CALIFORNIA INSTITUTE OF TECHNOLOGY

Control and Dynamical Systems

ACM/CDS 202

Reading: Abraham, Marsden, and Ratiu (MTA), Sections 5.1 and 5.2

Problems:

- 1. MTA 5.1-1: properties of the adjoint map on GL(n)
- 2. [Warner, page 135, #16; MTA 5.1-5]
 - (a) Let G be a Lie group. Show that the set of right invariant vector fields on G forms a Lie algebra under the Lie bracket operation and that it is naturally isomorphic to T_eG .
 - (b) Let $\phi: G \to G$ be the diffeomorphism defined by $\phi(g) = g^{-1}$. Prove that if $X \subset TG$ is a left invariant vector field on G then $\phi_*(X)$ is a right invariant vector field whose value at e is -X(e). Further show that $X \mapsto \phi_*(X)$ gives a Lie algebra isomorphism of the Lie algebra of left invariant vector fields with the Lie algebra of right invariant vector fields on G.
 - (A Lie algebra isomorphism is a linear mapping $A:V\to V$ which preserves the Lie bracket: $A[\xi,\eta]=[A\xi,A\eta]$.)
- 3. MTA 5.2-1, parts (i)–(iii): calculations on SO(3)
- 4. MTA 5.2-5, part (i): the Euclidean group
- 5. [Boothby, page 151, #6] Prove that if A is a nonsingular $n \times n$ matrix and $X \in \mathbb{R}^{n \times n}$ then $Ae^X A^{-1} = \exp(AXA^{-1})$. From this deduce that $\det e^X = e^{\operatorname{tr} X}$. Use this to determine those matrices A such that e^{At} , $t \in \mathbb{R}$, is a one-parameter subgroup of $\mathrm{SL}(n,\mathbb{R})$, the real special linear group.