CALIFORNIA INSTITUTE OF TECHNOLOGY Computing and Mathematical Sciences

CDS 131

R. Murray	Homework Set #3	Issued:	14 Oct 2020
Fall 2020		Due:	21 Oct 2020

Note: In the upper left hand corner of the second page of your homework set, please put the number of hours that you spent on this homework set (including reading).

- 1. [Sontag 3.1.2/3.1.3] Prove the following statements:
 - (a) If $(x, \sigma) \rightsquigarrow (z, \tau)$ and $(z, \tau) \rightsquigarrow (y, \mu)$, then $(x, \sigma) \rightsquigarrow (y, \mu)$.
 - (b) If $(x,\sigma) \rightsquigarrow (y,\mu)$ and if $\sigma < \tau < \mu$, then there exists a $z \in \mathcal{X}$ such that $(x,\sigma) \rightsquigarrow (z,\tau)$ and $(z, \tau) \rightsquigarrow (y, \mu)$.
 - (c) If $x \underset{T}{\rightsquigarrow} y$ for some T > 0 and if 0 < t < T, then there is some $z \in \mathcal{X}$ such that $x \underset{t}{\rightsquigarrow} z$ and $z \underset{T-t}{\leadsto} y$.
- 2. Consider the double integrator system $\ddot{y} = u$. Use the controllability Gramian to compute an input that steers the system for the origin to a state $x_{\rm f}$ in time T. What happens as $T \to 0$ and as $T \to \infty$?
- 3. [FBS 7.2] Extend the argument in Section 7.1 in *Feedback Systems* to show that if a system is reachable from an initial state of zero, it is reachable from a nonzero initial state.
- 4. [FBS 7.9] Consider the system

$$\frac{dx}{dt} = \begin{pmatrix} 0 & 1\\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 1\\ 0 \end{pmatrix} u, \qquad y = \begin{pmatrix} 1 & 0 \end{pmatrix} x,$$

with the control law

$$u = -k_1 x_1 - k_2 x_2 + k_{\rm f} r.$$

Compute the rank of the reachability matrix for the system and show that eigenvalues of the system cannot be assigned to arbitrary values.

5. [Sontag 3.3.4] Assume that the pair (A, B) is not controllable with dim $R(A, B) = \operatorname{rank} W_{c} =$ r < n. From Lemma 3.3.3, there exists an invertible matrix $T \in \mathbb{R}^{n \times n}$ such that the matrices $\tilde{A} := T^{-1}AT$ and $\tilde{B} := T^{-1}B$ have the block structure

$$\tilde{A} = \begin{pmatrix} A_1 & A_2 \\ 0 & A_3 \end{pmatrix}, \qquad \tilde{B} = \begin{pmatrix} B_1 \\ 0 \end{pmatrix},$$

where $A_1 \in \mathbb{R}^{r \times r}$ and $B_1 \in \mathbb{R}^{r \times m}$. Prove that (A_1, B_1) is itself a controllable pair.