehicle

(�init ^⇤�env) =)
(⇤�safe ^⇤⌃T�live)

