CS 142: Lecture 5.1 ﬂmﬁ
Mutual Exclusion

Richard M. Murray
28 October 2019

Goals:
* Introduce the concept of mutual exclusion (in distributed setting)
e Talk about how to share a variable between distributed processes

Reading:
e P. Sivilotti, Introduction to Distributed Algorithms, Chapter 7

* M. Singhal and N. G. Shivaratri. Advanced Concepts in Operating
Systems. McGraw-Hill, 1994. (Chapter 6: Distributed Mutual Exclusion)

Summary: Time, Clocks, Synchronization

Events, system timelines and logical time

Channel model: FIFO, lossless, directed B —F \ =

6(2]9| viime
e Can’t assume process clocks agree P, S 5—6 & S
e Make use of “logical time” \
A — B = time.A < time.B p & o S O— N5
! 8
Vector clocks: A — B = wvtime. A < vtime.B "time" —>

® Keep track of time in each process

e Order relation allows us to know one
event occured before another

Gossip: distribute info to all nodes

e Key problem is understanding when the
algorithm has terminated (all nodes idle,
no information in channels)

e Use tree structure to track propagation

Today: mutual exclusion

Diffusing computation properties:

e Safety: invariant (c/laim = term. cond.) ¢ r “user
. NC 7 TRY N CS
e Progress: term. cond. ~ claim ‘/ \’

N

7/
user mutex layer

CS/IDS 142, 28 Oct 2019 Richard M. Murray, Caltech CDS 2

The Mutual Exclusion Problem

Control access to a “critical section” (CS)

® Use in situations where no more than one
agent can make use of a resource at a time

® Easy to implement in centralized setting
- E.g. standard mutex libraries in Unix

® Not so easy when there is no central node
and no central clock

Example: intersections for self-driving cars 4
e Safety: no two cars should be in the intersection at the same time
® Progress: all cars should eventually be allowed to go through the intersection

Traditional (human) protocol for mutual exclusion at intersections (4 way stop)
e First person to reach the intersection gets to go first
® |f someone is already at the intersection when you arrive, they were first
® |f two or more people arrive at the same time, right hand rule applies

Q1: what happens if four people arrive at the same time?

Q2: if [some] cars are self-driving, who decides who reaches intersection “first”?
e Should self-driving car give way to aggressive human? Even if they break protocol?

CS/IDS 142, 28 Oct 2019 Richard M. Murray, Caltech CDS 3

Mutual Exclusion Formal Problem Statement

Specification
e Safety: no two users (Uj) are in critical
section (CS) at the same time

® Progress: strong and weak @7 Mutual Exclusion

- Weak: some agent will eventually Layer
be allowed to enter CS

- Strong: all agents will get a chance
(as long as they keep requesting)

User process protocol Composition TRY next TRY v CS

i/ f ~ T user properties: TRY ~ CS
NC — TRY N CS f\
user mutex/layer trv
User process (Ui) properties @ < grant Mutual Exclusion

NC next NC VTRY eXit Layer
stable TRY «—_ property of the user process k/
CS next CSV NC but not of the composition of user
transient.C'S processes & mutex layers

CS/IDS 142, 28 Oct 2019 Richard M. Murray, Caltech CDS 4

Approaches to Mutual Exclusion

Centralized control process Token
® Easiest: everyone makes requests to central “allocator ¥
e Use standard mutex at that point (eg, simple queue))—(@ ~
® Cons:

Token ring Fri) @ ®
® Use an indivisible token to grant access L
® Pass token around in an “efficient” way Xritical Shared Resourc
® Pros: relatively easy to implement and verify
e Cons: /C\/W\

K

Distributed computation Today © kc/ |
e Create protocol by which everyone agrees on who is next

® Pros: works for arbitrary topologies
® Cons: slightly more complex to verify (but only need to do once)

Its request

. i Fri CS R t es The site enters The site exits
Metrics for ch905|ng an approach Request message e s
® Response time \ \ \
® Number of messages required

CS i #i

. execution time
time

~—— Response Time ——m

CS/IDS 142, 28 Oct 2019 Richard M. Murray, varecn vcu> 5

Related Problem: Distributed Atomic Variables

General question: how can we “synchronize” a variable in a distributed system?

Proposed algorithm:
e | ocal variables for each agent (i)

x 0 0 1
= X = local copy of shared variable dbl
. . : u, = S o
= ti = logical clock for agent i
= queue of modify requests
- list of “known times” for all other U, S—F =
processes (why:) x 0 ; 2
e Agent executes modification request when
= request has minimum logical time
= all known times are later than the ; ; :
. X
request time reqQ | - dbl,7 dbl,7
time 6 7 10

Key properties that make this work

® All agents agree on request order v © °
® All agents know who has full information
U S &

Mutual exclusion is an example of this 1 =
. . X 0 0 1
® Use synchronized variable to agreeon 7, , |- v L7
who gets to access critical section time 1 2 8

CS/IDS 142, 28 Oct 2019 Richard M. Murray, Caltech CDS

wu il =
(/’Jb.

5‘/ G
iy

O
-
=<
Z|
c
O
)
b

ity

<3
=
&
3
| o
(o} L)
2
\&

AN

DGC Example: Changing Gear

Wongpiromsarn and M

Verify that we can’t drive while shifting or drive in the wrong gear CDC 2008
® Five components: follower Control, gcdrive Arbiter, gcdrive Control, actuators and network
® Construct temporal logic models for each component (including network)

follower follower
IArbiter ,
lfoIIower follower
Control - Tactics
vy
Response Actuator command
\ 4
gcdrive .
IArbiter . acdrive
' gcdrive gcdrive
Control - Tactics
Response] Actuator command
A 4
actuators

Team Caltech

. Jan 08

Richard M. Murray, Caltech CDS

Asynchronous operation

e Notation: Messagemod,dir - message to/from
a module; Len = length of message queue

e \erify: follower has the right knowledge of
the gear that we are currently in, or it
commands a full brake.

- O ((Len(TransResps,) = Len(Trans;))
A TransRespy [Len(TransRespy,)] =
COMPLETED = Trans; = Trans))

= O (Transy = Trans v Accss =-1)

e Verify: at infinitely many instants, follower
has the right knowledge of the gear that we
are currently in, or we have hardware
failure.

- OO0 (Trans; = Trans =
Transs[Len(Trans;s)] v HW failure)

Application Example: Trusted Wingman

Problem description Lost wingman in fingertip formation
e UAV (unmanned aerial vehicle) flies close

as long as high bandwidth link is available)-:;_\/"\/)_

® Assume low speed link is always available P /\/‘)_
* /_/*

Temporal logic specification Comms failure

mode = lost ~» stable(d(z;, xf) > dsep) between 1 and 2

® “|_ost mode leads to the distance between
the aircraft always being larger than dsep” : message = “rejoin" &

Isafe

® Need to make sure both aircraft agree that send("lost’)

high speed link is lost > lost
Implementation using shared variables |

e Implement using distributed variable ™% ™ essage = e &

to keep track of system “mode” message = "lost" send("rejoin”)
. . send("lost")
® Also allows extension to multiple
: : y
aircraft (eg, rest of the formation)
normal | rejoin

desired distance achieved

send("normal”)

CS/IDS 142, 28 Oct 2019 Richard M. Murray, Caltech CDS

Lamport’s Mutual Exclusion Algorithm

Idea: treat request queue as a distributed atomic variable

® regQ: queue of timestamps requests for CS (sorted in order)
e knownT: list of last “known times” for other processes
® Actions
= Request entry: add to reqQ; = Conditions to enter CS
broadcast <reqi, ti> to all other processes « L1: req at head of reqQ
= Receive req: add to reqQ); send <acki, ti> « L2: knownT][j] > ti for all other j
= Receive ack: update knownT][j] - To release CS
= Receive release: remove * remove req from reqQ

Uj’'s request from reqQ - broadcast <releasei> message

UNITY program: list of actions that can be executed by each agent (in any order)
e SendReq: mode = NC — mode = TRY || (vj :: send(i, j, <req;, t))
e RecvReq: (3j :: recv(i, j) = (req;, ty — recQ.push/sort(<req;, tp) || send(i, j, <ack;, ti)))
e RecvAck: (3j :: recv(i, j) = <ack;, tp — knownT][j] ;= tj)
e EnterCS: mode = TRY * recQ[head] = <(req;, t) (V] :: knownT][j] > ti) —» mode = CS;
e ReleaseCS: mode = CS — mode = NC || reqQ.pop(<req;, t || (Vj :: send(i, j, <rel;, t))

® RecvRel: (3j :: recv(i, j) = <rel;, t) — reqQ.pop(<rel;,)

CS/IDS 142, 28 Oct 2019 Richard M. Murray, Caltech CDS 9

Sample Execution

| {SendReq:} mode = NC — mode = TRY || (vj :: send(i, j, <req;, t))

| {RecvReq:} (3j :: recv(i, j) = <req;, ty — recQ.push/sort(<req;, tp) || send(i, j, <acki, t)))

| {RecvAck:} (3j :: recv(i, j) = (ack;, ty — knownT][j] := t)

| {EnterCS:} mode = TRY A recQ[head] = {req;, t) * (vj :: knownT][j] > ti) — mode = CS;

| {ReleaseCS:} mode = CS — mode = NC || reqQ.pop(<rel\g, t || (vj :: send(i, j, <reli, ti)))
| {RecvRel:} (3j :: recv(i, j) = <rel;,) — reqQ.pop(<ack;, t)) recQ: {(reqj, tj), ...}
knwT1: [log, kT2, kT3]

reqQ1 {<{reql, 2)} {{reg2, 1), <reql, 2)} {{reql, 2)}

U1 Q -0 O O—CS—
knwT1 [1,?,7] [C_%,’.i,?/]/ -~ 14,3,7] 7 [5,3,3] [7,3,3]
reqQ2 {<req2, 1 deq2,1%, eql, 2 7 {reql, 2)}

u2 O O——<—=0—CSs—C
knwT2 [?,0,7] [?7,3,7] [3,4,2]7 e = [3,5,2] [3,@,2]"~~.....,

- / -
- - / A

u3 O=— O 20
reqQ3 {<reg2, 1)} {reg2, 1), <reql, 2)} {<reql, 2)}
knwT3 [?,?2,1] [?,?,2] [?,?,3] [?,?2,7]

CS/IDS 142, 28 Oct 2019 Richard M. Murray, Caltech CDS

Proof of Correctness

Safety: need to show that no two processes are in CS at the same time
® Assume the converse: Ui and Uj are both in CS
e Both Ui and Uj must have their own requests at head of queue

® Head of Ui: <reqi, ti> UireqQ UjreqQ
® Head of Uj: <reqj, tj> A ,
(reqi, t {reveg)
e Assume WLOG ti < {j (if not, switch the argument) q; :
¢ Since Ujis in its CS, then we must have tj < Uj.knownT]i] reqj, tp) | | Xregith
= <reqi, ti> must be in Uj.reqQ (since messages are FIFO) : :

e ti <tj = reqj can’t be at the head of Uj.reqQ
® —« (contradiction)

Progress: need to show that eventually every request is eventually processed
® Approach: find a metric that is guaranteed to decrease (or increase)
e One metric: number of entries in Ui.knownT that are less than its request time (ti)
= Represents number of agents who might not have received our request
® |s this a good metric? Check conditions that are needed for induction:
= Bounded below by zero and if at zero then we eventually enter our critical section

- Must always decrease as other processes enter their critical section (and
someone will execute their CS at some point in time)

CS/IDS 142, 28 Oct 2019 Richard M. Murray, Caltech CDS

Summary: Mutual Exclusion
Key ideas:
® Distributed protocol for allow access to @ — N
a shared resource (“critical section”) \
® Can treat as special case of distributed @— /\
|

atomic variables J/

® [Jser process specifications: @/
NC next NCVTRY /
stable.TRY L

CS next CSV NC

transient.C'S ¢ ’z gl
® System specifications: NC 7 TRY N CS
= Safety: no two users (Ui) are in critical section " K
(CS) at the same time user mutex layer
= Progress: all agents will get a chance (as TRY next TRY v CS

long as they keep requesting): TRY ~ CS

Good example of composition between user and system processes and specs

Friday: optimizations + token-based algorithms

CS/IDS 142, 28 Oct 2019 Richard M. Murray, Caltech CDS 12

