CALIFORNIA INSTITUTE OF TECHNOLOGY

Computing and Mathematical Sciences

CDS 131

R. Murray Fall 2019

Homework Set #2

9 Oct 2019 Issued: Due: 16 Oct 2019

Note: In the upper left hand corner of the second page of your homework set, please put the number of hours that you spent on this homework set (including reading).

- 1. [FBS 6.1] Show that if y(t) is the output of a linear time-invariant system corresponding to input u(t), then the output corresponding to an input $\dot{u}(t)$ is given by $\dot{y}(t)$. (Hint: Use the definition of the derivative: $\dot{z}(t) = \lim_{\epsilon \to 0} (z(t+\epsilon) - z(t))/\epsilon$.
- 2. [FBS 6.2] Show that a signal u(t) can be decomposed in terms of the impulse function $\delta(t)$ as

$$u(t) = \int_0^t \delta(t - \tau) u(\tau) d\tau$$

and use this decomposition plus the principle of superposition to show that the response of a linear, time-invariant system to an input u(t) (assuming a zero initial condition) can be written as a convolution equation

$$y(t) = \int_0^t h(t - \tau)u(\tau) d\tau,$$

where h(t) is the impulse response of the system. (Hint: Use the definition of the Riemann integral.)

3. [FBS 6.4] Assume that $\zeta < 1$ and let $\omega_d = \omega_0 \sqrt{1 - \zeta^2}$. Show that

$$\exp \begin{pmatrix} -\zeta\omega_0 & \omega_{\rm d} \\ -\omega_{\rm d} & -\zeta\omega_0 \end{pmatrix} t = e^{-\zeta\omega_0 t} \begin{pmatrix} \cos\omega_{\rm d}t & \sin\omega_{\rm d}t \\ -\sin\omega_{\rm d}t & \cos\omega_{\rm d}t \end{pmatrix}.$$

Also show that

$$\exp\left(\begin{pmatrix} -\omega_0 & \omega_0 \\ 0 & -\omega_0 \end{pmatrix} t\right) = e^{-\omega_0 t} \begin{pmatrix} 1 & \omega_0 t \\ 0 & 1 \end{pmatrix}.$$

- 4. [FBS 6.6] Consider a linear system with a Jordan form that is non-diagonal.
 - (a) Prove Proposition 6.3 in Feedback Systems by showing that if the system contains a real eigenvalue $\lambda = 0$ with a nontrivial Jordan block, then there exists an initial condition with a solution that grows in time.
 - (b) Extend this argument to the case of complex eigenvalues with Re $\lambda=0$ by using the block Jordan form

$$J_i = \begin{pmatrix} 0 & \omega & 1 & 0 \\ -\omega & 0 & 0 & 1 \\ 0 & 0 & 0 & \omega \\ 0 & 0 & -\omega & 0 \end{pmatrix}.$$

5. [FBS 6.8] Consider a linear discrete-time system of the form

$$x[k+1] = Ax[k] + Bu[k], y[k] = Cx[k] + Du[k].$$

(a) Show that the general form of the output of a discrete-time linear system is given by the discrete-time convolution equation:

$$y[k] = CA^{k}x[0] + \sum_{j=0}^{k-1} CA^{k-j-1}Bu[j] + Du[k].$$

- (b) Show that a discrete-time linear system is asymptotically stable if and only if all the eigenvalues of A have a magnitude strictly less than 1.
- 6. Consider a linear system $\dot{x} = Ax$ with the matrix A given by

$$A = \begin{pmatrix} \lambda_1 & 1\\ 0 & \lambda_2 \end{pmatrix}$$

where $\lambda_1, \lambda_2 \in \mathbb{R}$.

- (a) Find the stable, unstable, and center subspaces E^s , E^u , and E^c for $\lambda_1 > 0$ and $\lambda_2 < 0$.
- (b) Qualitatively sketch the phase portrait of the system:
 - i. For $\lambda_1, \lambda_2 > 0$
 - ii. For $\lambda_1, \lambda_2 < 0$
 - iii. For $\lambda_1 > 0$ and $\lambda_2 < 0$
- (c) Compute the matrix exponential, e^{At} for the system for all $\lambda_1, \lambda_2 \in \mathbb{R}$.
- (d) From part (a), verify that $\mathbb{R}^2 = E^s \oplus E^u \oplus E^c$, where \oplus represents the direct-sum of the vector spaces. Also verify that these subspaces are invariant under e^{At} .
- (e) Give an example of a non-hyperbolic (Definition 2.2 FBS2s) linear system ($\dot{x} = Ax$, y = Cx). For all bounded inputs to your system, is the output bounded? Prove or give a counter example.