CALIFORNIA INSTITUTE OF TECHNOLOGY Control and Dynamical Systems

CDS 202 Problem Set #7

Issued: 26 Feb 04 Due: 1 Mar 04

R. Murray Winter 2004

Reading: Boothby, IV.1, IV.5–IV.8

- 1. [Guillemin and Pollack, page 160, #1, #2]
 - (a) Suppose that $T \in \Lambda^p(V)$ and $v_1, \ldots, v_p \in V$ are linearly dependent. Prove that $T(v_1, \ldots, v_p) = 0$ for all $T \in \Lambda^p(V)$.
 - (b) Suppose that $\omega_1, \ldots, \omega_p \in V^*$ are linearly dependent. Show that $\omega_1 \wedge \cdots \wedge \omega_p = 0$.
- 2. Let $T = 2e^1 \otimes e^1 e^2 \otimes e^1 + 3e^1 \otimes e^2$ with $T \in \mathcal{T}_2(V)$ with $V = \mathbb{R}^3$. Let $\varphi \in L(\mathbb{R}^2, \mathbb{R}^2)$, $\psi \in L(\mathbb{R}^3, \mathbb{R}^2)$ be given by the matrices

$$\varphi = \left(\begin{array}{cc} 2 & 1 \\ -1 & 1 \end{array}\right)$$

and

$$\psi = \left(\begin{array}{rrr} 0 & 1 & -1 \\ 1 & 0 & 2 \end{array}\right).$$

Compute trace(t), $\varphi^*(t)$, $\psi^*(t)$.

- [Guillemin and Pollack, page 178, #1] Calculate the exterior derivatives of the following forms in ℝ³:
 - (a) $z^2 dx \wedge dy + (z^2 + 2y) dx \wedge dz$
 - (b) $13xdx + y^2dy + xyzdz$
 - (c) fdg, where f and g are functions on \mathbb{R}^3
 - (d) $(x+2y^3)(dz \wedge dx + \frac{1}{2}dy \wedge dx)$
- 4. Use exterior derivatives to show that $\operatorname{curl}(\operatorname{grad} f) = 0$ and $\operatorname{div}(\operatorname{curl} \vec{F}) = 0$.
- 5. [Boothby, page 207, #3] If $\varphi_i \in \bigwedge^1(V)$, i = 1, ..., k, show that $\varphi_1 \wedge ... \wedge \varphi_k = det(\varphi_i(v_j))$, a $k \times k$ determinant.
- 6. [[Boothby, page 212, #2] Prove that the volume of the parallelepiped of \mathbb{R}^3 whose vertex is at the origin and whose sides (from this vertex) are the vectors $v_i = (x_i^1, x_i^2, x_i^3)$, i = 1, 2, 3 is in fact the determinant of the matrix (x_i^j) .