

Flow instability is all around us...

Sometimes the definitions are straightforward...

Difficulties

- · Flows are infinite-dimensional systems
 - Need to solve PDE stability problems rather than ODE
 - Sometimes there are good low-dimensional models
- Equilibrium solutions are hard to obtain analytically
 - Equilibrium solutions are difficult or impossible to observe experimentally
- Understanding stability and control requires careful definition of the system

Natural feedback

- Many flows of interest are convectively unstable
 - Plumes, jets, shear layers, ...
- Feedback of the convected disturbance can lead to absolute instability
 - Obstacles
 - Acoustic feedback
 - Nonlinearity (e.g. induced velocity)

Inserting $P = e^{i\Omega t}$ into the model: $\left(-\Omega^2 + i\epsilon\Omega + \omega_0^2\left(1 + Be^{-i\Omega t}\right)\right)P = 0$ Thus we need to find the zeros of the nonlinear function of Ω . This can be done numerically, but we can see most important effects by linearizing for the case where Ω is not much different from ω_0 . We obtain: $\omega = \omega_0(1 + \frac{B}{2}\cos\omega_0\tau)$ $\alpha = -\omega_0\frac{B}{2}\sin\omega_0\tau$ And the Rijke tube is unstable if $B\sin\omega_0\tau \sim \sin\omega_0\tau\sin\frac{4\pi L_s}{L} < 0$

- 1. 0 < τ < 2 $\frac{L}{a}$, the delay is not more than twice the traverse time of an acoustic wave, and
- 2. 0 < L_s < L/2, the screen is in the lower half of the pipe

Control

- The best controller was (nearly) as simple as feeding back the pressure with an appropriate phase lag (e.g. cancel natural acoustic feedback)
- The linear model was however very useful in assessing the limits of control
 - Maximum attenuation of tones
 - Actuator bandwidth
 - "Peak splitting"
- Similar control can be used to quiet a Rijke tube (and other combustion instabilities). Difficulty is in modeling flame in real situations.

Other topics in flow control

- Many other applications not covered here
- · Hardware
 - Actuators & sensors (distributed sensing)
 - Cost, reliability in aeronautics applications
- Modeling
 - Systematic model reduction techniques
 Extreme truncation of high-dimensional systems but preserving certain important features
 - PDE based control theory

Summary of main points

- · Flow instabilities are everywhere
- · Modeling is difficult
 - Flow governed by PDE (high-order systems)
 - Equilibrium states hard to define
- Standard definitions for stability depend on *how* system is modeled
 - Convective vs. absolute instability
- Natural feedback is often present and can induce absolute instability.
- Rijke tubes and cavity oscillations are example of acoustically driven instabilities that can be simply modeled and readily controlled