
Appendix A

Linear Algebra

In this appendix we review the notation and concepts from linear algebra
that are used in the text.

A.1 Linear spaces and operators

A.2 Jordan Form
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Appendix B

Laplace Transforms

The Laplace transform is an essential part of the language of control. Only
a few elementary properties are needed for basic control applications. There
is a beautiful theory for Laplace transforms which makes it possible to use
many powerful tools of the theory of functions of a complex variable to get
deep insights into the behavior of systems.

B.1 Basic Concepts

The Laplace transform maps a time function f : R+ → R to a function
F = Lf : C → C of a complex variable. It is defined by

F (s) =

∫

∞

0
e−stf(t)dt. (B.1)

The transform has some properties which makes it very well suited to deal
with linear systems.

First we observe that the transform is linear because

L(af + bg) = aF (s) + bF (s) = a

∫

∞

0
e−stf(t)dt+ b

∫

∞

0
e−stg(t)dt

=

∫

∞

0
e−st(af(t) + bg(t))dt = aLf + bLg

(B.2)

Next we show that the Laplace transform of the derivative of a function
is related to the Laplace transform of the function in a very simple way.
If F (s) is the Laplace transform of a function f(t) then the transform of
the derivative df/dt is given by Next we will calculate the transform of the
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derivative of a function, i.e. f ′(t) = df(t)
dt . We have

Ldf
dt

=

∫

∞

0
e−stf ′(t)dt = e−stf(t)

∣

∣

∣

∞

0
+ s

∫

∞

0
e−stf(t)dt = −f(0) + sLf

where the second equality is obtained by integration by parts. We thus
obtain the following important formula for the transform of a derivative

Ldf
dt

= sLf − f(o) = sF (s) − f(0) (B.3)

This formula is particularly simple if the initial conditions are zero because
it follows that differentiation of a function corresponds to multiplication of
the transform with s.

Since differentiation corresponds to multiplication with s we can expect
that integration corresponds to division by s. This is true as can be seen by
calculating the Laplace transform of an integral. We have

L
∫ t

0
f(τ)dτ =

∫

∞

0

(

e−st

∫ t

0
f(τ)dτ

)

dt

= −e
−st

s

∫ t

0
e−sτf ′(τ)dτ

∣

∣

∣

∞

0
+

∫

∞

0

e−sτ

s
f(τ)dτ =

1

s

∫

∞

0
e−sτf(τ)dτ

hence

L
∫ t

0
f(τ)dτ =

1

s
Lf =

1

s
F (s) (B.4)

Integration of a time function thus corresponds to dividing the Laplace trans-
form by s. This is consistent with the fact that differentiation of a time
function corresponds to multiplication of the transform with s.

Consider a linear time-invariant system where the initial state is zero.
The relation between the input u and the output y of is given by the con-
volution integral

y(t) =

∫

∞

0
g(t− τ)u(τ)dτ

see (2.20). We will now consider the Laplace transform of such an expression.
We have

Y (s) =

∫

∞

0
e−sty(t)dt =

∫

∞

0
e−st

∫

∞

0
g(t− τ)u(τ)dτdt

=

∫

∞

0

∫ t

0
e−s(t−τ)e−sτg(t− τ)u(τ)dτdt

=

∫

∞

0
e−sτu(τ)dτ

∫

∞

0
e−stg(t)dt = G(s)U(s)
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The result can be written as Y (s) = G(s)U(s) where G, U and Y are the
Laplace transforms of g, u and y. The system theoretic interpretation is
that the Laplace transform of the output of a linear system is a product
of two terms, the Laplace transform of the input U(s) and the Laplace
transform of the impulse response of the system G(s). A mathematical
interpretation is that the Laplace transform of a convolution is the product
of the transforms of the functions that are convoluted. the fact that the
formula Y (s) = G(s)U(s) is much simpler than a convolution is one reason
why Laplace transforms have become popular in control.

B.2 Additional Properties

For the sake of completeness we will give a few Laplace transforms and some
of their properties.

The transform of f1(t) = e−at is given by

F1(s) =

∫

∞

0
e−(s+a)tdt = − 1

s+ a
e−st

∣

∣

∣

∞

0
=

1

s+ a

By setting a = 0 we obtain the Laplace transform for a step. Differentiating
the above equation we find that the transform of the function f2(t) = te−at

is

F2(s) =
1

(s+ a)2

Repeated differentiation shows that the transform of the function f3(t) =
tne−at0n! is

F3(s) =
1

(s+ a)n+1

Setting a = 0 in f1 we find that the transform of the unit step function
f4(t) = 1 is

F4(s) =
1

s

Similarly we find by setting a = 0 in f3 that the transform of f5 = tn/n! is

F5(s) =
1

sn+1

Setting a = ib in f1 we find that the transform of f(t) = e−ibt = cos bt −
i sin bt is

F (s) =
1

s+ ib
=

s− ib

s2 + b2
=

s

s2 + b2
− i

b

s2 + b2
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Separating real and imaginary parts we find that the transform of f6(t) =
sin bt and f7(t) = cos bt are

F6(t) =
b

s2 + b2
, F7(t) =

s

s2 + b2

Proceeding in this way it is possible to build up tables of transforms that
are useful for hand calculations.

The behavior of the time function for small arguments is governed by the
behavior of the Laplace transform for large arguments. Or more precisely
that the value of f(t) for small t is thus equal to sF (s) for large s. This is
shown as follows.

lim
s→∞

sF (s) = lim
s→∞

∫

∞

0
se−stf(t)dt = lim

s→∞

∫

∞

0
e−vf(

v

s
)dv = f(0)

This result, which requires that the limit exists, is called is the initial value
theorem. The converse is also true, we have

lim
s→0

sF (s) = lim
s→0

∫

∞

0
se−stf(t)dt = lim

s→0

∫

∞

0
e−vf(

v

s
)dv = f(∞)

The value of f(t) for large t is thus equal to sF (s) for small s, the result is
called the final value theorem. These properties are very useful for qualita-
tive assessment of a time functions and Laplace transforms.


