# Problem Session #1 for CS 142 Fall 2019

Tung Phan

Caltech

October 4, 2019



### **Table of Contents**

1 Predicate calculus

### **Booleans**

- $\mathbb{B} = \{ \text{true}, \text{false} \}$
- operations on Booleans:  $\land, \lor, \neg, \equiv, \Rightarrow$  etc.
  - $\bullet \ \Rightarrow : \mathbb{B} \times \mathbb{B} \to \mathbb{B}$



#### **Predicates**

- *S* is any set of interest
- predicates:  $\mathcal{P} = \{P \mid P : S \to \mathbb{B}\}$
- operations on predicates:  $\land, \lor, \neg, \equiv, \Rightarrow$  etc.
  - $\bullet \ \Rightarrow : \mathcal{P} \times \mathcal{P} \to \mathcal{P}$



•  $S = \mathbb{N}$ 

- $S = \mathbb{N}$
- is\_even \(\triangle\) is\_divisible\_by\_2



- $S = \mathbb{N}$
- is\_even \(\triangle\) is\_divisible\_by\_2
- is\_even  $\equiv$  is\_divisible\_by\_2



- $S = \mathbb{N}$
- is\_even ∧ is\_divisible\_by\_2
- is\_even ≡ is\_divisible\_by\_2
- [is\_even  $\equiv$  is\_divisible\_by\_2], for every number in  $\mathbb{N}$ , being even is the same as being divisible by 2



### **Equivals**

There can be many equivals on the same line, but this does not indicate chaining!

$$\text{false} \equiv \text{false} \equiv \text{true}$$

is not the same as

$$false \equiv false \land false \equiv true$$

On  $\mathbb{B}$ ,  $\equiv$  is clearly associative and commutative. What about  $\mathcal{P}$ ?



# **Equival axioms**



# **Equival axioms**

- $[X \equiv Y \equiv Y \equiv X]$  (commutativity)

## **Equival axioms**

- $[X \equiv Y \equiv Y \equiv X]$  (commutativity)
- **3**  $[X \equiv X \equiv \text{true}]$  (definition of true)



- $2 [X \lor Y \equiv Y \lor X] (commutativity)$

- $(X \vee X \equiv X] (idempotence)$



- 3  $[X \lor X \equiv X]$  (idempotence)



### **Proof format**

Prove  $[A \equiv C]$ :

### **Proof format**

Prove  $[A \equiv C]$ :

$$A \equiv C$$
 $\equiv \{ \text{why } [A \equiv C \equiv D] \}$ 
 $D$ 
 $\equiv \{ \text{why } [D \equiv \text{true}] \}$ 
 $\text{true}$ 

can also replace true by an axiom or theorem

### **Theorem**

 $[X \lor true \equiv true]$ 

# **Conjunction and implication**

# **Conjunction and implication**

- $2 [X \lor Y \equiv Y \equiv X \Rightarrow Y] \quad \text{(definition of $\Rightarrow$)}$

### **Theorems**

- $[X \land \mathsf{true} \equiv X]$
- $[(X \wedge Y) \wedge Z \equiv X \wedge (Y \wedge Z)]$

# Negation and false axioms

# Negation and false axioms

# **Negation and false axioms**

- **3** [false  $\equiv \neg true$ ] (definition of false)



### **Theorems**

- $[\neg \neg X \equiv X]$  (involutive property)
- $[X \Rightarrow Y \equiv \neg X \lor Y]$  (homework)



# Discrepance axiom



#### **Theorems**

- $[(X \not\equiv Y) \equiv (Y \not\equiv X)]$  (commutativity)
- $[(X \not\equiv (Y \not\equiv Z)) \equiv ((X \not\equiv Y) \not\equiv Z)]$  (associativity)
- $[(X \equiv (Y \not\equiv Z)) \equiv ((X \equiv Y) \not\equiv Z)]$  (mutual associativity with  $\equiv$ )
- $[(X \not\equiv Y \not\equiv Z) \equiv (X \equiv Y \equiv Z)]$

# Quantification

• (Qi : r.i : t.i)

# Caltech

### Quantification

- ( Q i : r .i : t .i)
- **Q** is binary, associative, symmetric and has an identity *u*
- if  $\{i_0, i_1, \dots, i_n\}$  is the set of values of i for which r.i holds, then  $(\mathbf{Q}i : r.i : t.i) = u\mathbf{Q}t.i_0\mathbf{Q}t.i_1\mathbf{Q}\dots\mathbf{Q}t.i_n$
- some symbols

| binary operator | identity | quantification version |
|-----------------|----------|------------------------|
| $\wedge$        | true     | A                      |
| V               | false    | Э                      |
| +               | 0        | Σ                      |
| ×               | 1        | Π                      |
| max             |          | Max                    |
| []              | skip     | []                     |



### **Quantification axioms**

- **2** ( $\mathbf{Q}i$ : false: t.i) = u (empty range)
- $(Qi: i = E: t.i) = t.E \quad (one-point rule)$



# **Examples of quantification**

• 
$$(\times i : 0 \le i \le 10 : i) = ?$$

# Caltech

# **Examples of quantification**

- $(\times i : 0 \le i \le 10 : i) = ?$
- (+i : false : i) = ?

# **Examples of quantification**

- $(\times i : 0 \le i \le 10 : i) = ?$
- (+i : false : i) = ?
- $(\forall x : 1 < x \land x^2 < x : false) = ?$