
Chapter 7

Loop Analysis of Feedback
Systems

This lecture describes how to analyze the stability and robustness of a feed-
back system by looking at the open loop transfer function. We introduce
the Nyquist criteria for stability and talk about the gain and phase margin
as measures of robustness.

7.1 Introduction

The basic idea of loop analysis is to “trace” a signal around a feedback
loop to determine whether the signal grows or decays when it is fed back on
itself through the system dynamics. It will be convenient to make use of a
different way of plotting the frequency response of the system with transfer
function G(s). The frequency response can be represented in the complex
plane by graphically by plotting the magnitude and phase of G(iω) for all
frequencies, as shown in Figure 7.1. Such a graph is called the Nyquist plot.
The magnitude a = |G(iω)| represents the gain and the angle φ = argG(iω)
represents the phase shift. The phase shift is typically negative which implies
that the output will lag the input.

The Nyquist plot gives us a way of looking at the stability of a feedback
system. Consider the feedback system in Figure 6.17 consisting of a process
with transfer function P (s) and a controller with transfer function C(s).
Introduce the loop transfer function

L(s) = P (s)C(s), (7.1)

117



118 CHAPTER 7. LOOP ANALYSIS OF FEEDBACK SYSTEMS

PSfrag replacements

Re G(iω)

Im G(iω)

ω

ϕ
g

Figure 7.1: Nyquist plot of the transfer function G(s) =
1.4e−s

(s+ 1)2
. The gain

and phase for the frequency ω are g = |G(iω)| and ϕ = argG(iω).

which represents signal transmission around the loop. The system can then
be represented by the block diagram in Figure 7.2.

We will first determine conditions for having a periodic oscillation in the
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Figure 7.2: Block diagram of a simple feedback system.
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loop. Assume that the feedback loop is cut as indicated in the figure and
that a sinusoid of frequency ω is injected at point A. In steady state the
signal at point B will also be a sinusoid with the same frequency. It seems
reasonable that an oscillation can be maintained if the signal at B has the
same amplitude and phase as the injected signal because we could then
connect A to B. Tracing signals around the loop we find that the condition
that the signal at B is identical to the signal at A is that

L(iω0) = −1 (7.2)

This condition has a nice interpretation in the Nyquist plot. It means that
the Nyquist plot of L(iω) intersects the negative real axis at the point -1.
The frequency where the intersection occurs is the frequency of the oscilla-
tion.

Intuitively it seems reasonable that the system would be stable if the
critical point -1 is on the left hand side of the Nyquist curve as indicated
in Figure 7.2. This means that the signal at point B will have smaller
amplitude than the injected signal. This is essentially true, but there are
several subtleties, that requires a proper mathematics to clear up. This will
be done later. The precise statement is given by Nyquist’s stability criterion.

7.2 Nyquist Criterion

We will now state and prove the Nyquist stability theorem. This will require
more results from the theory of complex variables than in many other parts
of the book. Since precision is needed we will also use a more mathematical
style of presentation. The key result is the following theorem about functions
of complex variables.

Theorem 7 (Principle of Variation of the Argument). Let D be a closed
region in the complex plane and let Γ be the boundary of the region. Assume
the function f is analytic in D and on Γ except at a finite number of poles
and zeros, then

wn =
1

2π
∆Γ arg f(z) =

1

2πi

∫

Γ

f ′(z)

f(z)
dz = N − P

where N is the number of zeros and P the number of poles in D. Poles
and zeros of multiplicity m are counted m times. The number wn is called
the winding number and ∆Γ arg f(z) is the variation of the argument of the
function f as the curve Γ is traversed in the positive direction.
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Proof. Assume that z = a is a zero of multiplicity m. In the neighborhood
of z = a we have

f(z) = (z − a)mg(z)

where the function g is analytic and different form zero. We have

f ′(z)

f(z)
=

m

z − a
+
g′(z)

g(z)

The second term is analytic at z = a. The function f ′/f thus has a single
pole at z = a with the residue m. The sum of the residues at the zeros of
the function is N . Similarly we find that the sum of the residues of the poles
of is −P . Furthermore we have

d

dz
log f(z) =

f ′(z)

f(z)

which implies that
∫

Γ

f ′(z)

f(z)
dz = ∆Γ log f(z)

where ∆Γ denotes the variation along the contour Γ. We have

log f(z) = log |f(z)| + i arg f(z)

Since the variation of |f(z)| around a closed contour is zero we have

∆Γ log f(z) = i∆Γ arg f(z)

and the theorem is proven.

Remark 7. The number wn is called the winding number.

Remark 8. The theorem is useful to determine the number of poles and zeros
of an function of complex variables in a given region. To use the result we
must determine the winding number. One way to do this is to investigate
how the curve Γ is transformed under the map f . The variation of the
argument is the number of times the map of Γ winds around the origin in
the f -plane. This explains why the variation of the argument is also called
the winding number.

We will now use the Theorem 7 to prove Nyquist’s stability theorem.
For that purpose we introduce a contour that encloses the right half plane.
For that purpose we choose the contour shown in Figure 7.3. The contour
consists of a small half circle to the right of the origin, the imaginary axis and
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Figure 7.3: Contour Γ used to prove Nyquist’s stability theorem.

a large half circle to the right with with the imaginary axis as a diameter.
To illustrate the contour we have shown it drawn with a small radius r and
a large radius R. The Nyquist curve is normally the map of the positive
imaginary axis. We call the contour Γ the full Nyquist contour.

Consider a closed loop system with the loop transfer function L(s). The
closed loop poles are the zeros of the function

f(s) = 1 + L(s)

To find the number of zeros in the right half plane we thus have to investigate
the winding number of the function f = 1 +L as s moves along the contour
Γ. The winding number can conveniently be determined from the Nyquist
plot. A direct application of the Theorem 7 gives the following.

Theorem 8 (Nyquist’s Stability Theorem). Consider a simple closed loop
system with the loop transfer function L(s). Assume that the loop trans-
fer function does not have any poles in the region enclosed by Γ and that
the winding number of the function 1 + L(s) is zero. Then the closed loop
characteristic equation has not zeros in the right half plane.

We illustrate Nyquist’s theorem by an examples.

Example 26 (A Simple Case). Consider a closed loop system with the loop
transfer function

L(s) =
k

s(s+ 1)2
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Figure 7.4: Map of the contour Γ under the map L(s) = k
s((s+1)2

. The curve

is drawn for k < 2. The map of the positive imaginary axis is shown in full
lines, the map of the negative imaginary axis and the small semi circle at
the origin in dashed lines.

Figure 7.4 shows the image of the contour Γ under the map L. The Nyquist
plot intersects the imaginary axis for ω = 1 the intersection is at −k/2. It
follows from Figure 7.4 that the winding number is zero if k < 2 and 2 if
k > 2. We can thus conclude that the closed loop system is stable if k < 2
and that the closed loop system has two roots in the right half plane if k > 2.

By using Nyquist’s theorem it was possible to resolve a problem that
had puzzled the engineers working with feedback amplifiers. The following
quote by Nyquist gives an interesting perspective.

Mr. Black proposed a negative feedback repeater and proved by tests
that it possessed the advantages which he had predicted for it. In
particular, its gain was constant to a high degree, and it was linear
enough so that spurious signals caused by the interaction of the various
channels could be kept within permissible limits. For best results, the
feedback factor, the quantity usually known as µβ (the loop transfer
function), had to be numerically much larger than unity. The possibil-
ity of stability with a feedback factor greater than unity was puzzling.
Granted that the factor is negative it was not obvious how that would
help. If the factor was -10, the effect of one round trip around the
feedback loop is to change the magnitude of the current from, say 1 to
-10. After a second trip around the loop the current becomes 100, and
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so forth. The totality looks much like a divergent series and it was not
clear how such a succession of ever-increasing components could add to
something finite and so stable as experience had shown. The missing
part in this argument is that the numbers that describe the successive
components 1, -10, 100, and so on, represent the steady state, whereas
at any finite time many of the components have not yet reached steady
state and some of them, which are destined to become very large, have
barely reached perceptible magnitude. My calculations were princi-
pally concerned with replacing the indefinite diverging series referred
to by a series which gives the actual value attained at a specific time t.
The series thus obtained is convergent instead of divergent and, more-
over, converges to values in agreement with the experimental findings.

This explains how I came to undertake the work. It should perhaps
be explained also how it come to be so detailed. In the course of the
calculations, the facts with which the term conditional stability have
come to be associated, became apparent. One aspect of this was that
it is possible to have a feedback loop which is stable and can be made
unstable by by increasing the loop loss. this seemed a very surprising
result and appeared to require that all the steps be examined and set
forth in full detail.

This quote clearly illustrate the difficulty in understanding feedback by sim-
ple qualitative reasoning. We will illustrate the issue of conditional stability
by an example.

Notice that Nyquist’s theorem does not hold if the loop transfer function
has a pole in the right half plane. There are extensions of the Nyquist
theorem to cover this case but it is simpler to invoke Theorem ?? directly.
We illustrate this by two examples.

Example 27 (Loop Transfer Function with RHP Pole). Consider a feedback
system with the loop transfer function

L(s) =
k

s(s− 1)(s+ 5)

This transfer function has a pole at s = 1 in the right half plane. This
violates one of the assumptions for Nyquist’s theorem to be valid. The
Nyquist plot of the loop transfer function is shown in Figure 7.5. Traversing
the contour Γ in clockwise we find that the winding number is 1. Applying
Theorem 1 we find that

N − P = 1

Since the loop transfer function has a pole in the right half plane we have
P = 1 and we get N = 2. The characteristic equation thus has two roots in
the right half plane.
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Figure 7.5: Map of the contour Γ under the map L(s) = k
s(s−1)(s+5) . The

curve on the right shows the region around the origin in larger scale. The
map of the positive imaginary axis is shown in full lines, the map of the
negative imaginary axis and the small semi circle at the origin in dashed
lines.

Example 28 (The Inverted Pendulum). Consider a closed loop system for
stabilization of an inverted pendulum with a PD controller. The loop trans-
fer function is

L(s) =
s+ 2

s2 − 1
(7.3)

This transfer function has one pole at s = 1 in the right half plane. The
Nyquist plot of the loop transfer function is shown in Figure 7.6. Traversing
the contour Γ in clockwise we find that the winding number is -1. Applying
Theorem 1 we find that

N − P = −1

Since the loop transfer function has a pole in the right half plane we have
P = 1 and we get N = 0. The characteristic equation thus has no roots in
the right half plane and the closed loop system is stable.

7.3 Small Gain Theorem

7.4 Stability Margins

In practice it is not enough that the system is stable. There must also be
some margins of stability. There are many ways to express this. Many of
the criteria are inspired by Nyquist’s stability criterion. They are based on
the fact that it is easy to see the effects of changes of the gain and the phase
of the controller in the Nyquist diagram of the loop transfer function L(s).
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Figure 7.6: Map of the contour Γ under the map L(s) = s+2
s2

−1
given by (7.3).

The map of the positive imaginary axis is shown in full lines, the map of
the negative imaginary axis and the small semi circle at the origin in dashed
lines.

An increase of controller gain simply expands the Nyquist plot radially. An
increase of the phase of the controller twists the Nyquist plot clockwise,
see Figure 7.7. The gain margin gm tells how much the controller gain can
be increased before reaching the stability limit. Let ω180 be the smallest
frequency where the phase lag of the loop transfer function L(s) is 180◦.
The gain margin is defined as

gm =
1

|L(iω180)|
(7.4)

The phase margin ϕm is the amount of phase lag required to reach the
stability limit. Let ωgc denote the lowest frequency where the loop transfer
function L(s) has unit magnitude. The phase margin is then given by

ϕm = π + argL(iωgc) (7.5)

The margins have simple geometric interpretations in the Nyquist diagram
of the loop transfer function as is shown in Figure 7.7.

A drawback with gain and phase margins is that it is necessary to give
both numbers in order to guarantee that the Nyquist curve not is close
to the critical point. One way to express margins by a single number is
to use the shortest distance from the Nyquist curve to the critical point.
We call this number the stability margin. This number also has other nice
interpretations as will be discussed in Chapter ??.

Reasonable values of the margins are phase margin ϕm = 30◦−−60◦, gain
margin gm = 2− 5, and shortest distance to the critical point d = 0.5− 0.8.
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Figure 7.7: Nyquist plot of the loop transfer function L with gain margin
gm, phase margin ϕm and stability margin d.

The gain and phase margins were originally used for the case when the
Nyquist plot intersects the unit circle and the negative real axis once. For
more complicated systems there may be many intersections and it is then
necessary to consider the intersections that are closest to the critical point.
For more complicated systems there is also another number that is highly
relevant namely the delay margin. The delay margin is defined as the small-
est time delay required to make the system unstable. For loop transfer
functions that decay quickly the delay margin is closely related to the phase
margin but for systems where the amplitude ratio of the loop transfer func-
tion has several peaks at high frequencies the delay margin is a much more
relevant measure.

Example 29 (Conditional Stability). Consider a feedback system with the
loop transfer function

L(s) =
3(s+ 1)2

s(s+ 6)2
(7.6)

The Nyquist plot of the loop transfer function is shown in Figure 7.8. Notice
that the Nyquist curve intersects the negative real axis twice. The first
intersection occurs at s = − for ω = and the second at s = − for ω =. The
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Figure 7.8: Nyquist curve for the loop transfer function L(s) = 3(s+1)2

s(s+6)2
. The

plot on the right is an enlargement of the area around the origin of the plot
on the left.

intuitive argument based on signal tracing around the loop is less intuitive
in this case, because injection of a sinusoid with frequency xx and amplitude
1 at A will in steady state give an oscillation at B with amplitude XXX. It
follows from Nyquist’s stability criterion that the system is stable because
the critical point is to the right of the Nyquist curve when it is traversed for
increasing frequencies. It was actually systems of this type which motivated
much of the research that led Nyquist to develop his stability criterion.

7.5 Second Order Systems

7.6 Further Reading
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