
CS 142: Lecture 5.1
Mutual Exclusion

Richard M. Murray
28 October 2019

Goals:
• Introduce the concept of mutual exclusion (in distributed setting)
• Talk about how to share a variable between distributed processes

Reading:
• P. Sivilotti, Introduction to Distributed Algorithms, Chapter 7
• M. Singhal and N. G. Shivaratri. Advanced Concepts in Operating

Systems. McGraw-Hill, 1994. (Chapter 6: Distributed Mutual Exclusion)

Richard M. Murray, Caltech CDSCS/IDS 142, 28 Oct 2019

Summary: Time, Clocks, Synchronization
Channel model: FIFO, lossless, directed
Events, system timelines and logical time
• Can’t assume process clocks agree

• Make use of “logical time”

Vector clocks:
• Keep track of time in each process

• Order relation allows us to know one
event occured before another

Gossip: distribute info to all nodes
• Key problem is understanding when the 

algorithm has terminated (all nodes idle, 
no information in channels)
• Use tree structure to track propagation

Diffusing computation properties:

• Safety: invariant (claim term. cond.)

• Progress: term. cond. claim
⇒

⇝

2

vtime

1

4

0

2

3

Today: mutual exclusion

Richard M. Murray, Caltech CDSCS/IDS 142, 28 Oct 2019

The Mutual Exclusion Problem
Control access to a “critical section” (CS)
• Use in situations where no more than one 

agent can make use of a resource at a time
• Easy to implement in centralized setting

- E.g. standard mutex libraries in Unix

• Not so easy when there is no central node 
and no central clock

Example: intersections for self-driving cars
• Safety: no two cars should be in the intersection at the same time

• Progress: all cars should eventually be allowed to go through the intersection

Traditional (human) protocol for mutual exclusion at intersections (4 way stop)
• First person to reach the intersection gets to go first

• If someone is already at the intersection when you arrive, they were first
• If two or more people arrive at the same time, right hand rule applies

Q1: what happens if four people arrive at the same time?

Q2: if [some] cars are self-driving, who decides who reaches intersection “first”?
• Should self-driving car give way to aggressive human? Even if they break protocol?

3

http://www.exempelbanken.se/examples/347

Richard M. Murray, Caltech CDSCS/IDS 142, 28 Oct 2019

Mutual Exclusion Formal Problem Statement
Specification
• Safety: no two users (Ui) are in critical  

section (CS) at the same time
• Progress: strong and weak

- Weak: some agent will eventually  
be allowed to enter CS

- Strong: all agents will get a chance  
(as long as they keep requesting)

User process protocol

User process (Ui) properties

4

property of the user process  
but not of the composition of user
processes & mutex layers

TRY next TRY ∨ CS
TRY ⤳ CS

Composition 
properties:

Exclusion

Exclusion

Richard M. Murray, Caltech CDSCS/IDS 142, 28 Oct 2019

Exclusion

Approaches to Mutual Exclusion
Centralized control process
• Easiest: everyone makes requests to central “allocator”

• Use standard mutex at that point (eg, simple queue)

• Cons:

Token ring
• Use an indivisible token to grant access
• Pass token around in an “efficient” way
• Pros: relatively easy to implement and verify

• Cons:

Distributed computation
• Create protocol by which everyone agrees on who is next

• Pros: works for arbitrary topologies
• Cons: slightly more complex to verify (but only need to do once)

Metrics for choosing an approach
• Response time
• Number of messages required

5

Today

Fri

Fri

not clear how to implement for arbitrary topology

requires guaranteed access to trusted process

Richard M. Murray, Caltech CDSCS/IDS 142, 28 Oct 2019

Related Problem: Distributed Atomic Variables

6

1

2

General question: how can we “synchronize” a variable in a distributed system?

Proposed algorithm:
• Local variables for each agent (i)

- x = local copy of shared variable
- ti = logical clock for agent i
- queue of modify requests
- list of “known times” for all other  

processes (why: ___________)

• Agent executes modification request when
- request has minimum logical time
- all known times are later than the  

request time

Key properties that make this work
• All agents agree on request order
• All agents know who has full information

Mutual exclusion is an example of this
• Use synchronized variable to agree on  

who gets to access critical section

Richard M. Murray, Caltech CDSTeam Caltech, Jan 08

DGC Example: Changing Gear
Verify that we can’t drive while shifting or drive in the wrong gear
• Five components: follower Control, gcdrive Arbiter, gcdrive Control, actuators and network

• Construct temporal logic models for each component (including network)

7

follower
Control

Type to Type to actuators

Actuator commandResponse

follower
Arbiter

gcdrive
Control

gcdrive
Arbiter

Actuator commandResponse

follower
Tactics

gcdrive
Tactics

follower

gcdrive

Asynchronous operation

• Notation: Messagemod,dir - message to/from
a module; Len = length of message queue

• Verify: follower has the right knowledge of
the gear that we are currently in, or it
commands a full brake.

- ! ((Len(TransRespf,r) = Len(Transf,s))
∧ TransRespf,r[Len(TransRespf,r)] =
COMPLETED ⇒ Transf = Trans))

- ! (Transf = Trans ∨ Accf,s = -1)

• Verify: at infinitely many instants, follower
has the right knowledge of the gear that we
are currently in, or we have hardware
failure.

- !◊ (Transf = Trans =
Transf,s[Len(Transf,s)] ∨ HW failure)

Wongpiromsarn and M  
CDC 2008

Richard M. Murray, Caltech CDSCS/IDS 142, 28 Oct 2019

Application Example: Trusted Wingman
Problem description
• UAV (unmanned aerial vehicle) flies close 

as long as high bandwidth link is available
• Assume low speed link is always available

Temporal logic specification

• “Lost mode leads to the distance between  
the aircraft always being larger than dsep”

• Need to make sure both aircraft agree that  
high speed link is lost

Implementation using shared variables
• Implement using distributed variable 

to keep track of system “mode”
• Also allows extension to multiple 

aircraft (eg, rest of the formation)

8

mode = lost stable(d(xl, xf) > dsep)
Comms failure 

between 1 and 2

Lost wingman in fingertip formation

Richard M. Murray, Caltech CDSCS/IDS 142, 28 Oct 2019

Idea: treat request queue as a distributed atomic variable
• reqQ: queue of timestamps requests for CS (sorted in increasing order)

• knownT: list of last “known times” for other processes

• Actions
- Request entry: add to reqQ;  

broadcast <reqi, ti> to all other processes
- Receive req: add to reqQ; send <acki, ti>
- Receive ack: update knownT[j]
- Receive release: remove  

Uj’s request from reqQ

UNITY program: list of actions that can be executed by each agent (in any order)
• SendReq: mode = NC → mode = TRY || (∀j :: send(i, j, ⟨reqi, ti⟩))

• RecvReq: (∃j :: recv(i, j) = ⟨reqj, tj⟩ → recQ.push/sort(⟨reqj, tj⟩) || send(i, j, ⟨acki, ti⟩))

• RecvAck: (∃j :: recv(i, j) = ⟨ackj, tj⟩ → knownT[j] := tj)

• EnterCS: mode = TRY ^ recQ[head] = ⟨reqi, ti⟩ ^ (∀j :: knownT[j] > ti) → mode = CS;

• ReleaseCS: mode = CS → mode = NC || reqQ.pop(⟨reqi, ti⟩ || (∀j :: send(i, j, ⟨reli, ti⟩))

• RecvRel: (∃j :: recv(i, j) = ⟨relj, tj⟩ → reqQ.pop(⟨relj, tj⟩)

Lamport’s Mutual Exclusion Algorithm

9

- Conditions to enter CS
• L1: req at head of reqQ
• L2: knownT[j] > ti for all other j

- To release CS
• remove req from reqQ
• broadcast <releasei> message

increasing________

Richard M. Murray, Caltech CDSCS/IDS 142, 28 Oct 2019

Sample Execution
8 {SendReq:} mode = NC → mode = TRY || (∀j :: send(i, j, ⟨reqi, ti⟩))
8 {RecvReq:} (∃j :: recv(i, j) = ⟨reqj, tj⟩ → recQ.push/sort(⟨reqj, tj⟩) || send(i, j, ⟨acki, ti⟩))
8 {RecvAck:} (∃j :: recv(i, j) = ⟨ackj, tj⟩ → knownT[j] := tj)
8 {EnterCS:} mode = TRY ^ recQ[head] = ⟨reqi, ti⟩ ^ (∀j :: knownT[j] > ti) → mode = CS;
8 {ReleaseCS:} mode = CS → mode = NC || reqQ.pop(⟨rel\q, ti⟩ || (∀j :: send(i, j, ⟨reli, ti⟩))
8 {RecvRel:} (∃j :: recv(i, j) = ⟨relj, tj⟩ → reqQ.pop(⟨ackj, tj⟩)

10

U1

U2

U3

CS

CS
{⟨req1, 2⟩} {⟨req2, 1⟩, ⟨req1, 2⟩} {⟨req1, 2⟩}

{⟨req2, 1⟩} {⟨req2, 1⟩, ⟨req1, 2⟩}

{⟨req2, 1⟩} {⟨req2, 1⟩, ⟨req1, 2⟩} {⟨req1, 2⟩}

{⟨req1, 2⟩}

[4,3,?] [5,3,3]

[?,?,2] [?,?,3][?,?,1]

[?,0,?]

[1,?,?]

[?,?,7]

[?,3,?] [3,4,?]

[3,?,?]

[3,5,2] [3,6,2]

[7,3,3]

reqQ1

reqQ2

reqQ3

knwT1

knwT2

knwT3

recQ: {⟨reqj, tj⟩, …}
knwT1: [log, kT2, kT3]

Richard M. Murray, Caltech CDSCS/IDS 142, 28 Oct 2019

Proof of Correctness
Safety: need to show that no two processes are in CS at the same time
• Assume the converse: Ui and Uj are both in CS

• Both Ui and Uj must have their own requests at head of queue

• Head of Ui: <reqi, ti>
• Head of Uj: <reqj, tj>

• Assume WLOG ti < tj (if not, switch the argument)

• Since Uj is in its CS, then we must have tj < Uj.knownT[i] 
⟹ <reqi, ti> must be in Uj.reqQ (since messages are FIFO)

• ti < tj ⟹ reqj can’t be at the head of Uj.reqQ
• →← (contradiction)

Progress: need to show that eventually every request is eventually processed
• Approach: find a metric that is guaranteed to decrease (or increase)

• One metric: number of entries in Ui.knownT that are less than its request time (ti)
- Represents number of agents who might not have received our request

• Is this a good metric?
- Bounded below by zero and if at zero then we eventually enter our critical section
- Must always decrease as other processes enter their critical section (and

someone will execute their CS at some point in time)

11

⟨reqi, ti⟩
⋮ 

⟨reqj, tj⟩
⋮

⟨reqj, tj⟩
⋮ 

⟨reqi, ti⟩
⋮

Ui reqQ Uj reqQ

Check conditions that are needed for induction:

Richard M. Murray, Caltech CDSCS/IDS 142, 28 Oct 2019 12

Summary: Mutual Exclusion
Key ideas:
• Distributed protocol for allow access to  

a shared resource (“critical section”)
• Can treat as special case of distributed  

atomic variables
• User process specifications:

• System specifications:
- Safety: no two users (Ui) are in critical section  

(CS) at the same time
- Progress: all agents will get a chance (as 

long as they keep requesting): TRY ⤳ CS

Good example of composition between user and system processes and specs

Friday: optimizations + token-based algorithms

TRY next TRY ∨ CS

