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CDS 101: Lecture 3.1
Stability and Performance

Richard M. Murray
11 October 2004

Goals:
Describe different types of stability for an equilibrium point
Explain the difference between local/global stability, and related concepts
Describe performance measures for (controlled) systems, including 
transients and steady state response

Reading: 
Åström and Murray, Analysis and Design of Feedback Systems, Ch 3
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Lecture 2.1: System Modeling

Model = state, inputs, outputs, dynamics

Principle: Choice of model depends on the questions you want to answer
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function dydt = f(t,y, k1, k2, 
k3,   m1, m2, b, omega)

u = 0.00315*cos(omega*t);
dydt = [ 

y(3);

y(4);

-(k1+k2)/m1*y(1) +
k2/m1*y(2);

k2/m2*y(1) - (k2+k3)/m2*y(2)

- b/m2*y(4) + k3/m2*u ];
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Review from Last Week 
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Today: Stability and Performance

Goal #1: Stability
Check if closed loop response is stable

Goal #2: Performance
Look at ability to track changes in 
reference and reject disturbances

Goal #3: Robustness (later)
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Compute
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Gas Pedal
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Phase Portraits (2D systems only)

Phase plane plots show 2D dynamics as vector fields & stream functions
Plot f(x) as a vector on the plane; stream lines follow the flow of the arrows
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phaseplot(‘dosc’, ...
[-1 1 10], [-1 1 10], ...
boxgrid([-1 1 10], [-1 1 10]));

phaseplot(‘dosc’, ...
[-1 1 10], [-1 1 10], ...
boxgrid([-1 1 10], [-1 1 10]));
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phaseplot(‘dosc’, ...
[-1 1 10], [-1 1 10], ...
boxgrid([-1 1 10], [-1 1 10]));
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Equilibrium Points

Equilibrium points represent stationary conditions for the dynamics

The equilibria of the system x = f(x) are the points xe such that f(xe) = 0.
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Stability of Equilibrium Points

An equilibrium point is:

Asymptotically stable if all 
nearby initial conditions con-
verge to the equilibrium point

Equilibrium point is an 
attractor or sink

Unstable if some initial 
conditions diverge from the 
equilibrium point

Equilibrium point is a source 
(or saddle)

Stable if initial conditions that 
start near the equilibrium point, 
stay near

Equilibrium point is a center
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Example #1: Double Inverted Pendulum

Stability of equilibria
Eq #1 is stable
Eq #3 is unstable
Eq #2 and #4 are unstable, 
but with some stable “modes”

Two series coupled pendula
States: pendulum angles (2), velocities (2)
Dynamics: F = ma (balance of forces)
Dynamics are very nonlinear

Eq #1 Eq #2

Eq #3 Eq #4
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Local versus Global Behavior

Stability is a local concept
Equilibrium points define the local behavior of the dynamical system
Single dynamical system can have stable and unstable equilibrium points

Region of attraction
Set of initial conditions that converge to a given equilibrium point

-2π 0 2π
-2

0

2

x1

x2



CDS 101, Lecture 3.1

11 October 2004

R. M. Murray, Caltech

5

CDS 101, 11 Oct 04 R. M. Murray, Caltech CDS 9

Example #2: Predator Prey (ODE version) 

Continuous time (ODE) version of predator prey dynamics:

Equilibrium points
~(6.5, 1.3): unstable ⇒ no steady state
population

Invariant curves (3)
Start on curve, stay on curve
“Limit cycle” ⇒ population of each 
species oscillates over time
This is a global feature of the dynamics
(not local to an equilibrium point)

Continuous time (ODE) model
MATLAB: predprey.m (from web page)
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Input/Output Performance

Return to system with inputs
How does system response to
changes in input values?

Transient response:
What happens right after a new input
is applied

Steady state response:
What happens a long time after the
input is applied

Stability vs input/output performance
Systems that are close to instability 
typically exhibit poor input/output performance
Nearly unstable systems (slow convergence) often exhibit “ringing” (highly 
oscillatory response to [non-periodic] inputs)
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Step Response

Output characteristics in response to a “step” input
Rise time: time required to move from 
5% to 95% of final value
Overshoot: ratio between amplitude of 
first peak and steady state value
Settling time: time required to remain 
w/in p% (usually 2%) of final value
Steady state value: final value at t = ∞
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Frequency Response

Measure the steady state response of the system to sinusoidal input
Example: audio amplifier – would like consistent 
(“flat”) amplification between 20 Hz & 20,000 Hz 
Individual sinusoids are good test signals for mea-
suring performance in many systems 
(eg, seasonal cycles in temperature)

Approach: plot input and output, measure relative amplitude and phase
Use MATLAB or SIMULINK to generate
response of system to sinusoidal output
Gain = Ay/Au
Phase = 2π · ∆T/T

May not work for nonlinear systems
System nonlinearities can cause
harmonics to appear in the output
Amplitude and phase may not be well-defined
For linear systems, frequency response is always well defined (week 6)
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Second Order Systems

Important class of systems in many applications areas

Analytical formulas exist for overshoot, rise time, settling time, etc
Frequency response can also be analytically derived
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Summary: Stability and Performance

Key topics for this lecture

Stability of equilibrium points

Local versus global behavior

Performance specification via 
step and frequency response
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