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• The importance of understanding dynamics
• Open loop versus closed loop control
• Shifting sensitivity and uncertainty management
• Time scales
• Time delays
• System coupling

• PID control (proportional, integral, derivative control) 
• State feedback and LQR design (linear/quadratic regulator) 

FUNDAMENTALS

SOME BASIC TOOLS



The importance of dynamics...



Isn’t feedback control intuitive?
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… but seriously, even seemingly simple systems can 
be difficult to control WITHOUT a basic understanding
of the system dynamics.

On the flip side, designing a controller for the Raff/Richard 
system is very easy to do once you have a model AND some
basic control tools.



Open loop vs. closed loop control...



A Simple Example (No Dynamics!!!)
Given the task of designing a power amplifier, desired gain of 1, 
given the following components:
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Straight-forward approach:
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Use components with the 
best relative tolerances!!!

Amplifier Gain = Input/Output Gain: 0.82 < G < 1.22 

Variation from desired gain: > 20 %



Design based on feedback:
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Amplifier Gain: 455 < G < 1,667 

_
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Input/Output Gain: 0.9978 < G/(1+G) < 0.9994 

Variation from desired gain: < 0.25 %

A component with 50 % error can yield a design with 0.25% error!!!



… incidentally, there are other benefits of the feedback design.
Assume G has the following frequency dependence:
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•Without feedback, the gain has dropped off by a factor of 2
when f=2 kHz.
•With feedback, the 3dB frequency will occur when
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Shifting Sensitivity and 
Uncertainty Management...
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Design a controller so that the input/output gain is close to 1:

OPEN LOOP:

CLOSED  LOOP:



Open Loop Sensitivity
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•Sensitivity can be shifted:  move to less costly, easier
to design components.

•There is no free-lunch:  sensitivity is in some sense
preserved.



Time Scales...
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Objective: 1)  Design a local controller that tracks velocity
2)  Design a global controller that tracks position

( ), speed of response = v d vF x k v x k= = −1)

( ), "speed of response " = d d d dv k x x k= −

(simplified version of what is used for RoboCup)
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Actual dynamics:
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Actual time constants and decay rates:
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CASE 1:



CASE 2:



Must keep time-scales in mind when designing control systems
for complex systems.



Time Delays...
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Controller: K=constant.

OBJECTIVE:  Make z track r

Without delay: ( ) ( ) ( ),  response speed = kz t kz t kr t+ =

With delay: ( ) ( 0.1) ( )z t kz t kr t+ − =



CASE 1 (k=1):



CASE 2 (k=10):



CASE 3 (k=20):



Delayed information has the effect of limiting how quickly
we can control a system. 



System Coupling...
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CONSIDER THE FOLLOWING COUPLED EQUATIONS:

t=time (continuous), s=space (discrete)

IMPLEMENTATION:

P(-1) P(0) P(1) P(2)
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2 1 2
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Decoupled:

Eigs=0.76, -0.86

…turns out that if you have at least 10 of the systems connected,
the overall system will be stable.



PID Control...

SOME BASIC TOOLS
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ROUGHLY:

kP:  the larger the error, the larger the control effort.
kI:  if system is stable, e(t) must go to zero for constant d(t) and u(t).
kD: apply more control effort if error is getting larger.

These interpretations are only rules of thumb:  in general,
the effects of the gains are dictated by the plant dynamics.



LQR Control...



BACKGROUND
Many systems can be captured by sets of ordinary differential equations:

( ) ( ( ), ( ))
( ) ( ( ), ( ))
x t f x t u t
y t h x t u t

=
=

• x(t):  State of the system, an n-valued vector (x(t)=(x1(t),…xn(t))
• u(t):  The input to the system, an m-valued vector
• y(t):  The output of the system, a p-valued vector

If we want to control the system about an operating point (xE,uE), and
we can measure all the states, we can linearize about (xE,uE) to obtain
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CONTROL PROBLEM:

0( ) ( ) ( ), (0)x t x t u t x x= + =A BGiven system dynamics

Find control input u(t) which minimizes
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( ) ( ) ( ) ( ) ( )T TJ u x t x t u t u t dt
∞

= +∫ Q R

• we are penalizing the state AND the control effort.
• x(t) and u(t) must eventually go to zero for cost to be finite.
• expect u to be a function of x(0)...

where Q=QT and R=RT have strictly positive eigenvalues,



Scalar Case:
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Look for solutions of the form u(t)=kx(t): 

0

2 2
0

( ) exp(( ) ) ,

(assuming 0)
2

x t t x

x kJ k
k

= +

 +
= − + < + 

a bk

q r a b
a b

Minimize J(k): 22 0k k− − + =
ar r q
b



General Case:

Substitute k=-(b/r)s: 2

2 0ss − + =
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Algebraic Riccati Equation

NOTE:
• We restricted our search to u(t)=Kx(t).  No obvious reason
why this should be the optimal u(t).  In fact, we can prove that it is!!!
• Unlike most optimal control strategies, the LQR solution is a 
feedback solution. 


