
2000 Conference on Decision and Control

A New Computational Approach to Real-Time Trajectory
Generation for Constrained Mechanical Systems 1

Mark B. Milam, Kudah Mushambi, and Richard M. Murray2

{milam,kudah,murray}@cds.caltech.edu

Abstract

Preliminary results of a new computational approach
to generate aggressive trajectories in real-time for con-
strained mechanical systems are presented. The al-
gorithm is based on a combination of nonlinear con-
trol theory, spline theory, and sequential quadratic pro-
gramming. It is demonstrated that real-time trajectory
generation for constrained mechanical systems is possi-
ble by mapping the problem to one of finding trajectory
curves in a lower dimensional space. Performance of the
algorithm is compared with existing optimal trajectory
generation techniques. Numerical results are reported
using the NTG software package.

Keywords: Real-time optimization, nonlinear control
design, optimal control, constrained trajectory genera-
tion, guidance.

1 Introduction

A simple approach to tracking a target using a feed-
back control system is to subtract the current state of
the tracking system from the target and feed this error
into a controller. This approach is frequently referred to
as a one degree of freedom design. It is well known, for
a large class of nonlinear mechanical systems with con-
straints, that this approach generally does not work well
since we are likely tracking a drifting equilibrium con-
figuration which is an infeasible trajectory of the sys-
tem. Furthermore, achieving high performance while
guaranteeing stability in the presence of constraints is
difficult.

Another approach to tracking a target is the two degree
of freedom design depicted in Figure 1. The two-degree
of freedom design consists of a trajectory generator and
a linear feedback controller. The trajectory generator
provides a feasible feed-forward control and reference
trajectory in the presence of system and actuation con-
straints. Given inherent modeling uncertainty, a feed-
back controller provides stability around the reference
trajectory. This approach has the advantage that the
system is tracking a feasible trajectory along which the
system can be stabilized.

1Research supported in part by AFOSR and DARPA.
2Control and Dynamical Systems, Mail Code 107-81, Califor-

nia Institute of Technology, Pasadena, CA 91125.

Generation
urDesired Trajectory Plant

x

Feedback

xr

Controller

Objective

Figure 1: Two Degree of Freedom Design

A prime example of a case where a two degree of free-
dom design would be implemented is an Uninhabited
Combat Air Vehicle (UCAV). The desired objective of
the UCAV would be commanded by the operator or
pre-programmed without operator intervention. The
desired objective may be to go to a single point, pass
through several way-points, or track a target. For some
missions, UCAV’s will autonomously fly highly aggres-
sive trajectories frequently on the fringe of the flight
envelope. The idea of directly commanding the UCAV
to track a target, as in the one degree of freedom de-
sign, would be impractical considering the fast dynam-
ics and constraints of a typical UCAV. Therefore, the
UCAV control problem is to construct, in real-time, a
trajectory that satisfies the desired objective as well as
the system dynamics while ensuring that the aircraft
is stabilized and operating within flight and actuation
constraints.

A wealth of work has been done on feedback controllers
for stabilization of nonlinear systems around a trajec-
tory, for example, Li [15], and Pesch [17, 18], and will
not be covered in this paper. Much less work has
been done in the area of real-time trajectory genera-
tion. Generating real-time trajectories will be the main
topic of this paper.

There are two common techniques for generating real-
time trajectories. The first is based on searching and
interpolating over a large trajectory database in real-
time, for example, Atkeson [2]. Searching a trajectory
database and piecing together trajectories can be very
time consuming and sub-optimal for large dimensional
problems. The second approach, which we will ad-
vocate in this paper, is to solve trajectory generation
problem online in real-time.

A classical approach to solving trajectory generation
problem online would be to solve an optimal con-
trol problem in real-time. The standard indirect, di-
rect, and homotopy methods for the numerical solu-
tion of optimal control problems can be found in von
Stryk [22], Hargraves and Paris [12], and Chen and
Huang [4], respectively. These methods generally run
too slow to be adapted to real-time implementation.

A modern approach to solving the trajectory genera-
tion problem would be to use nonlinear geometric con-
trol techniques. These techniques depend on finding
outputs such that the complete differential behavior of
the system can be found in terms outputs and their
derivatives. The theory of the existence and finding
such outputs are subjects of Isidori [13], Rathinam [19],
Charlet et al . [3], and Fliess [9]. Of course, there are
many classes of systems such that these outputs can-
not be found even if they do exist. It is usually not
too difficult to find an output that will characterize
part of the system behavior. In this case, careful at-
tention must be paid to the stability of the resulting
uncharacterized zero dynamics which could lead to un-
bounded controls and states. Techniques were devel-
oped in Devasia and Chen [7], Devasia [6], and Verma
and Junkins [21] to circumvent this problem. Some
methods concerning the determination of real-time ref-
erence trajectories without constraints for diffentially
flat systems are illustrated in van Nieuwstadt [20]. An
approach to finding feasible trajectories for constrained
differentially flat systems by approximating constraints
with linear functions is given in Faiz and Agrawal [8].
Using nonlinear control techniques for trajectory gen-
eration have the advantage that they are likely to be
implementable in real-time. However, most of these
techniques do not take into consideration actuation and
state constraints and do not give optimal trajectories.
Furthermore, the user must estimate the time horizon
of the trajectory.

In light of the UCAV example, we consider the com-
bination of optimal reference trajectories, time horizon
determination, real-time computation restrictions, con-
vergence, and trajectory determination in the presence
of control and state constraints all to be crucial require-
ments that must be considered in real-time trajectory
generation. Therefore, the purpose of this paper will
be to present an introduction to a methodology that
appears to satisfy all these requirements.

The methodology we will present is based on finding
trajectory curves in a lower dimensional space as in
nonlinear control theory. Once the curves are parame-
terized by B-splines, sequential quadratic programming
is used to find the coefficients of the B-splines to satisfy
the optimization objectives as well as the constraints.
Section 2 describes the elements of the methodology. A
numerical comparison is given in Section 3 between the

nonlinear trajectory generation (NTG) software pack-
age resulting from the proposed methodology, direct
collocation, and the direct shooting software package
RIOTS [1]. Illustrative examples of how we would use
NTG in a real-time environment are provided in Sec-
tion 4. A summary and future directions are provided
in the final section.

2 Problem Setup and Proposed Method of
Solution

Consider the system

ẋ = f(x, u) x ∈ Rn, u ∈ Rm (1)

where all vector fields and functions are real-analytic.
It is desired to find a trajectory of (1) that minimizes
the cost

J = φf (x(tf), u(tf)) + φ0(x(t0), u(t0))+∫ tf
t0
L(x(t), u(t))dt

(2)

subject to a vector of N0 initial time, Nf final time,
and Nt trajectory constraints,

lb0 ≤ ψ0(x(t0), u(t0)) ≤ ub0,
lbf ≤ ψf (x(tf), u(tf)) ≤ ubf ,
lbt ≤ S(x, u) ≤ ubt,

(3)

respectively.

There are three primary components to the real-time
trajectory generation methodology we propose. The
first is to determine outputs such that Equation (1)
can be mapped to a lower dimensional output space.
Once this is done the cost in Equation (2) and the con-
straints in Equation (3) can also be mapped to the out-
put space. The second is to parameterize the outputs in
terms of B-spline curves. Finally, sequential quadratic
programming is used to solve for the coefficients of the
B-splines to minimize the cost subject to constraints in
output space.

The key to the approach is to map Equation (1) to a
lower dimensional output space. The idea being that it
will be easier as well as computationally more efficient
to solve a lower dimensional problem. In most cases it
is desirable to find an output z = z1, ..., zq of the form

z = A(x, u, u(1), . . . , u(r)) (4)

such that (x(t), u(t)) can be determined completely
from

(x, u) = B(z, z(1), . . . , z(s)) (5)

where x(i) denotes the ith time derivative of x. By
doing this the differential constraints in Equation (1)
are automatically satisfied and Equation (1) is said to
be differentially flat. A necessary condition for the ex-
istence of such an output can be found in Fliess [9].

Fxb

Fzb

r

θ

Xb

Zs

Xs

Ow

Zb

Figure 2: Planar Ducted Fan Coordinate System Defini-
tion

Examples of differentially flat systems can be found
in Fliess et al . [10]. In general, finding a flat output
may be very difficult even if one could prove it does
exist. Therefore, in the case that we cannot deter-
mine a flat output or no flat output exists we will map
the system dynamics in Equation (1) to the lowest di-
mensional space possible. Therefore, (x(t), u(t)) will be
completely determined from

(x, u) = C1(z, z(1), . . . , z(p1)) and
C2(z, z(1), . . . , z(p2)) = 0.

(6)

We will illustrate different mappings of the system dy-
namics by an example. The example for illustration
will be a simplified model of a UCAV. This system is
commonly referred to as the planar ducted fan and is
depicted in Figure 2. The ODE’s for this system may
be written

mẍ cos θ − (mz̈ −mg) sin θ = FXb
mẍ sin θ + (mz̈ −mg) cos θ = FZb

(J/r)θ̈ = FZb .
(7)

Following the work of Rathinam in [19], the planar
ducted fan has five dependent variables x, z, θ, FXb , and
FZb . Since there are three equations of motion, the
system is under determined by two equations. Choos-
ing any two differentially independent variables yields a
fully determined set of ODE’s depending on a number
of unknown constants. An example of two differentially
dependent variables would be FZb and θ since they are
related in Equation (7) in which no other variables are
present. Suppose FXb and FZb are chosen for the time
interval of interest, each equation in Equation (7) would
have to be integrated twice yielding x, z, and θ and six
constants. However, it is not desirable to integrate any
equations in our approach. It is obvious that FXb and
FZb are not flat outputs of Equation (7) since it was
necessary to integrate three equations. In order to fit
the framework of equation (6), the following outputs

must be chosen

z1 = x z2 = z z3 = θ z4 = FXb z5 = FZb . (8)

There is no advantage to selecting this set of variables
since they must also satisfy the differential constraints
in Equation (7).

Eliminating FZb in Equation (7) the following relation
is obtained

mẍ sin θ + (mz̈ −mg) cos θ = (J/r)θ̈. (9)

If x and z is selected as a function of time in Equa-
tion (9), it is now necessary to integrate Equation (9)
twice to yield θ and two constants. In order to fit the
framework of equation (6), the following outputs are
chosen

z1 = x z2 = z z3 = θ. (10)

However, the outputs must be chosen in such a way
that Equation (9) is satisfied, namely,

mz̈1 sin z3 + (mz̈2 −mg) cos z3 = (J/r)z̈3. (11)

For the planar ducted fan it turns out that there exists
two variables such that all of the dependent variables
can be recovered without any constants. These outputs
are flat outputs and are given by

z1 = x+ (J/rm) cos θ
z2 = z − (J/rm) sin θ (12)

The key to recovering the dependent variables can be
seen by taking two derivatives of the outputs. In this
set of equations it is possible to solve for θ in terms of
the outputs with

tan θ =
(mg −mz̈2)

mz̈1
.

The other dependent variables can easily be found once
θ is found.

The point of this example is to illustrate that choice of
outputs in the proposed trajectory generation method-
ology is highly dependent on the problem under con-
sideration. For example, suppose in the above exam-
ple we choose the flat outputs and we impose an in-
put constraint on FXb and FZb . The expressions for
these variables are a very complicated and possibly
ill-conditioned function of the flat outputs and their
derivatives. Choosing the flat outputs could have dele-
terious effects on the numerical optimization. Numer-
ical investigations show that in this case it is advan-
tageous to choose Equation (10) as the outputs and
include the trajectory constraint Equation (11). The
slight increase in trajectory generation times by choos-
ing the flat outputs does not offset the the lower ro-
bustness to random initial guesses.

zj(t)

zj(tf)

zj(to)

breakpoint
knotpoint

kj − 1 degree polynomial between knotpoints

mj at knotpoints defines smoothness

Figure 3: Spline Representation of Outputs

Furthermore, suppose that it was not possible to find
the flat outputs in Equation (12), the outputs in Equa-
tion (10) may be the lowest dimensional space with the
constraint Equation (11) that the solution curves can
be found.

Once chosen, the outputs are parameterized in terms
of B-spline basis functions. B-splines are chosen as ba-
sis functions for their flexibility and ease of enforcing
continuity across knot points. A complete treatment
of B-splines can be found in DeBoor [5]. A pictorial
representation of an output is given in Figure 3. The
outputs are written in terms of finite dimensional B-
spline curves as

z1 =
∑p1
i=1 Bi,k1(t)C1

i for the knot sequence t1

z2 =
∑p2
i=1 Bi,k2(t)C2

i for the knot sequence t2
...

zq =
∑pq
i=1 Bi,kq(t)C

q
i for the knot sequence tq

and pj = lj(kj −mj) +mj

where Bi,kj (t) is the B-spline basis function defined in
Deboor [5] for the output zj with order kj , C

j
i are the

coefficients of the B-spline, lj is the number of knot
intervals, and mj is number of smoothness conditions
at the knots. After the outputs have been parameter-
ized in terms of B-spline curves, the coefficients of the
B-spline basis functions will be found using sequential
quadratic programming.

To cast the problem into the framework necessary for
sequential quadratic programming, it is necessary to
discretize the time interval into w intervals with w + 1
breakpoints. It is emphasized that the constraints in
Equation (3) will only be satisfied at a finite number of
points. In addition, the discrete approximation to the
continuous cost in Equation (2) is dependent on the
choice of integration technique.

The problem now can be stated in the form

min
y∈RM

F (y) subject to lb ≤ c(y) ≤ ub

where

y = (C1
1 , . . . , C

1
p1
, C2

1 , . . . , C
2
p2
, . . . , Cq1 , . . . , C

q
pq),

and M =
∑q
i=1 pi

and F (y) is the discrete approximation in output space
to the objective in Equation (2). The vector c(y) con-

tains the constraints in output space from Equation (3)
and any other constraints represented in output space
as a result of not choosing the flat output. Note that the
trajectory constraints will be satisfied at w + 1 break-
points chosen by the user. The lower and upper bounds
for the constraints denoted by the vectors lb and ub.

The two sequential quadratic programming packages
CFSQP and NPSOL are being considered for the se-
quential quadratic programming routines at this time.
CFSQP [14] has the advantage that it generates feasible
iterates throughout the optimization process. Although
NPSOL [11] only guarantees satisfaction of the nonlin-
ear constraints when the optimal point is reached, it is
much faster and appears to handle larger dimensional
problems than CFSQP. Ultimately, an investigation on
a real system will determine which code is the best for
the proposed trajectory generation methodology. For
this paper, NPSOL will be used in all examples.

3 Performance Comparison

In this section, a comparison will be made between
NTG, the software package developed using the algo-
rithm described in Section 2, RIOTS, and direct col-
location. These techniques were chosen since all could
solve general nonlinear constrained optimization prob-
lems. Only initial random guesses are considered in
this comparison. Two problems were chosen for com-
parison: The forced VanDerPol Oscillator [1] and the
constrained planar ducted fan. A comparison will be
based on computation times and convergence from ran-
dom initial conditions. All tests were conducted on a
Sun Ultra 10 333 MHz computer.

The first problem under consideration is the forced Van-
DerPol oscillator. The comparison will be between RI-
OTS and NTG. Direct Collocation was not considered
competitive for this problem. The cost, dynamics, and
constraints are the following:

min
u
J(u) .=

1
2

∫ 5

0
x2

1 + x2
2 + u2dt

subject to

ẋ1(t) = x2(t)
ẋ2(t) = −x1(t) + (1− x2

1(t))x2(t) + u(t)
x1(0) = 1, x2(0) = 0, x2(5)− x1(5)− 1 = 0.

The fact that the forced VanDerPol oscillator is dif-
ferentially flat with the output z1(t) = x1(t) was used
when implementing this problem in the NTG code. The
smoothness and order of the B-spline parameterization
for each interval was taken to be three and five, respec-
tively. The number of breakpoints was chosen to be
four times the number of coefficients.

For RIOTS, the input was parameterized by a second
order B-spline for each interval. Trapezoidal integration
was used in both software packages.

Method CPU Time (s) Intervals Cost
NTG .002 1 1.9127

RIOTS .0178 11 1.7081
NTG .1191 30 1.6859

RIOTS .2261 200 1.6857

Table 1: RIOTS and NTG VanDerPol Comparison

First, a comparison was made between CPU usage and
the cost. Each point on the first plot of Figure 4 is
the average cost and CPU time of 100 random initial
guesses for the free variable coefficients in both RIOTS
and NTG. The plot shows that as the number of coef-
ficients representing the input in RIOTS and the out-
put in NTG was increased the lower the cost. RIOTS
needed a minimum of 11 intervals for convergence from
a random initial guess while NTG needed only one in-
terval. The second plot in Figure 4 shows the trajec-
tories at the lowest number of intervals that converged
for both RIOTS and NTG. Table 1 shows that NTG’s

0 0.05 0.1 0.15 0.2
1.68

1.69

1.7

1.71

1.72
Computation Time Required

CPU Time (sec)

C
os

t

NTG
RIOTS

0 1 2 3 4 5

−0.5

0

0.5

1
NTG 1 interval, RIOTS 11 intervals

Time (sec)

NTG x
1

NTG u
RIOTS x

1
RIOTS u

0 1 2 3 4 5

−0.5

0

0.5

1
NTG 30 intervals, RIOTS 200 intervals

Time (sec)

Figure 4: RIOTS and NTG VanDerPol Comparison

computation time is one eighth that of RIOTS with a 12
percent increase in cost for the minimum interval case.
The third plot in Figure 4 shows that both RIOTS and
NTG converge to same cost for increasing numbers of
coefficients. The results of this comparison show that
for low intervals NTG can compute trajectories at sig-
nificantly lower CPU times than RIOTS at competitive
cost. For some real-time applications computing a fea-
sible, albeit sub-optimal, trajectory may be necessary
as a result of processing limitations.

The planar ducted fan given outlined in Section 2 will
be used in the next comparison. The objective will be

to move from equilibrium point to equilibrium point
in minimum time subject to a thrust vectoring input
constraint of the form

0 ≤ FXb ≤ 17 and − FXb/3 ≤ FZb ≤ FXb/3.

The boundary conditions are the following:

x(t0) = (∗, ∗, ∗, ∗, π/2, 0) and x(tf) = (∗, ∗, ∗, ∗, π/2, 0)

where x(t) = (x, ẋ, z, ż, θ, θ̇) and ∗ can be either 1, 0, or
-1. There are 6561 possible combinations of boundary
conditions.

In order to account for the free final time variable, the
planar ducted fan equations are scaled to yield

mx
′′

cos θ − (mz
′′ − ξ2mg) sin θ = ξ2FXb

mx
′′

sin θ + (mz
′′ − ξ2mg) cos θ = ξ2FZb

(J/r)θ
′′

= ξ2FZb
ξ
′

= 0

(13)

where x
′

denotes dx
dτ and τ = t/ξ.

The outputs z1 = x, z2 = z, z3 = θ, and z4 = ξ are
chosen for NTG. Note that the flat outputs were not
chosen in order to illustrate NTG for non-flat systems.
In total, NTG has four trajectory constraints (three
due to the constraint on the inputs and one due to
the output selection). Sixth order B-splines with C3

continuity across knot points and four intervals will be
chosen for the first three outputs. A first order B-spline
with one interval is chosen to parameterize the final
output. The constraints are satisfied for twenty equally
spaced breakpoints. Twenty break-points were chosen
to guarantee that the error in satisfying the constraints
between breakpoints was kept small.

In order to use direct collocation, the states x, z, and θ
were approximated with fourth order B-splines. Ap-
proximating the inputs FXb and FZb with third or-
der B-splines produced the best results. The resulting
constraints were required to be satisfied at 20 equally
spaced constraints. RIOTS was not included in this
comparison since the problem is highly constrained and
nonlinear. Single shooting based techniques, such as
RIOTS, often do not work well for highly nonlinear con-
strained systems.

The point of this example is to compare the conver-
gence of NTG with other techniques. Since there are
no guarantees of convergence for non-convex sequential
quadratic programming based optimization techniques,
it would be expected that any technique used in real-
time application would need to be robust to the initial
guess.

The test conducted to test convergence was the follow-
ing: Choose 500 random initial guesses for NTG and

100 for direct collocation for the unknown free vari-
ables in each of the 6561 test cases and test for conver-
gence. Figure 5 gives the results of the optimization.
The first plot shows that for any given 6561 test case
most of 500 initial guess converged to a solution using
NTG. In fact, all of the 6561 test cases converged for
more than 20 of the 500 initial guesses. On the other
hand, the second plot in Figure 5 shows that most of
the 6561 test cases did not converge for any initial guess
using direct collocation. This test illustrates that it is

0 200 400 600
0

20

40

60

80

100

120

140

Number of Guesses

N
um

be
r

of
 C

as
es

0 50 100
0

500

1000

1500

2000

2500

Number of Guesses

N
um

be
r

of
 C

as
es

Figure 5: NTG and Direct Collocation Convergence Anal-
ysis

advantageous to parameterize an output in a lower di-
mensional space instead parameterizing the inputs and
the states when solving trajectory generation problems.
However, it was not expected that the results would be
so skewed. Further testing will have to done to remove
any elements of subjectivity. For example, direct col-
location may work better in the case that the desired
objective was to minimize the energy of the inputs over
a fixed time interval.

4 Terrain Avoidance

The purpose of this section is to illustrate how NTG
would be used in determining trajectories in a real-time
environment.

The planar ducted fan given in Equation 13 will be
used in this example. The mass properties and con-
straints are chosen to be similar to that of Caltech
Ducted Fan [16] without aerodynamics.

The objective is to move in minimum time from equi-
librium to equilibrium point subject to the terrain and
inputs constraints. The terrain constraint was mod-
eled as a B-spline with sufficient smoothness across knot
points.

0 5 10 15

−2

−1.5

−1

−0.5

0

0.5

x (m)

z
(m

)

0 1 2 3
−1

0

1

2

3

4

time (s)

θ
(r

ad
)

−5 0 5
0

5

10

15

20

F
z
 (N)

F x (
N

)

Figure 6: NTG Terrain Avoidance with Warm Start Ex-
ample

Start Method CPU Time (s) Cost (s)
Cold 1.26 2.95

Warm .09 3.04
Warm .18 3.27
Warm .13 3.48
Warm .31 3.64
Warm .15 3.86

Table 2: NTG Terrain Avoidance with Warm Start

An random initial guess of the trajectory was given to
NTG to find the marked trajectory shown in Figure 6.
For NPSOL, this is considered a cold start since the
Lagrange Multipliers are not known. The other five
trajectories were found by using a warm start. A warm
start uses the previous trajectories Lagrange Multipli-
ers as an initial starting point in finding the active set
of constraints. Table 2 provides summary of the cost as
well as the CPU computation times for the trajectories.
Note the significant improvement in CPU times for the
warm start trajectories.

5 Summary and Future Directions

We have presented a promising new methodology for
real-time trajectory generation. A new software pack-
age NTG has been written to implement this method-
ology. Favorable comparisons have been made for NTG
over RIOTS and direct collocation. Examples show
that real-time implementation is possible. However,
much more testing needs to to be done to identify the
strengths and weakness of the methodology. Currently,
we are working on further performance comparisons.

We are currently implementing an automatic mesh and
breakpoint determination algorithm as well as an op-
tion to include the CFSQP sequential quadratic pro-
gramming code. We are also establishing a measure the
acceptable error of constraints between breakpoints.

Our goals for the immediate future are to get the
methodology working on the real Caltech Ducted Fan.
This problem has the added difficulties of tabular data
and redundant actuators and should prove to be an
excellent problem for NTG. Currenly NTG is showing
promising results for real-time trajectory generation for
the model the the Caltech Ducted Fan with aerody-
namics. The ultimate test for NTG will be real-time
implementation in a two degree of freedom design on
the Caltech Ducted Fan.

References

[1] A.Schwartz. Theory and Implementation of Nu-
merical Methods Based on Runge-Kutta Integration for
Solving Optimal Control Problems. PhD thesis, U.C.
Berkeley, 1996.

[2] C. Atkeson. Using Trajectory Optimizers to
Speed Up Global Optimization in Dynamic Program-
ming, chapter 6. Morgan Kaufmann, 1994.

[3] B. Charlet, Levine J., and Marino R. On dynamic
feedback linearization. Systems and Control Letters,
13:143–151, 1989.

[4] Y. Chen and J. Huang. A new computational
approach to solving a class of optimal control prob-
lems. International Journal of Control, 58(6):1361–
1383, 1993.

[5] C. de Boor. A Practical Guide to Splines.
Springer-Verlag, 1978.

[6] S. Devasia. Approximated stable inversion for
nonlinear systems with nonhyperbolic internal dynam-
ics. IEEE Trans. Automat. Contr., 44(7):1419–1425,
Feb 1999.

[7] S. Devasia, D. Chen, and B. Paden. Nonlin-
ear inversion-based output tracking. IEEE Trans. Au-
tomat. Contr., 42:930–943, July 1996.

[8] N. Faiz and S. Agrawal. Trajectory planning of
differentially flat systems with dynamics and inequali-
ties. Preprint.

[9] M. Fliess, J. Levine, P. Martin, and P. Rouchon.
Flatness and defect of non-linear systems: introductory
theory and examples. International Journal of Control,
61(6):1327–1360, 1995.

[10] M. Fliess, J. Levine, P. Martin, and P. Rou-
chon. A lie-backlund approach to equivalence and flat-
ness of nonlinear systems. IEEE Trans. Auto. Cont.,
44(5):928–937, 1999.

[11] P. Gill, W. Murray, M. Saunders, and M. Wright.
User’s Guide for NPSOL 5.0: A Fortran Package for
Nonlinear Programming. Systems Optimization Labo-
ratory, Stanford University, Stanford, CA 94305.

[12] C. Hargraves and S. Paris. Direct trajectory opti-
mization using nonlinear programming and collocation.
AIAA J. Guidance and Control, 10:338–342, 1987.

[13] A. Isidori. Nonlinear Control Systems. Springer-
Verlag, 1989.

[14] C. Lawrance, J. Zhou, and A. Tits. User’s
guide for CFSQP Version 2.5. Institute for Systems
Research, University of Maryland, College Park, MD
20742.

[15] P. Li. Constrained tracking control of nonlin-
ear systems. Systems and Control Letters, 27:305–314,
1996.

[16] M. Milam and R.M. Murray. A testbed for non-
linear control techniques: The Caltech Ducted Fan. In
1999 IEEE Conference on Control Applications, 1999.

[17] H. Pesch. Real-time computation of feedback con-
trols for constrained optimal control problems. part1:
Neighboring extremals. Optimal Control Applications
and Methods, 10:129–145, 1989.

[18] H. Pesch. Real-time computation of feedback con-
trols for constrained optimal control problems. part2:
A correction method based on neighboring extremals.
Optimal Control Applications and Methods, 10:147–171,
1989.

[19] M. Rathinam. Differentially flat nonlinear control
systems. PhD thesis, Cal. Inst. of Tech., 1997.

[20] M. van Nieuwstadt. Trajectory generation for
nonlinear control systems. PhD thesis, Cal. Inst. of
Tech., 1997.

[21] A. Verma and J. Junkins. Inverse dynamics ap-
proach for real-time determination of feasible aircraft
reference trajectories. In Proc. AIAA Guidance, Con-
trol, and Navigation Conference, pages 545–554, 1999.

[22] O. von Stryk and R. Bulirsch. Direct and indirect
methods for trajectory optimization. Annals of Opera-
tions Research, 37:357–373, 1992.

